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Abstract: SymTA/S is a system-level performance and timing analysis approach based on formal
scheduling analysis techniques and symbolic simulation. The tool supports heterogeneous
architectures, complex task dependencies and context aware analysis. It determines system-level
performance data such as end-to-end latencies, bus and processor utilisation, and worst-case
scheduling scenarios. SymTA/S furthermore combines optimisation algorithms with system
sensitivity analysis for rapid design space exploration. The paper gives an overview of current
research interests in the SymTA/S project.

1 Introduction

With increasing embedded system complexity, there is a
trend towards heterogeneous, distributed architectures.
Multiprocessor system on chip designs (MpSoCs) use
complex on-chip networks to integrate multiple program-
mable processor cores, specialised memories and other
intellectual property (IP) components on a single chip.
MpSoCs have become the architecture of choice in
industries such as network processing, consumer electronics
and automotive systems. Their heterogeneity inevitably
increases with IP integration and component specialisation,
which designers use to optimise performance at low power
consumption and competitive cost. Tomorrow’s MpSoCs
will be even more complex, and using IP library elements in
a ‘cut-and-paste’ design style is the only way to reach the
necessary design productivity.

Systems integration is becoming the major challenge in
MpSoC design. Embedded software is increasingly import-
ant to reach the required productivity and flexibility.
The complex hardware and software component inter-
actions pose a serious threat to all kinds of performance
pitfalls, including transient overloads, memory overflow,
data loss and missed deadlines. The International
Technology Roadmap for Semiconductors, 2003 Edition
(http://public.itrs.net/Files/2003ITRS/Design2003.pdf)
names system-level performance verification as one of the
top three codesign issues.

Simulation is state of the art in MpSoC performance
verification. Tools from many suppliers support cycle-
accurate cosimulation of a complete hardware and software
system. The cosimulation times are extensive, but devel-
opers can use the same simulation environment, simulation
patterns and benchmarks in both function and performance
verification. Simulation-based performance verification,

however, has conceptual disadvantages that become dis-
abling as complexity increases.

MpSoC hardware and software component integration
involves resource sharing that is based on operating systems
and network protocols. Resource sharing results in a
confusing variety of performance runtime dependencies.
For example, Fig. 1 shows a CPU subsystem executing
three processes. Although the operating system activates
T1; T2 and T3 strictly periodically (with periods P1;P2 and
P3; respectively), the resulting execution sequence is
complex and leads to output bursts.

As Fig. 1 shows, T1 can delay several executions of T3:
After T1 completes, T3 – with its input buffers filled –
temporarily runs in burst mode with the execution frequency
limited only by the available processor performance. This
leads to transient T3 output burst, which is modulated by
T1’s execution.

Figure 1 does not even include data-dependent process
execution times, which are typical for software systems, and
operating system overhead is neglected. Both effects further
complicate the problem. Yet finding simulation patterns - or
use cases - that lead to worst-case situations as highlighted
in Fig. 1 is already challenging.

Network arbitration introduces additional performance
dependencies. Figure 2 shows an example. The arrows
indicate performance dependencies between the CPU and
DSP subsystems that the system function does not reflect.
These dependencies can turn component or subsystem best-
case performance into system worst-case performance – a
so-called scheduling anomaly. Recall the T3 bursts from
Fig. 1 and consider that T3’s execution time can vary from
one execution to the next. There are two critical execution
scenarios, called corner cases: the minimum execution time
for T3 corresponds to the maximum transient bus load,
slowing down other components’ communication; and vice
versa.

The transient runtime effects shown in Figs. 1 and 2 lead
to complex system-level corner cases. The designer must
provide a simulation pattern that reaches each corner case
during simulation. Essentially, if all corner cases satisfy the
given performance constraints, then the system is guaran-
teed to satisfy its constraints under all possible operation
conditions. However, such corner cases are extremely
difficult to find and debug, and it is even more difficult to
find simulation patterns to cover them all. Reusing function
verification patterns is not sufficient because they do not
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cover the complex nonfunctional performance dependen-
cies that resource sharing introduces. Reusing component
and subsystem verification patterns is not sufficient because
they do not consider the complex component and subsystem
interactions.

The system integrator might be able to develop additional
simulation patterns, but only for simple systems in which
the component behaviour is well understood. Manual corner
case identification and pattern selection is not practical for
complex MpSoCs with layered software architectures,
dynamic bus protocols and operating systems. In short,
simulation-based approaches to MpSoC performance ver-
ification are about to run out of steam, and should essentially
be enhanced by formal techniques that systematically reveal
and cover corner cases.

Real-time systems research has addressed scheduling
analysis for processors and buses for decades, and many
popular scheduling analysis techniques are available.
Examples include rate-monotonic scheduling and earliest
deadline first [1], using both static and dynamic priorities,
and time-slicing mechanisms like TDMA or round-robin
[2]. Some extensions have already found their way into
commercial analysis tools, which are being established, e.g.
in the automotive industry to analyse individual units that
control the engine or parts of the electronic stability
program.

The techniques rely on a simple yet powerful abstraction
of task activation and communication. Instead of consider-
ing each event individually, as simulation does, formal
scheduling analysis abstracts from individual events to
event streams. The analysis requires only a few simple
characteristics of event streams, such as an event period or a
maximum jitter. From these parameters, the analysis
systematically derives worst-case scheduling scenarios,
and timing equations safely bound the worst-case process
or communication response times.

It might be surprising that, up to now, only very few of
these approaches have found their way into the SoC
(system-on-chip) design community by means of tools.
Regardless of the known limitations of simulation such as
incomplete corner-case coverage and pattern generation,
timed simulation is still the preferred means of performance
verification in MpSoC design. Why then is the acceptance of
formal analysis still very limited?

One of the key reasons is a mismatch between the
scheduling models assumed in most formal analysis
approaches and the heterogenous world of MpSoC schedul-
ing techniques and communication patterns that are a result
of (a) different application characteristics; (b) system
optimisation and integration which is still at the beginning
of the MpSoC development towards even more complex
architectures.

Therefore, a new configurable analysis process is needed
that can easily be adapted to such heterogeneous architec-
tures. We can identify different approaches: the holistic
approach that searches for techniques spanning several
scheduling domains; and hierarchical approaches that
integrate local analysis with a global flow based analysis,
either using new models or based on existing models and
analysis techniques.

2 Formal techniques in system performance
analysis

Formal approaches to heterogeneous systems are rare.
The ‘holistic’ approach [3, 4] systematically extends the
classical scheduling theory to distributed systems. However,
because of the very large number of dependencies, the
complexity of the equations underlying the analysis grows
with system size and heterogeneity. In practice, the holistic
approach is limited to those system configurations which
simplify the equations, such as deterministic TDMA

Fig. 1 CPU subsystem

Fig. 2 Scheduling anomaly
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networks. However, there is, up to now, no general
procedure to set-up and solve the holistic equations for
arbitrary systems. This could explain why such holistic
approaches are largely ignored by the SoC community even
though there are many proposals for multiprocessor analysis
in real-time computing.

Gresser [5] and Thiele et al. [6] established a different
view on scheduling analysis. The individual components or
subsystems are seen as entities which interact, or commu-
nicate, via event streams. Mathematically speaking, the
stream representations are used to capture the dependencies
between the equations (or equation sets) that describe the
individual components timing. The difference to the holistic
approach (which also captures the timing using system-level
equations) is that the compositional models are well
structured with respect to the architecture. This is
considered a key benefit, since the structuring significantly
helps designers to understand the complex dependencies in
the system, and it enables a surprisingly simple solution.
In the ‘compositional’ approach, an output event stream of
one component turns into an input event stream of a
connected component. Schedulability analysis, then, can be
seen as a flow-analysis problem for event streams that, in
principle, can be solved iteratively using event stream
propagation.

Both approaches use a highly generalised event stream
representation to tame the complexity of the event streams.
Gresser uses a superpositional event vector system, which is
then propagated using complex event dependency matrices.
Thiele et al. use a more intuitive model. They use numerical
upper and lower bound event arrival curves for event
streams and similar service curves for execution modeling.

This generality, however, has its price. Because they
introduced new stream models, both Thiele and Gresser had
to develop new scheduling analysis algorithms for the local
components that utilise these models; the host of existing
work in real-time system cannot be re-used. Furthermore,
the new models are far less intuitive than the ones known
from the classical real-time systems research, e.g. the model
of rate-monotonic scheduling with its periodic tasks and
worst-case execution times. A system-level analysis should
be simple and comprehensible, otherwise its acceptance is
extremely doubtful.

The compositional idea is a good starting point for the
following considerations. It uses some event stream repre-
sentation to allow component-wise local analysis. The local
analysis results are, then, propagated through the system to
reach a global analysis result. We do not necessarily need to
develop new local analysis techniques if we can benefit
from the host of work in real-time scheduling analysis.

A key novelty of our unique SymTA=S approach is that
we use intuitive standard event models (Section 3.2) from
real-time systems research rather than introducing new,
complex stream representations. Periodic events or event
streams with jitter and bursts [7] are examples of standard
models that can be found in the literature. Our SymTA=S
technology lets us extract this information from a given
schedule and automatically interface or adapt the event
stream to the specific needs within these standard models, so
that designers and analysts can safely apply existing
subsystem techniques of choice without compromising
global analysis.

3 SymTA=S approach

SymTA=S [8] is a formal system-level performance and
timing analysis tool for heterogeneous SoCs and distributed
systems. The application model of SymTA=S is described in

Section 3.1. The core of SymTA=S is our recently
developed technique to couple local scheduling analysis
algorithms using event streams [9, 10]. Event streams
describe the possible I=O timing of tasks. In our
compositional performance analysis methodology [11, 12],
input and output event streams are described by standard
event models which are introduced in detail in Section 3.2.
The analysis composition using event streams is described
in Section 3.3. A second key property of our compositional
approach is the ability to adapt the possible timing of events
in an event stream. The event stream adaptation concept is
described in Section 3.4.

3.1 SymTA=S application model

A task is activated due to an activating event. Activating
events can be generated in a multitude of ways, including
expiration of a timer, external or internal interrupt, and task
chaining. Our existing approach assumes that each task has
one input FIFO. A task reads its activating data from its
input FIFO and writes data into the input FIFO of a
dependent task. A task may read its input data at any time
during one execution. We therefore assume that the data
need to be available at the input during the whole execution
of the task. We also assume that input data is removed from
the input FIFO at the end of one execution.

A task needs to be mapped on a computation or
communication resource to execute. When multiple tasks
share the same resource, then two or more tasks may request
the resource at the same time. To arbitrate request conflicts,
a resource is associated with a scheduler which selects a task
to which it grants the resource out of the set of active
tasks according to some scheduling policy. Other active
tasks have to wait. Scheduling analysis calculates worst-
case (sometimes also best-case) task response times, i.e. the
time between task activation and task completion, for all
tasks sharing a resource under the control of a scheduler.
Scheduling analysis guarantees that all observable response
times will fall into the calculated [best-case, worst-case]
interval. We therefore say that scheduling analysis is
conservative. We assume that a task writes its output data
at the end of one execution. This assumption is standard in
scheduling analysis.

Figure 3 shows an example of a system modelled with
SymTA=S. The system consists of two resources each with
two tasks mapped on it. R1 and R2 are both assumed to be
priority scheduled. Src1 and Src2 are the sources of the
external activating events at the system inputs. The possible
timing of activating events is captured by so-called event
models, which are introduced in Section 3.2.

3.2 SymTA=S standard event models

Event models can be described by sets of parameters. For
example, a periodic with litter event model has two

Fig. 3 System modelled with SymTA=S

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005150

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:39 from IEEE Xplore.  Restrictions apply. 



parameters ðP;J Þ and states that each event generally
occurs periodically with period P; but that it can jitter
around its exact position within a jitter interval J : Consider
an example where ðP;J Þ ¼ ð4; 1Þ: This event model is
visualised in Fig. 4. Each grey box indicates a jitter interval
of length J ¼ 1: The jitter intervals repeat with the event
model period P ¼ 4: The Figure additionally shows a
sequence of events which satisfies the event model, since
exactly one event falls within each jitter interval box, and no
events occur outside the boxes.

An event model can also be expressed using two event
funhctions huðDtÞ and hlðDtÞ:

Definition 1 (Upper event function): The upper event
function huðDtÞ specifies the maximum number of events
that can occur during any time interval of length Dt:

Definition 2 (Lower event function): The lower event
function hlðDtÞ specifies the minimum number of events
that have to occur during any time interval of length Dt:

Event functions are piecewise constant step functions
with unit-height steps, each step corresponding to the
occurrence of one event. Figure 5 shows the event functions
for the event model ðP ¼ 4;J ¼ 1Þ: Note that at the points
where the functions step, the smaller value is valid for the
upper event function, while the larger value is valid for the
lower event function (indicated by dark dots). For any time
interval of length Dt; the actual number of events is bound
by the upper and lower event functions. Event functions
resemble arrival curves [13] which have been successfully
used by Thiele et al. for compositional performance analysis
of network processors [14]. In the following, the depen-
dency of hu and hl on Dt is omitted for brevity.

A periodic with jitter event model is described by the
following event functions hu

PþJ and hl
PþJ [12]:

hu
PþJ ¼ Dt þ J

P

� �

ð1Þ

h
l
PþJ ¼ max 0;

Dt � J
P

� �� �

ð2Þ

To get a better feeling for event functions, imagine a sliding
window of length Dt that is moved over the (infinite) length
of an event stream. Consider Dt ¼ 4 (grey vertical bar in
Fig. 5). The upper event function indicates that at most two
events can be observed during any time interval of length
Dt ¼ 4: This corresponds, for example, to a window
position between t0 þ 8:5 and t0 þ 12:5 in Fig. 4.
The lower event function indicates that no events have to
be observed duringDt ¼ 4:This corresponds, for example, to
a window position between t0 þ 12:5 and t0 þ 16:5 in Fig. 4.

Let us further introduce distance functions dminðN � 2Þ
and dmaxðN � 2Þ; which return the minimum (respect-
ively, maximum) distance between N � 2 consecutive
events in an event stream.

Definition 3 (Minimum distance function): The minimum
distance function dminðN � 2Þ specifies the minimum
distance between N � 2 consecutive events in an event
stream.

Definition 4 (Maximum distance function): The maximum
distance function dmaxðN � 2Þ specifies the maximum
distance between N � 2 consecutive events in an event
stream.

For periodic with jitter event models we obtain:

dminðN � 2Þ ¼ maxf0; ðN � 1Þ � P � J g ð3Þ

dmaxðN � 2Þ ¼ ðN � 1Þ � P þ J ð4Þ
For example, the minimum distance between two events in a
periodic with jitter event model with ðP ¼ 4;J ¼ 1Þ is
3 time units, and the maximum distance between two events
is 5 time units.

If in a periodic with jitter event model, the jitter is larger
than the period, then two or more events can occur at the
same time, leading to bursts. To describe a bursty event
model, the periodic with jitter event model can be extended
with a dmin parameter that captures the minimum distance
between events within a burst. A more detailed discussion
can be found in [12].

Additionally, sporadic events are also common [11].
We model sporadic event streams with the same set of
parameters as periodic event streams. The difference is that
for sporadic event streams, the lower event function hlðDtÞ
is always zero. The maximum distance function
dmaxðN � 2Þ approaches infinity for all values of N [12].
Note that jitter and dmin parameters are also meaningful in
sporadic event models, since they allows to accurately
capture sporadic transient load peaks.

Event models with this small set of parameters have
several advantages. Firstly, they are easily understood by a
designer, since period, jitter etc. are familiar event stream
properties. Secondly, the corresponding event functions and
distance functions can be evaluated quickly, which is
important for scheduling analysis to run fast. Thirdly, as we
will see in Section 3.3.2, compositional performance
analysis requires the modelling of possible timing of output
events for propagation to the next scheduling component.
Our event models allow us to specify simple rules to obtain
output event models (Section 3.3.1) that can be described
with the same set of parameters as the activating event
models. Therefore, we do not have to depart from our event
models independent of size and structure of the composed

Fig. 4 Example of an event stream that satisfies event model

P ¼ 4; J ¼ 1

Fig. 5 Upper and lower event functions for event model

P ¼ 4; J ¼ 1
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system (hence the term ‘standard’). This makes our
compositional performance analysis approach very general.

3.3 Analysis composition

In our compositional performance analysis methodology
[11, 12], we alternate local scheduling analysis and even
model propagation during system-level analysis. This
requires the modelling of possible timing of output events
for propagation to the next scheduling component. In the
following, first we explain the output event model
calculation. Then we present our compositional analysis
approach.

3.3.1 Output event model calculation: Our
event models allow us to specify simple rules to obtain
output event models that can be described with the same set
of parameters as the activating event models. The output
event model period obviously equals the activation period.
The difference between maximum and minimum response
times (the response time jitter) is added to the activating
event model jitter, yielding the output event model jitter (5):

Jout ¼ Jact þ ðtresp;max � tresp;minÞ ð5Þ
Note that if the calculated output event model has a larger
jitter than period, this information alone would indicate that
an early output event could occur before a late previous
output event, which obviously cannot be correct. In reality,
output events cannot follow closer than the minimum
response time of the producer task. This is indicated by the
value of the minimum distance parameter.

3.3.2 Analysis composition using standard
event models: In the following, we explain our
compositional analysis approach using the system example
in Fig. 3. Initially, only event models at the external system
inputs are known. Since an activating event model is
available for each task on R1, a local scheduling analysis of
this resource can be performed and output event models are
calculated for T1 and T3 (Section 3.3.1). In the second
phase, all output event models are propagated. The output
event models become the activating event models for T2
and T4. Now, a local scheduling analysis of R2 can be
performed since all activating event models are known.

However, it is sometimes impossible to perform system
level scheduling analysis as explained above. This is shown
in the system example in Fig. 6.

Figure 6 shows a system consisting of two resources,
R1 and R2; each with two tasks mapped on it. Initially, only
the activating event models of T1 and T3 are known. At this
point the system cannot be analysed, because on every
resource an activating event model for one task is missing,
i.e. we need to calculate response times on R1 to be able to
analyse R2: On the other hand, we cannot analyse R1 before
analysing R2: We call this problem ‘cyclic scheduling
dependency’.

One solution to this problem is to initially propagate all
external event models along all system paths until an initial

activating event model is available for each task [15]. This
approach is safe since, on one hand scheduling cannot
change an event model period, and on the other hand,
scheduling can only increase an event model jitter [7]. Since
a smaller jitter interval is contained in a larger jitter interval,
the minimum initial jitter assumption is safe.

After propagating external event models, global system
analysis can be performed. A global analysis step consists of
two phases [12]. In the first phase local scheduling analysis
is performed for each resource and output event models are
calculated (Section 3.3.1). In the second phase, all output
event models are propagated. It is then checked if the first
phase has to be repeated because some activating event
models are no longer up-to-date, meaning that a newly
propagated output event model is different from the output
event models that was propagated in the previous global
analysis step. Analysis completes if either all event models
are up-to-date after the propagation phase, or if an abort
condition, e.g. the violation of a timing constraint has been
reached.

3.4 Event stream adaptation

A key property of our compositional performance analysis
approach is the ability to adapt the possible timing of events
in an event stream (expressed through the adaptation of an
event model [12]) There are several reasons to do this. It
may be that a scheduler or a scheduling analysis for a
particular component requires certain event stream proper-
ties. For example, rate-monotonic scheduling and analysis
[1] require strictly periodic task activation. Alternatively, an
integrated IP component may require certain event stream
properties. External system outputs may also impose event
model constraints, e.g. a minimum distance between output
events or a maximum acceptable jitter. Such a constraint
may be the result of a performance contract with an external
subsystem [16]. Event stream adaptation can also be done
for the sole purpose of traffic shaping [12]. Traffic shaping
can be used to reduce transient load peaks, for example, to
obtain more regular system behaviour. Practically, we
distinguish event model adaptation from event model
shaping in SymTA=S [17]. Adaptation is required to satisfy
an event model constraint, while shaping is voluntary to
obtain more regular system behaviour. We have currently
implemented two types of event adaptation functions
(EAF): a periodic EAF produces a periodic event stream
from a periodic with jitter input event stream. A dmin-EAF
enforces a minimum distance between output events.

4 Complex embedded applications

Compositional performance analysis as described so far is
not applicable to embedded applications with complex task
dependencies. This is because it uses a simple activation
model where the completion of one task directly leads to the
activation of a dependent task. However, activation
dependencies in realistic embedded applications are usually
more complex. A consumer task may require a different
amount of data per execution than produced by a producer
task, leading to multi-rate systems. Task activation may also
be conditional, leading to execution-rate intervals. Further-
more, a task may consume data from multiple task inputs.
Tasks with multiple inputs also allow cyclic dependencies to
be formed (e.g. in a control loop).

In this Section, we focus on multiple inputs (both AND-
and OR-activation) and functional cycles [18]. We skip
multi-rate systems and conditional communication, since
these features have not yet been incorporated intoFig. 6 Example of a system with cyclic scheduling dependency

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005152

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:39 from IEEE Xplore.  Restrictions apply. 



SymTA=S. The reader interested in their theoretical
foundations is referred to [19].

4.1 Basic thoughts

The activation function of a consumer task C with multiple
inputs is a Boolean function of input events at the different
task inputs. A restriction we impose is that activation must
not be invalidated due to the arrival of additional tokens
[20]. This means that negation is not allowed in the
activation function. Consequently, the only acceptable
Boolean operators are AND and OR, since an input is
negated in all other commonly used Boolean operators
(NOT, XOR, NAND, NOR).

To perform scheduling analysis on the resource to which
task C is mapped, activating event functions for task C have
to be calculated from all input event functions. In the
following we demonstrate how to do this for AND- and OR-
activation using our standard event models (Section 3.2). An
extended discussion covering event models in general can
be found in [19].

4.2 AND-activation

For a consumer task C with multiple inputs, AND-activation
implies that C is activated after an input event has occurred
at each input i. An example of an AND-activated task with
three inputs is shown in Fig. 7.

Note that AND-activation requires input data buffering,
since at some inputs data may have to wait until data have
arrived at all other inputs for one consumer activation.
We will refer to this source of buffering as AND-buffering.
We also use the term ‘token’ [21] to refer to the amount of
data required for one input event.

4.2.1 AND-activation period: To ensure bounded
AND-buffer sizes the period of all input event models must
be the same. The period of the activating event model equals
this period:

Pi ¼
! Pj ; i; j ¼ 1 . . . k )

PAND ¼ Pi ; i ¼ 1 . . . k ð6Þ

4.2.2 AND-activation jitter: To obtain the AND-
activation jitter, let us consider how often activation of the
AND-activated task can occur during any time interval Dt
Obviously, during any time interval Dt; the port with the
smallest minimum number of available tokens determines
the minimum number of AND-activations. Likewise, the
port with the smallest maximum number of available tokens
determines the maximum number of AND-activations.

The number of available tokens at port i during a time
interval Dt depends on both the number of tokens arriving
during Dt and on the number of tokens that arrived earlier,
but did not yet lead to an activation because tokens at one or
more other ports are still missing. This is illustrated in the

following example. Let us assume that our task in Fig. 7
receives tokens at each with the following period with jitter
input event models:

P1 ¼ 4; J 1 ¼ 0

P2 ¼ 4; J 2 ¼ 2

P3 ¼ 4; J 3 ¼ 3

Figure 8 shows a possible sequence of input events that
adhere to these event models, and the resulting AND-
activation events. The numbering of events in the
Figure indicates which events together lead to one activation
of AND-activated task C.

As can be seen, the minimum distance between two
AND-activations (activations 3 and 4 in Fig. 8) equals the
minimum distance between two input events at input 3,
which is the input with the largest input event model jitter.
Likewise, the maximum distance between two AND-
activations (activations 1 and 2 in Fig. 8) equals the
maximum distance between two input events at input 3. It is
not possible to find a different sequence of input events
leading to a smaller minimum or a larger maximum distance
between two AND-activations. From this we can conclude
that the input with the largest input event jitter determines
the activation jitter of the AND-activated task, i.e.

JAND ¼ maxfJ ig ; i ¼ 1 . . . k ð7Þ
This statement also remains true if the first set of input
events do not arrive at the same time (as is the case in Fig. 8).
A proof is given in [19]. Calculation of the worst-case delay
and backlog at each input due to AND-buffering can also be
found in [19].

Note that in some cases it may be possible to calculate
phases between the arrival of corresponding tokens in more
detail, e. g. through the use of inter-event-stream contexts
(Section 5.3). It may then be possible to calculate a tighter
activating jitter if it can be shown that a certain input cannot
(fully) influence the activation timing of an AND-activated
task, because tokens at this input arrive relatively early. This
is particularly important for the analysis of functional cycles
(Section 4.4).

4.3 OR-activation

For a consumer task C with multiple inputs, OR-activation
implies that C is activated each time an input event occurs at
any input of C. Different to AND-activation, input event
models are not restricted, and no OR-buffering is required,
since a token at one input never has to wait for tokens to
arrive at a different input in order to activate C. Of course,
activation buffering is still required.Fig. 7 Example of an AND-activated task C

Fig. 8 AND-activation timing example
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An example of an OR-activated task with two inputs is
shown in Fig. 9. Let us assume the following periodic
with jitter, event models at the two inputs of task C.

P1 ¼ 4; J 1 ¼ 2

P2 ¼ 3; J 2 ¼ 2

The corresponding upper and lower input event functions
are shown in Fig. 10. Since each input event immediately
leads to one activation of task C, the upper and lower
activating event functions are constructed by adding the
respective input event functions. The result is shown in
Fig. 11a.

Recall a key requirement of compositional performance
analysis, namely that event streams are described in a form
that can serve both as input for local scheduling analysis,
and can be produced as an output of local scheduling
analysis for propagation to the next analysis component
(Section 3.3.2). Owing to the irregularly spaced steps
(visible in Fig. 11a), the exact activating event functions
cannot be described by a periodic with jitter event model,
and thus cannot serve directly as input for local scheduling
analysis. Furthermore, after local scheduling analysis a

periodic with jitter output event model has to be propagated
to the next analysis component. We need an activation jitter
in order to calculate an output jitter (Section 3.3.1).
Therefore, we need to find conservative approximations
for the exact activating event functions that can be described
by a periodic with jitter event model ðPOR;J ORÞ:
The intended result is shown in Fig. 11b (the exact curves
appear as dotted lines).

4.3.1 OR-activation period: The period of
OR-activation is the least common multiple LCMðPiÞ of
all input event model periods (the macro period), divided by
the sum of input events during the macro period assuming
zero jitter for all input event streams:

POR ¼ LCMðPiÞ
Pn

i¼1
LCMðPiÞ

Pi

¼ 1
Pn

i¼1
1
Pi

ð8Þ

Fig. 9 Example of an OR-activated task C

Fig. 10 Upper and lower input event functions in our
OR-example

a OR input 1 ðP1 ¼ 4;J 1 ¼ 2Þ
b OR output 2 ðP2 ¼ 3;J 2 ¼ 2Þ

Fig. 11 Upper and lower activating event functions in our
OR-example

a Exact
b Periodic with jitter approximation
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4.3.2 OR-activation jitter: A conservative
approximation for the exact activating event functions
with a periodic with jitter event model implies the following
inequalities:

Dt þ JOR

POR

� �

�
X

n

i¼1

Dt þ J i

Pi

� �

ð9Þ

max 0;
Dt � JOR

POR

� �� �

�
X

n

i¼1

max 0;
Dt � J i

Pi

� �� �

ð10Þ

To be as accurate as possible, we are interested in
the minimum jitter that satisfies inequalities (9) and (10).
It can be shown that the minimum jitter that satisfies (9) and
the minimum jitter that satisfies (10) are the same [19]. In the
following, the upper approximation (9) is used to calculate
the OR-activation jitter. Since the left and right sides of this
inequality are only piecewise continuous, it cannot be
simply transformed to obtain the desired minimum jitter.
The solution used here is to evaluate (9) piecewise for each
interval ½Dtj;Dtjþ1�; during which the right side has a constant
value kj 2 N: For each constant piece of the right side, a
condition for a local jitter JOR; j is obtained that satisfies
inequality for all Dt : Dtj <Dt � Dtjþ1:

For each constant piece of the right side, (9) becomes

Dt þ JOR;j

POR

� �

� kj ; Dtj <Dt � Dtjþ1; kj 2 N

Since the left side is monotonically increasing with Dt; it is
sufficient to evaluate it for the smallest value of Dt; which
approaches Dtj; i.e.

lim
�!þ0

Dtj þ �þ JOR; j

POR

� �

� kj ; kj 2 N

, lim
�!þ0

Dtj þ �þ JOR; j

POR

� �

>kj � 1

, lim
�!þ0

ðJOR; j þ �Þ>ðkj � 1Þ � POR � Dtj

, JOR; j � ðkj � 1Þ � POR � Dtj ð11Þ
The global minimum jitter is then the smallest value which
satisfies all local jitter conditions. As already said, hu

OR

displays a pattern of distances between steps which repeats
periodically every macro period. Therefore, it is sufficient
to perform above calculation for one macro period.
An algorithm can be found in [22].

4.4 Cyclic task dependencies

Tasks with multiple inputs allow us to build cyclic
dependencies. A typical application is a control loop,
where one task represents the controller and the other task a
model of the controlled system. A task graph with a cycle is
shown in Fig. 12.

We assume that tasks with multiple inputs in cycles are
AND-activated, and that they produce one token at each
output per execution. This implies that at least one initial
token must be present inside the cycle to avoid deadlock
[21], and that the number of tokens inside the cycles remains
constant. Consequently, the period of the cycle-external
event model determines the period of all cycle tasks.
Finally, we assume exactly one cycle-task with one cycle-
external and one cycle-internal input. All other cycle-tasks
only have cycle-internal inputs. These restrictions allow us
to concisely discuss the main issues resulting from
functional cycles. A much more general discussion can be
found in [19].

In Section 4.2 we established that the activation jitter of
an AND-activated task is bounded by the largest input jitter.
As was the case for cyclic scheduling dependencies (Section
3.3.2), we have to start system analysis with an initial
assumption about the cycle-internal jitter of the AND-
activated task, since this value depends on the output jitter
of that task, which we have not calculated yet.
A conservative starting point is to initially assume zero
internal jitter. We can now iterate analysis and event
model propagation around the cycle, hoping to find a
fix-point.

However, if only one task along the cycle has a response
time which is an interval, then after the first round of
analysis and event model propagation the internal input
jitter of the AND-activated task will be larger than the
external input jitter. In our compositional performance
approach, this larger jitter will be propagated around the
cycle again, resulting in an even larger jitter at
the cycle-internal input of the AND-activated task
(Section 3.3.2). It is obvious that the jitter appears
unbounded if calculated this way.

The problem boils down to the fact that event model
propagation as presented so far captures neither correlations
between the timing of events in different event streams, nor
the fact that the number of tokens in a cycle is fixed.
Therefore, the activation jitter for the AND-activated task is
calculated very conservatively.

4.5 Analysis idea

Cycle analysis requires detailed consideration of the
possible phases between tokens arriving at the cycle-
external and the cycle-internal inputs of the AND-activated
task. The solution that we propose in the following has the
advantage to require only minor modifications to the feed-
forward system-level analysis already supported by
SymTA=S. The idea goes as follows.

We initially assume that the cycle-internal input cannot
increase the activation jitter of the AND-activated task. This
allows us to ‘cut’ the cycle-internal edge, rendering a feed-
forward system which can be analysed as explained in
Section 3.2.2. We then calculate the time it takes a token to
travel around the cycle, and reason about the validity of the
initial assumption.

In the following, the idea is explained for cycles with one
initial token. Let us assume an external periodic with jitter
event model with period Pext and jitter Jext: Let us define
t minff and t maxff to be the minimum (respectively, maximum)
sum of worst-case response times of all tasks belonging to a
cycle (the ‘time around the cycle’) as obtained through
analysis of the corresponding feedforward system. Let us
further assume that after analysis of the corresponding
feedforward system, t maxff � Pext:

At system startup, the first token arriving at
the cycle-external input will immediately activate theFig. 12 Example of a cyclic dependency
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AND-concatenated task together with the initial token
already waiting at the cycle-internal input. No further
activation of the AND-activated task is possible until the
next token becomes available at the cycle-internal input of
that task. If feedforward analysis was valid, then this will
take between t minff and t maxff time units.

The maximum distance between two consecutive external
tokens is dmaxext ð2Þ ¼ Pext þ Jext (4). From t maxff � Pext

follows that it is not possible that the 2nd external token
arriving as late as possible after the 1st external token has to
wait for an internal token.

The 3rd external token can arrive at most dmaxext ð3Þ ¼
2 � Pext þ Jext after the 1st external token. Therefore, if
both the 2nd and the 3rd external tokens arrive as late
as possible, then the 3rd arrives Pext after the 2nd. From
t maxff � Pext follows that the 3rd external token arriving as
late as possible after the 1st external token cannot wait for
an internal token, even if the 2nd external token also arrived
as late as possible. This argument can be extended to all
further tokens. We infer that no external token arriving as
late as possible has to wait for an internal token.

Activation of task b also cannot happen earlier than the
arrival of an external token. Therefore, the activating event
model of task b is conservatively captured by the external
input event model (12). We conclude that our approach
is valid for a cycle with M ¼ 1 initial token, for which
tmaxff � Pext :

Pact ¼ Pext ; J act ¼ Jext ð12Þ

In [19] it is shown that the approach presented in this
Section is also valid for a cycle with M>1 initial tokens, for
which ðM � 1Þ � Pext < t maxff � M � Pext: In [19] it is also
shown how to extend the approach to nested cycles. In
SymTA=S, the feedforward analysis is performed for every
cycle, and the required number of initial tokens is calculated
from tmaxff : This number is then compared against the number
of cycle-tokens specified by the user in the same manner as
any other constraint is checked.

5 System contexts

Performance analysis as described so far can be unnecess-
arily pessimistic, because it ignores certain correlations
between consecutive task activations or assumes a very
pessimistic worst-case load distribution over time.

We have therefore added advanced performance analysis
techniques, taking correlations between successive compu-
tation or communication requests as well as correlated load
distribution into account, in order to yield tighter analysis
bounds. Cases where such correlations have a large impact
on system timing are especially difficult to simulate and
hence are an ideal target for formal performance analysis.
We call such correlations ‘system contexts’.

In Section 5.1, using an example of a hypothetical set-top
box, we review the assumptions made by a typical
performance analysis, called ‘context blind analysis’.
Then, we show the analysis improvements that can be
obtained when considering two different types of system
contexts separately and also in combination: intra-event
stream contexts, which consider correlations between
successive computation or communication requests
(Section 5.2), and inter-event stream contexts, which
consider possible phases between events in different event
streams (Section 5.3). The combination of both system
contexts is explained in Section 5.4.

5.1 Context blind analysis

The SoC implementation of a hypothetical set-top box
shown in Fig. 13 is used as an example throughout this
Section. The set-top box can process MPEG-2 video streams
arriving from the RF-module ðrf videoÞ and sent via the bus
(BUS) to the TV (tv). In addition, a decryption unit
(DECRYPTION) allows us to decrypt encrypted video
streams. The set-top box can additionally process IP traffic
and download web content via the bus (ip) to the hard disk
(hd).

We will focus on worst-case response time calculation for
the system bus. We assume static priority-based scheduling
on the bus. The priorities are assigned as follows:
enc>dec> ip. MPEG-2 Video frames are assumed to arrive
periodically from the RF-module. The arrival period is
normalised to 100. The core execution and communication
times of the tasks are listed in Table 1.

The worst-case response time of ip, calculated by a
context blind analysis, is 170. As can be seen in Fig. 14,
even though a data dependency exists between enc and dec,
which may even out their simultaneous activation, a context
blind analysis assumes that in the worst-case all communi-
cation tasks are activated at the same instant. Furthermore,
even though MPEG-2 frames may have different sizes
depending on their type, a context blind analysis assumes
that every activation of enc and dec leads to a maximum
transmission time of one MPEG-2 frame.

5.2 Intra-event stream context

Context-blind analysis assumes that, in the worst-case, an
every scheduled task executes with its worst case execution
time for each activation. In reality, different events often
activate different behaviours of a computation task with
different WCET, or different bus loads for a communication
task. Therefore, a lower maximum load (and a higher
minimum load) can be determined for a sequence of
successive activations of a higher-priority task if the types
of the activating events are considered. This in turn leads to

Table 1: Core execution times

Task CET

enc [10, 30]

dec [10, 30]

ip [50, 50]

decryption [40, 40]

Fig. 13 Hypothetical set-top-box system
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a shorter calculated worst-case response time (and a longer
best case response time) of lower-priority tasks. We call the
correlation within a sequence of different activating events
an ‘intra-event stream context’.

Mok and Chen introduced this idea in [23] and showed
promising results for MPEG-streams where the average load
for a sequence of I-, P- and B-frames is much smaller than in
a stream that consists only of large I-frames, which is
assumed by a context-blind worst-case response time
analysis. However, the periodic sequence of types of
activating events was supposed to be completely known.

In reality, intra-event stream contexts can be more
complicated. If no complete information is available about
the types of the activating events, it is no longer possible to
apply Mok and Chen’s approach. Mok and Chen also do not
clearly distinguish between different types of events on one
hand, and different task behaviours, called modes [24], on
the other. However, this distinction is crucial for subsystem
integration and compositional performance analysis. Differ-
ent types of events are a property of the sender, while modes
are a property of the receiver. Both can be specified
separately from each other and later correlated. Further-
more, it may be possible to propagate intra-event stream
contexts along a chain of tasks. It is then possible to also
correlate the modes of consecutive tasks.

We extended intra-event stream contexts by allowing
minimum- and maximum-conditions for the occurrence of
a certain type of events in a sequence of a certain length n,
in order to capture partial information about an event
stream. n is an arbitrary integer value. A single worst-case
and a single best-case sequence of events with length n can
be determined from the available min- and max-conditions
that can be used to calculate the worst- and best-case load
due to any number of consecutive activations of the
consumer task. In [25], we have extended static-priority
pre-emptive response-time calculation to exploit this idea.

Let us apply this approach to our set-top box example.
Suppose that the video stream sent from the RF to the bus is

encoded in one of several patterns of I-, P- and B-frames
(IBBBBB, IBBPBB, IPBBBB . . .), or that several video
streams are interleaved. Therefore, it is impossible to
provide a fixed sequence of successive frame types in the
video stream. However, it may be possible to determine
min- and max-conditions for the occurrence of each frame
type.

The communication times of tasks enc and dec depends
on the received frame type. I-frames have the largest size
and lead to the longest execution time, P-frames have the
middle size and B-frames have the smallest size. Therefore,
the mode corresponding to the transmission of an I-frame
has the largest communication time and the mode
corresponding to the transmission of a B-frame has the
lowest communication time.

Having both intra-event stream context information and
modes of the consumer tasks, we can determine a weigh-
sorted worst case sequence of frame types with length n.
The reader interested in knowing our algorithm to exploit
min- and max-conditions is referred to [25].

Now we can determine for l successive activations of enc
and dec the worst case load produced on the bus. This is
performed, by iterating through the weight-sorted sequence
starting from the first event, adding up loads until the worst
case load for l activations has been calculated. If l is bigger
than n, the sequence length, we go only through l mod n
events and add the resulting load to the load of the whole
sequence multiplied by l div n.

In Fig. 15, assuming that the worst case sequence of frame
types with length 2 is IP and that the transmission time for
an I-frame is 30 and for a P-frame is 20, we show the
calculated worst case response time of ip, when considering
the available intra-event stream context information. As can
be seen, for both tasks enc and dec, the produced load on the
bus due to a transmission of successive MPEG-2 frames is
smaller than in the context-blind case (see Fig. 14]). This
leads to a reduction of the calculated worst-case response
time of ip: 150 instead of 170.

20

Fig. 14 Worst case response time calculation for ip without contexts, using SymTA=S

Fig. 15 Worst case response time calculation for ip considering intra contexts
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5.3 Inter-event stream context

Context-blind analysis assumes that all scheduled tasks
sharing a resource are independent and that in the worst-
case all tasks are activated simultaneous. In reality,
activating events are often time-correlated, which rules
out simultaneous activation of all tasks. This in turn may
lead to a lower maximum number (and higher minimum
number) of interrupts of a lower-priority task through
higher-priority tasks, resulting in a shorter worst-case
response time (and longer best-case response time) of the
lower priority task. We call the correlation between time-
correlated events in different event streams an inter-event
stream context.

Tindell introduced this idea for tasks scheduled by a static
priority pre-emptive scheduler [26]. His work was later
generalised by Palencia and Harbour [27]. Each set of time-
correlated tasks is grouped into a so-called ‘transaction’.
Each transaction is activated by a periodic sequence of
external events. Each task belonging to a transaction is
activated when a relative time, called ‘offset’, elapses after
the arrival of the external event.

To calculate the worst-case response time of a task, a
worst-case scenario for its execution must be build. Tindell
[26] showed that the worst-case interference of a transaction
on the response time of a task occurs at the critical instant
which corresponds to the most delayed activation of a
higher-priority task belonging to the transaction. The
activation time of the analysed task and all higher-priority
tasks have to happen as soon as possible after the critical
instant.

Since all activation times of all higher-priority tasks
belonging to a transaction are candidates for the critical
instant of the transaction, the worst-case response time of a
lower-priority task has to be calculated for all possible
combination of all critical instants of all transactions that
contain higher priority tasks, to find the absolute worst-case.

Let us apply Tindell’s approach to our set-top box
example. Owing to the data dependency between enc,
decryption, and dec, these tasks are time-correlated. The
offset between the activations of enc and decryption
corresponds to the execution time of enc. Base on this
offset and the execution time of decryption, we can calculate
the offset between the activations of enc and dec.

To show in isolation the analysis improvement due to
inter-event stream contexts, we will assume for now that all
video-frames are I-frames. Figure 16 shows for the inter-
event stream context case the calculated worst case response
time of ip due to interrupts by enc and dec. As can be seen,
a gap exists between successive executions of enc and dec.
Since ip executes during this gaps, one interrupt less of ip
is calculated (in this case through enc). This leads to
a reduction of the calculated worst-case response time of ip:
140 instead of 170.

In Fig. 17, analysis improvements with inter-event stream
context information in relation to the context-blind case are
shown as a function of the offset between enc and dec,
which is equal to the execution time of the decryption unit.

Curve (i) shows the reduction of the calculated worst-case
response time of dec. Depending on the offset, dec is
either partially offset value < 30), completely (offset value
>70) or not interrupted at all by enc (offset value between
30 and 70). The latter case yields a maximum reduction
of 50%.

Curves (ii)–(vii) show the reduction in the calculated
worst-case response time of ip for different IP traffic sizes.
The reduction is visible in the curves as dips. If no gaps
exists between two successive executions of enc and dec, no
worst-case response reduction of ip can be obtained (offset
value < 30 or >70). If a gap exists, then sometimes one
interrupt less of ip can be calculated (either through enc or
dec), or there is no gain at all (curves (iv) and (vi)). Since the
absolute gain that can be obtained equals the smaller worst
case execution time of enc and dec, the relative worst-case
response time reduction is bigger for shorter IP-traffic.

An important observation is that inter-event stream
context analysis reveals the dramatic influence that a
small local change, in our example the speed of the
decryption unit reading data from the bus and writing the
results back to the bus, can have on system-performance, in
our example the worst-case transmission time of lower-
priority IP traffic.

5.4 Combination of contexts

Inter-event stream contexts allow us to calculate a tighter
number of interrupts of a lower-priority task through higher-
priority tasks. Intra-event stream contexts allow us to
calculate a tighter load for a number of successive

Fig. 16 Worst case response time calculation for ip considering inter contexts

Fig. 17 Improved worst case response time calculation due to
inter contexts
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activations of a higher-priority task. The two types of
contexts are orthogonal: the worst-case response time of a
lower-priority task is reduced both because fewer high-
priority task activations can interrupt its execution during a
certain time interval and because the time required to
process a sequence of activations of each higher-priority
tasks is reduced. Therefore, performance analysis can be
further improved if it is possible to consider both types of
contexts in combination. This is shown in Fig. 18 for the
worst-case response time calculation of ip: 130 instead of
170.

In Fig. 19, we show analysis improvements considering
both inter- and intra-event stream contexts in relation to the
context-blind case as a function of the offset between enc
and dec. Curve (i) shows the reduction of the calculated
worst-case response time of dec. Since dec is interrupted at
most once by enc, and the worst-case load produced due to
one activation of enc is the transmission time of one I-frame,
no improvement is obtained through the context combi-
nation in comparison to curve (i) in Fig. 17.

Curves (ii)–(vii) show the reduction of the calculated
worst-case response time of ip for different IP traffic sizes.
When comparing curves (ii) and (iii) (IP traffic sizes of 5
and 10) to curves (ii) and (iii) in Fig. 17, it can be seen
that no improvement is obtained through the context
combination. This is due to the fact that, ip is interrupted
at most once by enc and at most once by dec. Therefore,
as in case (i), the calculated worst-case load produced by
the video streams is the same no matter whether the
available intra-event stream context information con-
sidered or not.

Curve (iv) shows that for an IP traffic size of 30 no
improvements are obtained through the context combination

in comparison to the context-blind case. This is due to the
fact that, for all offset-values, ip is interrupted exactly once
by enc and exactly once by dec, and that the calculated
worst-case load produced by the video streams due to one
activation is the same no matter whether intra-event stream
contexts are considered or not.

Curves (v) and (vi) show that for IP traffic sizes of 50
and 70 improvements are obtained as a result of the
context combination in comparison to both the intra- and
inter-event stream context analysis. Let us focus on curve
(v). Since intra- and inter-event stream contexts are
orthogonal, the reduction of the calculated worst-case
response time of ip due to the intra-event stream context is
constant for all offset values. Since no reduction due to
inter-event stream context can be obtained for an offset
value of 0 (equivalent to the inter-event stream context-
blind case), we are sure that the reduction shown in the
curve for this offset value is only a result of the intra-event
stream context. On the other hand, the additional reduction
between the offset values 25 and 75 is obtained due to the
inter-event stream context.

Curve (vii) shows that, for an IP traffic size of 90, even
though the intra-event stream context leads to an improve-
ment (see curve (vii) in Fig. 17), the improvement due to the
intra-event stream context dominates, since no dip exists in
the curve, i.e. no additional improvements are obtained due
to the context combination in comparison to the intra-event
stream context case.

This example shows that considering the combination of
system contexts can yield considerably tighter perform-
ance analysis bounds compared to a context-blind analysis.
Equally importantly, this example reveals the dramatic
influence that a small local change can have on system
performance. Systematically identifying such system-level
influences of local changes is especially difficult using
simulation due to the large number of implementations
that would have to be synthesised and executed. On the
other hand, formal performance analysis can system-
atically and quickly identify such corner cases. All these
results took a couple of milliseconds to compute using
SymTA=S.

6 Design space exploration for system
optimisation

In this Section we will give a brief overview about the
evolutionary design space exploration and system optimis-
ation techniques used in SymTA=S. We will first describe
system parameters which can be subject to optimisation and
how they can be composed to define the search space. Then
we will give some examples of metrics expressing desired
or undesired system properties, forming so-called optimis-
ation objectives. Finally, we will explain the design space
exploration loop performed in SymTA=S.

6.1 Search space

The search space and the optimisation objectives can be
multidimensional, which means that several system par-
ameter can be explored simultaneously to optimise multiple
objectives. Possible search parameters include:

. mapping of tasks onto different resources

. changing priorities on priority-scheduled resources

. changing time slot sizes and time slot order on TDMA or
round robin scheduled resources
. changing the scheduling policy on a resource
. modifying resource speed.

Fig. 18 Worst-case response time calculation for ip with
combination of contexts

Fig. 19 Analysis improvements due to combination of intra and
inter contexts
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Since EAFs in SymTA=S allow us to control the timing
of events and data between connected components
(see Section 3.4), additional exploration is possible using
systematic traffic shaping. Thereby, dmin-EAFs, allowing us
to extend the minimum distance between successive output
events, are of particular interest. We will see in Section 8.2
that they can be used to weaken the global impact of bursts,
which can lead to interesting optimisation results.

The compositional structure of SymTA=S allows a
flexible coding of the search space. Search parameters can
be defined very precisely. They can be limited locally to one
or several components, or can be of global scope.
The combination of a search parameter and its scope is
called a ‘chromosome’ in the context of evolutionary
algorithms. Chromosomes form modular entities and can be
combined arbitrarily to span the search space. An individual,
representing a specific system configuration, consists of
immutable system parameters and a set of chromosomes,
which represent the variable system parameters. This
modular design supports the explicit combination of local
and global exploration techniques. For example, the
designer can optimise the TDMA slot sizes on a single
resource while allowing system-wide traffic shaping, or
optimise the priority assignments on all priority scheduled
resources in the system while varying the speed of a single
resource.

Each chromosome carries the variation operators necess-
ary for combination with other chromosomes of its type.
In SymTA=S we currently use the most popular operators:
mutation and crossover. The operators are applied chromo-
some-wise. Figure 20 illustrates the functionality of the
crossover operator.

6.2 Optimisation objectives

Optimisation objectives can be any kind of metric defined
on desired or undesired properties of the considered system.

Note that some metrics only make sense in combination
with constraints. Each individual is associated with a fitness
vector containing one entry for every concurrent optimis-
ation objective. We use the following notation:

R ¼ maximum response time of a task or

maximum end-to-end latency along a path

D ¼ deadline (task or end-to-end)

o ¼ constant weight>0

k ¼ number of tasks or

number of constrained tasks/paths in the system

and define the following example optimisation objectives:

1. minimisation of the (weighted) sum of completion times

X

k

i¼1

oiRi

2. minimisation of the maximum lateness

maxðR1 � D1; . . . ;Rk � DkÞ
3. maximisation of the minimum earliness

minðD1 � R1; . . . ;Dk � RkÞ
4. minimisation of the (weighted) average lateness

X

k

i¼1

oiðRi � DiÞ

5. maximisation of the (weighted) average earliness

X

k

i¼1

oiðDi � RiÞ

6. minimisation of end-to-end latencies
7. minimisation of jitters
8. minimisation of the sum of communication buffer sizes.

The choice of the metric for optimisation of a specific
system is very important to obtain satisfying results.
Example metrics 4 and 5, for instance, express the average
timing behaviour of a system with regard to its timing
constraints. They might mislead an evolutionary algorithm
and prevent it from finding system configurations fulfilling
all timing constraints, since met deadlines compensate
linearly for missed dead-lines. For systems with hard real-
time constraints, metrics with higher penalties for missed
deadline and fewer rewards for met deadlines can be more
appropriate, since they lead to a more likely rejection of
system configurations violating hard deadline constraints.
The following example metric penalises violated deadlines
in an exponential way and can be used to optimise the
timing properties of a system with hard real-time con-
straints:

X

k

i¼1

c
Ri�Di

i ; ci>1 constant

Performing a multi-objective optimisation in SymTA=S
usually leads to the discovery of several Pareto-optimal.

Definition 5 (Pareto-optimal): Given a set V of
k-dimensional vectors v 2 R

k; a vector v 2 V dominates a
vector w 2 V iff for all elements 0 � i< k we have vi � wi

and for at least one element l we have vl <wl:
A vector is called pareto-optimal iff it is not

dominated by any other vector in V.

Pareto-optimal solutions represent a certain tradeoff
between two or more objectives, leaving it to the designer
to decide which solution to adopt. In our case, individuals

Fig. 20 Functionality of crossover operator in SymTA=S
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with pareto-optimal fitness vectors represent the different
system design trade-offs.

6.3 Design space exploration loop

Figure 21 shows the design space exploration loop
performed in SymTA=S The optimisation controller, is the
central element. It is connected to SymTA=S, which
performs the analysis of the individuals, and to an
evolutionary multi-objective optimiser. The latter is respon-
sible for the problem-independent part of the optimisation
problem, i.e. elimination of individuals and selection of
interesting individuals for variation. Currently, we use
FEMO (fair evolutionary multiobjective optimiser) [28] and
SPEA2 (strength Pareto evolutionary algorithm 2) [29] for
this part. Both are coupled via PISA (platform and
programming language independent interface for search
algorithm) [30]. Note that the problem-specific part of the
optimisation problem is coded inside the chromosomes and
their variation operators.

An example for a variation operator is order crossover
[31]. It is applicable for priority assignments coded as lists,
in which each entry corresponds to the priority of a specific
task. The offspring inherits the priority assignments of the
tasks between two randomly chosen positions in the priority
list from the first parent. The remaining priorities are
inherited from the second parent, beginning at the first
position of its priority list, starting from the second chosen
position and skipping over all priorities already assigned in
the offspring.

Example:

Parent 1 : 1 2 3 4 5 6

Parent 2 : 3 2 6 5 4 1

Cross Pts : � �
Offspring : 6 1 3 4 5 2

Before the exploration loop is started, SymTA=S is
initialised with the immutable part of the system architec-
ture. In order to analyse a design alternative represented by
an individual, its chromosomes are transformed into
commands and applied to SymTA=S. This completes the
system design, which can then be analysed by
SymTA=S. After analysis the optimisation controller
requests the system parameters necessary to determine the
fitness values according to the optimisation objectives. This
procedure is performed for every individual currently
considered. The individuals and their fitness vectors are
then sent to the evolutionary multi-objective optimiser.
On the basis of the fitness values the optimiser creates two
sets. One set contains individuals selected for elimination,
the other contains individuals selected for variation

(mutation and crossover). These sets are communicated to
the optimisation controller, which deletes eliminated
individuals and performs the requested mutation and
crossover operations. The next iteration is then started
with the surviving and newly created individuals.

Note that the selection of individuals for elimination and
variation depends on the used multi-objective optimiser. For
instance, FEMO [28], eliminates all dominated individuals
in every iteration and pursuits a fair sampling strategy, i.e.
each parent participates in the creation of the same number
of off-springs. This leads to a uniform search in the
neighbourhood of elitist individuals.

The performance of the search procedure in SymTA=S is
affected by the search strategy of the optimiser, the coding
of the chromosomes and their variation operations as well as
the choice of the optimisation objectives. As far as the
optimizer is concerned, it is known that no general purpose
optimization algorithm exists that is able to optimize
effectively all kinds of problems [32].

7 Sensitivity analysis

Most analysis techniques known from literature give a pure
Yes=No answer regarding the timing behaviour of a specific
system with respect to a set of timing constraints defined for
that system. Usually the analyses consider a predefined set
of input parameters and determine the response times, and
thus the schedulability of the system.

However, in a realistic system design process it is
important to get more information with respect to the effects
of parameter variations on system performance, as such
variations are inevitable during implementation and inte-
gration. Capturing the bounds within which a parameter can
be varied without violating the timing constraints offers
more flexibility for the system designer and supports future
changes. These bounds shows how sensitive the system or
system parts are to system configuration changes.

Liu and Layland [1] defined a maximum load bound on a
resource that guarantees the schedulability of that resource
when applying a rate monotonic priority assignment
scheme. The proposed algorithm is limited to specific
system configurations: periodically activated tasks, tasks
with deadlines at the end of their period and tasks that do not
share common resources (like semaphores) or that do not
intercommunicate.

Later on, Lehoczky et al. [33] extended this approach to
systems with arbitrary priority assignment. However, his
approach does not go beyond the limitations mentioned
above. Vestal [34] proposed a fixed-priority sensitivity
analysis for tasks with linear computation times and linear
blocking time models. His approach is still limited to tasks
with periodic activation patterns and deadlines equal to the
period. Punnekkat et al. [35] proposed an approach that uses
a combination of a binary search algorithm and a slightly
modified version of the response time schedulability tests
proposed by Audsley and Tindell [7, 36].

In the following we give a brief overview about the
sensitivity analysis algorithm and the analysis models and
metrics used in SymTA=S. As already mentioned above,
different approaches were proposed for the sensitivity
analysis of different system parameters. However, all can
perform only single resource analysis as they are bounded
by local constraints (tasks deadlines). Due to a rapid
increase in system complexity and heterogeneity, the
current distributed systems usually have to satisfy global
constraints rather than local ones. End-to-end deadlines or
global buffer limits are an example of such constraints.
Hence, the formal approaches used for the sensitivity

Fig. 21 Design space exploration loop
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analysis at resource level cannot be transformed and applied
at the system level, as this implies huge effort and less
flexibility.

Our sensitivity analysis framework combines a binary
search technique and the compositional analysis model
implemented in SymTA=S. As described in Section 3,
SymTA=S couples the local scheduling analysis algorithms
into a global analysis model.

Since deadlines are the major constraints in real-time
systems it makes sense to measure the sensitivity of path
latencies. As the latency of a path is determined by the
response times of all tasks along that path, and the response
time of a task directly depends on its core execution time,
we consider the following issues as important metrics for
the sensitivity analysis:

1. Maximum permissible variation of the core execution
time of a task without violating the system constraints or the
system schedulability.
2. Minimum speed of a resource. The decrease of a
resource speed directly affects the core execution times of
all tasks mapped on that resource but also reduces the
energy required by that resource.

Variation of task execution=computation times: The search
interval is determined by the current WCET value tcore;max
and the value corresponding to the maximum load bound on
the resource holding the task. If we denote by Rload the
current load on the resource R and by Rload;max the maximum
load bound on resource R, then the search interval is

½tcore;max; tcore;max þ P � ðRload;max � RloadÞ�

where P represents the activation period in the case of
periodic tasks or the minimum interarrival period in the case
of sporadic tasks. If, for the current system configuration,
the constraints are violated or the system is not schedulable,
then the search interval is ½0; tcore;max�:

The algorithm selects the middle interval value and
verifies if the constraints are satisfied for the configuration
obtained by replacing the task WCET value with the
selected value. If yes, then the second half of the interval
becomes the new search interval, otherwise the first half of
the interval is searched. The algorithm iterates until the size

of the search interval becomes smaller than a specific
predefined value.
Variation of resource speed: The same algorithm is applied
to find the minimum resource speed. If, for the current
configuration, the constraints are satisfied and the system is
schedulable, then the search space is determined by
½Rspeed;min;Rspeed�, where Rspeed is the current speed factor
(usually 1) and Rspeed;min is the speed factor corresponding
to the maximum resource load bound. Otherwise, the search
space is ½Rspeed;Rspeed;max�; where Rspeed;max is the speed
factor corresponding to the minimum resource load bound
(below 1%).

The ideal value for the maximum resource load bound is
100%. We performed experiments on different system
models and we observed that for load values >98% the
runtime of the sensitivity analysis algorithm drastically
increases. This is due to an increase of the analysed period
(busy period) in the case of local analysis scheduling
algorithms. However, a resource load >98% is not realistic
due to variations of the system clock frequency or other
distorting factors.

8 System-on-chip example

In this Section using SymTA=S, we apply the techniques
from the preceding Sections to analyse the performance of a
system-on-chip example shown in Fig. 22.

The embedded system in Fig. 22 represents a hypothetical
SoC consisting of a micro-controller (uC), a digital signal
processor (DSP) and dedicated hardware (HW), all
connected via an on-chip bus (Bus). Dsp and uC are
equipped with local memory. The HW acts as an interface to
a physical system. It runs one task (sys if ) which issues
actuator commands to the physical system and collects
routine sensor readings. sys if is controlled by task ctrl,
which evaluates the sensor data and calculates the necessary
actuator commands. ctrl is activated by a periodic timer
(tmr) and by the arrival of new sensor data (AND-activation
in a cycle). We assume two initial tokens in the cycle.

The physical system is additionally monitored by three
sensors (sens1–sens3), which produce data sporadically as a
reaction to irregular system events. These data are registered
by an OR-activated monitor task (mon) on the uC, which

Fig. 22 System on chip example
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decides how to update the control algorithm. This
information is sent to task upd on the DSP, which updated
parameters into shared memory.

The DSP additionally executes a signal-processing task
(fltr), which filters a stream of data arriving at input sig in
and sends the processed data via output sig out. All
communication, except for shared-memory on the DSP, is
carried out by communication tasks c1–c5 over the on-chip
Bus. Core execution times for each task are shown in
Table 2.

We assume the following event models at system inputs
(Table 3).

To function correctly, the system has to satisfy a set of
path latency constraints (Table 4). Constraints 1 and 3 have
been explicitly specified by the designer. The 2nd constraint
implicitly follows from the fact that the cycle contains two
initial tokens. Constraint 3 is defined for causally dependent
tokens [20]. We shall also impose a maximum jitter
constraint at output sig out (Table 5).

8.1 Analysis

We will use static priority scheduling both on the DSP and
the Bus. The priorities on the Bus (respectively, DSP) are
assigned as follows: c1>c2>c3>c4>c5 and
fltr>upd>ctrl.

Performance analysis results were obtained using
SymTA=S [8]. In the first step, SymTA=S performs OR-
concatenation of the output event models of sens1–sens3
and obtains the following sporadic activating event model
for task mon:

Pact ¼ POR ¼ 250; Jact ¼ JOR ¼ 500

The large jitter is due to the fact that input events happening
at the same time lead to a burst of up to three activations
(we assume no correlations between sens1 and sens3). Since
task mon is the only task mapped onto uC, we can now
perform local scheduling analysis for this resource, in order
to calculate the minimum and maximum response times, as
well as the output event model of task mon. The results of
this analysis are shown in Table 6.

The worst-case response time of task mon increases
compared to its worst-case core execution time, since later
activations in a burst have to wait for the completion of the
previous activations. The output jitter increases by the
difference between maximum and minimum core execution
times compared to the activation jitter. The minimum
distance between output events equals the minimum core
execution time.

At this point, the rest of the system cannot be analysed,
because on every resource activating event models for at
least one task are missing. SymTA=S therefore generates a
conservative starting-point by propagating all output event
models along all paths until an initial activating event model
is available for each task. SymTA=S then checks that
the system cannot be overloaded in the long term.
This calculation requires only activation periods and
worst-case core execution times and thus can be done
before response-time calculation.

System-level analysis can now be performed by iterating
local scheduling analysis and event model propagation.
SymTA=S determines that task ctrl belongs to a cycle,
checks that AND-concatenation is selected, and then
proceeds to analyse the corresponding feedforward system.
SymTA=S executes until a fix-point for the whole system
has been reached, and then compares the calculated
performance values against performance constraints.

Table 7 shows the calculated response times of the
computation and communication tasks with and without
taking into account inter contexts. We observe that the
exploitation of context information leads to much tighter
response time intervals in the given example. This in turn

Table 2: Core execution and communication times

Computation

task C

Communication

task C

mon [10, 12] c1 [8, 8]

sys if [15, 15] c2 [4, 4]

fltr [12, 15] c3 [4, 4]

upd [5, 5] c4 [4, 4]

ctrl [20, 23] c5 [4, 4]

Table 3: Event models at external system inputs

Input s=p P in J in dmin;in

sens1 s 1000 0 0

sens2 s 750 0 0

sens3 s 600 0 0

sig in p 60 0 0

tmr p 70 0 0

Table 4: Path latency constraints

Constraint

no. Path

Maximum

latency

1 sens1, sens2, sens3 ! upd 70

2 sig in ! sig out 60

3 cycle ðctrl ! ctrlÞ 140

Table 5: Output jitter constraint

Constraint no. Output

Event model

period

Event model

jitter

4 sig out Psig out ¼ 60 Jsig out ;max ¼ 18

Table 6: Scheduling analysis results on uC

Task s=p

Activating

EM r s=p

Output

EM

mon s Pð250Þ J ð500Þ

d(0)

[10, 36] s Pð250Þ J ð526Þ

d(10)

Table 7: Context blind and sensitive analysis

Comp.

task Respblind Respsens

Comm.

tasks Respblind Respsens

mon [10, 36] [10, 36] c1 [8, 8] [8, 8]

sys if [15, 17] [15, 15] c2 [4, 12] [4, 4]

fltr [12, 15] [12, 15] c3 [4, 16] [8, 12]

upd [5, 22] [5, 22] c4 [4, 28] [8, 20]

ctrl [20, 53] [20, 53] c5 [4, 32] [8, 32]
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reduces the calculated worst-case values for the constrained
parameters. Table 8 shows that, in contrast to the inter-
context blind analysis, all system constraints are satisfied
when performance analysis takes inter-context into account.
In other words, a context blind analysis would have
discarded a solution which is in reality valid.

8.2 Optimisations

Let us now try to optimise our example architecture
Optimisation objectives are the four defined constraints.
We try to minimise the latencies on paths 1–3 and the jitter
at output sig out.

In the first experiment our search space consists of the
priority assignments on the BUS and the DSP. Table 9
shows the existing Pareto optimal solutions. In the first two
columns, tasks are ordered by priority, highest priority on
the left. In the last four columns, we give the actual value for
all four constrained values. The best reached values for each
constraint are emphasised.

As we can observe, there are several possible solutions,
each with its own advantages and disadvantages. We also

observe that in each solution one constraint is only barely
satisfied. A designer might want to find some alternative
solutions where all constraints are fulfilled with a larger
margin to the respective maximum values.

We extend our search space by using a shaper at the
output of task mon. It is making sense to perform traffic
shaping at this location, because the OR-activation of mon
can lead in the worst-case scenario to bursts at its output.
That is, if all three sensors trigger at the same time, mon will
send three packets over the BUS with a distance of 10 time
units, which is its minimum core execution time. This
transient load peak affects the overall system performance
in a negative way. A shaper is able to increase this minimum
distance in order to weaken the global impact of the worst-
case burst.

Table 10 shows Pareto optimal solutions using a shaper at
the output of mon extending the minimum distance of
successive events at the output of mon to 12 time units, and
thus weakening the global impact of the worst-case burst.
The required buffer for this shaper is minimal, because at
most one packet needs to be buffered at any time.

We observe that several new solutions are found. Not all
best values for each constraint from the first attempt are
reached, yet configurations 3 and 5 are interesting since they
are more balanced regarding the constraints.

8.3 Sensitivity analysis

We applied the sensitivity analysis algorithms presented in
Section 7 to the Pareto optimal system configurations
obtained in Section 8.2 The D values show the maximum
permissible changes in tasks execution=computation times.
Table 11 presents the current task execution times and the
Ds obtained for the system configurations described in
Table 9.

Table 8: Constraint values for context blind and sensitive
analysis

No. Constraint

Inter-context-

blind

Inter-context-

sensitive

1 sens1, sens2,

sens3 ! upd

74 70

2 sig in ! sig out 35 27

3 cycle ðctrl ! ctrlÞ 130 120

4 J sig out;max ¼ 18 11 3

Table 9: Pareto optimal solutions

No. Bus tasks DSP tasks con. 1 con. 2 con. 3 con. 4

1 c1, c2, c3, c4, c5 upd, fltr, ctrl 55 42 120 18

2 c1, c2, c4, c3, c5 upd, fltr, ctrl 59 42 112 18

3 c2, c1, c4, c5, c3 upd, fltr, ctrl 63 42 96 18

4 c1, c2, c3, c4, c5 fltr, upd, ctrl 70 27 120 3

Table 10: Pareto optimal solutions: shaper at mon output

No. Bus tasks DSP tasks con. 1 con. 2 con. 3 con. 4

1 c2, c1, c3, c4, c5 upd, fltr, ctrl 59 42 120 18

2 c1, c2, c4, c3, c5 upd, fltr, ctrl 63 42 112 18

3 c3, c2, c1, c4, c5 fltr, upd, ctrl 64 42 120 11

4 c2, c1, c5, c4, c3 upd, fltr, ctrl 67 42 96 18

5 c2, c3, c1, c5, c4 fltr, upd, ctrl 68 31 134 7

Table 11: Sensitivity analysis of tasks execution=computation times

c1 c2 c3 c4 c5 upd fltr ctrl sysi f mon

WCET 8 4 4 4 4 5 15 23 15 12

No. Dc1 Dc2 Dc3 Dc4 Dc5 Dupd Dfltr Dctrl Dsys if Dmon

1 0 0 1.11 3.33 10 0 0 7 13 5

2 0 0 3.66 6 18 0 0 7 21 3.66

3 0 0 2.33 2.5 2.5 0 0 7 9 2.33

4 0 0 0 3.33 13.5 0 0 7 13 0
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Figure 23 shows the current task times and the slack
values corresponding to No.2 in Table 11.

As future work we will implement the values obtained by
the sensitivity analysis as optimisation objectives in the
exploration framework presented in Section 6.

9 Conclusion

The component integration step is critical in MpSoC design
since it introduces complex component performance
dependencies, many of them cannot be fully overseen by
anyone in a design team. Finding simulation patterns
covering all corner cases will soon become virtually
impossible as MpSoCs grow in size and complexity, and
performance verification is increasingly unreliable.
In industry, there is an urgent need for systematic
performance verification support in MpSoC design.

We have seen that the host of work in formal real-time
analysis can be nicely applied to individual, local com-
ponents or subsystems. However, the well established view
on scheduling analysis has shown to be incompatible with
the component integration style which is common practice
in MpSoC design due to heavy component reuse.
The recently adopted event stream view on component
interactions represents a significant improvement for all
kinds of system performance related issues.

First, the stream model elegantly illustrates the con-
sequences of (a) resource sharing and (b) component
integration for two of the main sources of complexity.
This helps to identify previously unknown global perform-
ance dependencies, while tackling the scheduling problem
itself locally where it can be overseen.

Secondly, the use of intuitive stream models such as
periodic events, jitter, burst and sporadic streams, allows us
to adopt existing local analysis and verification techniques.
In particular, SymTA=S provides automatic interfacing and
adaptation among the most popular and practically used
event stream models. In other words, SymTA=S is the
enabling technology for the reuse of known local com-
ponent design and verification techniques without compro-
mising global analysis.

In this paper, we have surveyed the basic ideas underlying
the SymTA=S technology. We subsequently introduced a
variety of features that enable the analysis of complex
embedded applications which can be found in practice. This
includes multi-input tasks with complex activation func-
tions, cyclic functional dependencies between tasks,
systems with mutually exclusive execution modes, and
correlated task execution (intra-and inter-contexts). These
powerful concepts make SymTA=S a unique performance
analysis tool that verifies end-to-end deadlines, buffer over-
underflows and transient overloads. SymTA=S eliminates

key performance pitfalls and systematically guides the
designer to likely sources of constraint violations.

The analysis with SymTA=S is extremely fast (10 s for
the system in Section 8, including optimisation).
The turnaround times are within seconds. This opens the
door to all sorts of explorations, which is absolutely
necessary for system optimisation. SymTA=S uses genetic
algorithms to automatically optimise systems with respect
to multiple goals such as end-to-end latencies, cycles, buffer
memory and others. Exploration is also useful for sensitivity
analysis in order to determine slack and other popular
measures of flexibility. This is specifically useful in systems
which might experience later changes or modifications,
a design scenario often found in industry. We have
carried out a large set of experiments that demonstrate
the application of SymTA=S and the usefulness of the
results.

We have already applied the technology in case studies
in co-operation with industry partners in telecommuni-
cations, multimedia, and automobile manufacturing.
The cases had a very different focus. In one telecommu-
nications project, we resolved a severe transient-fault
system integration problem that not even prototyping could
solve. In the multimedia case study, we modelled and
analysed a complex two-stage dynamic memory scheduler
to derive maximum response times for buffer sizing and
priority assignment. In several auto-motive studies, we
showed how the technology enables a formal software
certification procedure. The case studies have demonstrated
the power and wide applicability of the event flow
interfacing approach. The approach scales well to large,
heterogeneous embedded systems including MpSoC. The
modularity allows us to customise SymTA=S libraries to
the specific needs of our partners.

We consider the SymTA=S approach to be a serious
alternative or supplement to performance simulation.
The unique technology allows comprehensive system
integration and provides much more reliable performance
analysis results at far less computation time.
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