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ABSTRACT
The use of component models such as Enterprise Java Beans and
the CORBA Component Model (CCM) in application development
is expanding rapidly. Even in real-time safety/mission-critical do-
mains, component-based development is beginning to take hold as
a mechanism for incorporating non-functional aspects such as real-
time, quality-of-service, and distribution. To form an effective ba-
sis for development of such systems, we believe that support for
reasoning about correctness properties of component-based designs
is essential.

In this paper, we present Cadena – an integrated environment for
building and modeling CCM systems. Cadena provides facilities
for defining component types using CCM IDL, specifying depen-
dency information and transition system semantics for these types,
assembling systems from CCM components, visualizing various
dependence relationships between components, specifying and ver-
ifying correctness properties of models of CCM systems derived
from CCM IDL, component assembly information, and Cadena
specifications, and producing CORBA stubs and skeletons imple-
mented in Java. We are applying Cadena to avionics applications
built using Boeing’s Bold Stroke framework.

1. INTRODUCTION
As software systems become more distributed, developers are

increasingly turning to component-based development frameworks
such Java Enterprise Beans (EJB) and the CORBA Component
Model (CCM) to manage the complexities associated with build-
ing distributed systems. These frameworks aid application devel-
opers by providing services for common aspects such as distributed
deployment, event notification, transactions, persistence, and secu-
rity. Moreover, they use accepted design patterns (e.g., the event-
oriented observer pattern) which enables a significant amount of
code to be auto-generated. Component-based frameworks are also
attractive because the relatively loose coupling between compo-
nents facilitates reuse and allows systems to evolve gracefully as
old components are switched out for new ones.

Even in the domain of distributed real-time embedded (DRE)
systems where hard/soft deadlines and minimal foot-print require-
ments traditionally have led developers to eschew sophisticated mid-
dleware solutions, component-based infrastructures are growing more
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popular because hardware advances allow real-time and embedded
requirements to be more easily achieved. In addition, component-
based infrastructures provide a framework for systematically intro-
ducing important domain aspects such time-triggered notification,
real-time scheduling, and fault tolerance.

Boeing’s Bold Stroke program is an example where CORBA
middleware has been embraced in a DRE domain for the reasons
outlined above [19, 20, 8]. Bold Stroke is a product-line based pro-
gram providing object-oriented mission critical avionics software
to a variety of military aircraft produced by the Boeing company.
Avionics software acts as the center of mission control for an air-
craft pilot. It manages the cockpit displays, navigation and tactical
sensors as well as weapon deployments. These complex systems
have hard and soft real-time deadlines involving large amounts of
periodic and aperiodic processing, and support thousands of operat-
ing modes. In addition, the software developed for military aircraft
is maintained and updated over the course of many years. Although
the development process is repeated for each update, each update
aims to preserve as much legacy software as possible to reduce cost
and risk. Bold Stroke represents a significant technological advance
over Boeing’s previous mission computing development practices
which were largely assembly code based.

There is a wide body of literature dealing with the theory of
modeling distributed system and automated analysis of high-level
state-based models using state-space exploration techniques such
as model-checking. However, despite the popularity of component-
based frameworks and their potential to be utilized in mission- and
safety-critical applications, relatively little has been done to scale
up these analysis techniques for the purpose of providing auto-
mated analysis tools for component frameworks. This is partic-
ularly the case with CCM – partly due to the fact that the CCM
specification as part of CORBA 3.0 has only recently been final-
ized. Popular tools such as Rational Rose do not even provide de-
sign support for CCM yet.

To investigate the effectiveness of a variety of behavioral anal-
ysis techniques for component-based systems, we have builtCa-
dena1 – an integrated development environment for high-assurance
CCM-based systems.

During the past year, we have been interacting extensively with
Bold Stroke engineers who have proposed a variety of interesting
challenge problems related to component-based design and analy-
sis. Work on Cadena is driven in large part by a desire to provide so-
lutions to challenge problems related to behavioral analysis. Bold
Stroke was initiated before the OMG CCM specification process
was underway. Thus, the Bold Stroke component design, is slightly
different from CCM, and therefore does not apply the CCM Inter-
face Definition Language (IDL) (now part of OMG CORBA IDL

1“Cadena” is a Spanish word meaning “network”. Cadena is also
an acronym for Component Architecture Development ENviron-
ment for Avionics systems.



3.0) to auto-generate component code. In current practice, com-
ponent developers receive a natural language description of func-
tional and real-time requirements along with UML collaboration
diagrams built with Rose showing component interactions, and de-
velopment begins directly with C++ coding. This means that high-
level designs are not tool-leveraged in any way (either for code gen-
eration or for automated analysis). Bold Stroke engineers have sug-
gested a number interesting ways that high-level designs could be
analyzed for event/data dependency and mode state information for
the purpose of inferring distribution, scheduling, and real-time as-
pects, as well as checking for common design flaws and satisfaction
of application specific requirements.

Beyond the particular domain of DRE mission/safety-critical sys-
tems, we believe that CCM and other component oriented frame-
works are excellent vehicles for injecting light-weight formal meth-
ods and sophisticated automated analysis techniques across the en-
tire software development process. In the past, it has often been
difficult to get developers to write formal specifications – instead
they prefer to move quickly to writing code. We believe that this is
because there is little tool support for leveraging such high-level de-
scriptions. In contrast, CCM’s IDL (which defines the structure of
components) and CCM’s component assembly descriptions (which
describe how components are connected together) are central to
the use of CCM since a large percentage of a system’s code is gen-
erated directly from these. These high-level descriptions can be
leveraged in a number of ways: component connections can be vi-
sualized (essentially, UML collaboration diagrams can be autogen-
erated), useful dependency analysis can be performed at this level,
light-weight behavior specifications can be incorporated, and code
generation can be tailored to produce code that is more amenable to
verification and certification. When applying model-checking tech-
niques, one often struggles to find appropriate system abstraction
that make state exploration tractable. CCM descriptions naturally
form system abstractions, and by varying annotations on the high-
level descriptions (e.g., to expose the state of mode variables, etc.)
the system model processed by model-checking techniques can be
easily abstracted (to hide state) or refined (to expose more state and
more interesting behaviors).

Cadena provides the following capabilities for development of
CCM systems.

• A collection of light-weight specification forms that can be
attached to IDL to specify mode variable domains, intra-
component dependencies, and component state-transition se-
mantics. These forms have a natural refinement order so that
useful feedback can be obtained with little annotation effort,
and increasing the precision of annotation yields more pre-
cise analysis. In addition, Cadena specifications allow de-
velopers to specify the same information in different ways,
achieving a form ofcheckable redundancythat is useful for
exposing design flaws.

• Dependency analysis capabilities allow tracing inter/intra-
component event and data dependencies, as well as algo-
rithms for synthesizing dependency-based real-time and dis-
tribution aspect information.

• A novel model-checking infrastructure dedicated to event-
based inter-component communication via real-time middle-
ware enables system design models (derived from CCM IDL,
component-assembly descriptions and annotations) to be model-
checked for global system properties.

• Java component stub and skeleton code generated using the
OpenCCM [11] CCM IDL to Java compiler.

• A component assembly framework supporting a variety of
visualization and programming tools for developing compo-
nent connections.

• A CCM deployment facility dedicated to the Boeing Bold
Stroke architecture (static component connections with a real-

time event-channel) that allows deployment code to be auto-
matically generated.

• The Cadena tools are implemented as plug-ins to IBM’s Eclipse
IDE. This provides an end-to-end integrated development en-
vironment for CCM-based Java systems.

Several of these facilities are targeted directly to the avionics do-
main, but clearly the Cadena is useful in many respects for CCM
development in general. Although Cadena currently emphasizes
Java in its back-end facilities, since CCM is language-neutral, Ca-
dena’s front-end design capabilities are not Java dependent. More-
over, back-end capabilities can be easily extended in the future to
other languages, for example, C++ using OpenCCM’s [11] planned
support for C++. Other development systems such as MetaH [23]
support several important aspects for DRE systems that Cadena
does not, such as timing and schedulability analysis, reliability and
fault analysis, as well as sophisticated deployment strategies. The
primary motivation for our work is to build a system that is robust
enough for development of real systems with the goal of assessing
the effectiveness of applying static analysis, model-checking, and
other light-weight formal methods to CCM-based systems.

The rest of this paper is organized as follows. Section 2 gives
a brief overview of CCM and the Bold Stroke architecture, and
presents an example that will drive the discussion in the rest of
the paper. Section 3 outlines the Cadena architecture and illus-
trates the various Cadena specification forms. Section 4 presents
Cadena’s dependency analysis facilities. Section 5 describes Ca-
dena’s model-checking facilities. Section 6 discusses related work.
Section 7 assesses the current state of the tools and presents direc-
tions for future work.

2. CCM OVERVIEW AND EXAMPLE
To describe the features of Cadena, we will use as a running

example a simple avionics system that shows steering cues on a
pilot’s navigational display. The pilot can choose between two dif-
ferent display modes — each mode yields a different set of steering
cues. Atactical display mode displays cues related to a tactical
(i.e., mission) objective. Anavigationdisplaymodedisplays cues
related to a navigational objective. Cues for the navigation display
are derived in part from navigation steering points data that can be
entered by the navigator.

Figure 1 presents the CCM architecture for the example system.
The system is realized as a collection of components coupled to-
gether via interface and event connections. Input position data is
gathered periodically at a rate of 20 Hz in theGPS component and
then passed to an intermediateAirFrame component (which in a
more realistic system would take position data from a variety of
other sensors). Both theNavSteering andTacticalSteering com-
ponent produce cue data forDisplay based on air frame position
data. TheNavigator component polls for inputs from the plane
navigator at a rate of 5 Hz that are used to formNavSteering-
Points data. This data is then used to form navigational steering
cues inNavSteering. PilotControl polls for a pilot steering mode
at a rate of 1 Hz and enables or disablesNavSteering andTacti-
calSteering accordingly.

Figure 2 gives the CCM IDL that defines the component types
BMLazyActive and BMModal1 for the AirFrame and Tacti-
calSteering component instances in Figure 1. CCM components
provide interfaces to clients on ports referred to asfacets, anduse
interfaces provided by other clients on ports referred to asrecep-
tacles. Componentspublish events on ports referred to asevent
sources, andconsumeevents on ports referred to asevent sinks.
In the BMLazyActive component type of Figure 2,dataOut
is the name of a facet with interface typeDataAvailable , and
dataIn is the name of a receptacle with interface typeDataAvailable .
Similarly, inDataAvailable is the name of an event sink of
typeDataAvailable , andoutDataAvailable is the name
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Figure 1: Simple avionics system

#pragma prefix "cadena"
module modalsp {

interface ReadData {
readonly attribute any data;

};

eventtype TimeOut {};
eventtype DataAvailable {};

enum LazyActiveMode {stale, fresh};
component BMLazyActive {

provides ReadData dataOut;
uses ReadData dataIn;
publishes DataAvailable outDataAvailable;
consumes DataAvailable inDataAvailable;
attribute LazyActiveMode dataStatus;

};

enum OnOffMode {enabled, disabled};
interface ChangeMode {

attribute OnOffMode modeVar;
};

component BMModal1 {
provides ChangeMode modeChange;
provides ReadData dataOut;
uses ReadData dataIn;
publishes DataAvailable outDataAvailable;
consumes DataAvailable inDataAvailable;

};
};

Figure 2: CCM/Cadena artifacts for ModalSP (excerpts)

of a event source of typeDataAvailable . Components can also
haveattributessuch asmodeVar that are used either in component
configuration or to represent some other aspect of component state.
For an attribute with nameattrname, the IDL compiler will auto-
matically generate an accessor methodget attrnameand a muta-
tor methodset attrname. If the attribute is declaredreadonly
as in theReadData interface of Figure 2, then only an accessor
method is generated2.

While CCM allows components to be dynamically created and
(dis)connected, Bold Stroke applications follow typical practice in
safety/mission-critical systems and employ a static component al-
location and configuration policy by creating and connecting com-
ponents only in a system initialization phase. The CORBA 3.0
specification does not provide a dedicated language for static sys-
tem configuration. Cadena provides graphical, textual, or form-
based incremental static configuration facilities with the abstract
syntax tree of the textual form providing the canonical representa-
tion. Figure 3 displays a fragment of the textual Cadena Assembly
Description (CAD) for the example system. In CAD, a developer
declares the component instances that form a system, along with

2The name of the accessor/mutator methods are dependent on the
IDL to language mapping.

system ModalSPScenario {
import cadena.common, cadena.modalsp;

Rates 1, 5, 20; // Hz rate groups
Locations l1, l2, l3; // abstract deployment locs
...
Instance AirFrame implements BMLazyActive on #LAloc {

connect this .inDataAvailable
to GPS.outDataAvailable runRate #LArate;

connect this .dataIn to GPS.dataOut;
}
Instance TacticalSteering implements BMModal1 on l2 {

connect this .inDataAvailable
to AirFrame.outDataAvailable runRate 5;

connect this .dataIn to AirFrame.dataOut;
}
...

}

Figure 3: Cadena Assembly Description for ModalSP (excerpts)

event channel rate groups and abstract distribution locations. For
each instance, a developer specifies an abstract location upon which
the instance is to be allocated. Abstract locations are mapped to
CORBA specific notions such as containers and nodes at deploy-
ment time. For receptacle and event sink ports, aconnect clause
declares a connection between a port of the current instance and
a port of the component that provides the interface/event. This
follows a convention that connections are declared on the client-
side of an interface/event connection. Each event sink port connec-
tion uses therunRate clause to indicate which rate group thread
should run the event handler upon event dispatch. Incomplete spec-
ifications and incremental construction are supported by allowing
rate and location variables such as#LAloc and#LArate . These
act as place holders, and values for these can be inferred using the
non-functional aspect synthesis algorithms presented later. Equal-
ity constraints between such variables can also be specified, and
the synthesis procedures generate output that conforms to these
constraints. A type-checking procedure ensures well-typed con-
nections.

Bold Stroke applications follow acontrol-push data-pullarchi-
tecture in which data is transferred between data producer and data
consumer components in a two step process. First, a data producer
(e.g.,TacticalSteering) publishes aDataAvailable event in-
dicating that it has updated some data that is ready to be consumed.
Then, when a subscribing data consumer (e.g.,Display) receives
the event, it calls aget dataaccessor method in a facet provided by
the supplier to retrieve the data. Thus, threads never block waiting
for data to become available, and this simplifies the design of real-
time aspects. Under this strategy, component connections come in
pairs consisting of an event connection for notification that data is
ready, and an interface connection for fetching the data.

TheBMLazyActive component type of Figure 2 implements



a variant of this strategy to handle situations where a component
C (e.g., AirFrame) depends on data that is updated much more
frequently thanC ’s clients requireC ’s data. For example, the
AirFrame component does not fetch data immediately fromGPS
when notified, but instead simply sets itsdataStatus attribute
to indicate that its data is stale and notifies its clients (e.g.,Tacti-
calSteering) that its data is available. When aget datacall for Air-
Frame data comes from one of its clients, it checks thedataStatus
attribute to see if its data is fresh, and if it is, it returns it immedi-
ately to the calling client. If it is not fresh, it calls theGPS get
datamethod, updates its own data with the returnGPS data, sets
its dataStatus to fresh, and returns the newAirFrame data to
the calling client.

BothNavSteering andTacticalSteering aremodal components
that have two modes (enabled,disabled). These modes are set byPi-
lotControl via ChangeMode facets provided by the modal com-
ponents. When a modal component is disabled, any events received
are simply discarded by the component. When enabled, the com-
ponent responds according to the control-push data-pull strategy
(e.g.,TacticalSteering responds to aDataAvailable from Air-
Frame by callingAirFrame’s get data method.

In Bold Stroke applications, even though at a conceptual level
component event source ports are connected to event sink ports,
in the implementation, event communication is factored through
a real-time CORBA event channel. Use of such infrastructure is
central to Bold Stroke computation because it provides not only a
mechanism for communicating events, but also a pool-based thread-
ing model, time-triggered periodic events, and event correlation. In
order to shield application components from the physical aspects of
the system, for product-line flexibility, and for run-time efficiency,
all components arepassive– component methods are run by event-
channel threads that dispatch events by calling the event handlers
(“push methods” in CORBA terminology) associated with event
sink ports. The roots of computation are time-triggered events (e.g.,
events associated with event sinks ofNavigator, GPS, andPilot-
Control) supplied at a specified rates by the event-channel. Dis-
patching of these events causes the dispatch threads to run the as-
sociated handlers which contain methods calls and publishing of
subsequent events. In the current Bold Stroke implementation, the
event channel thread pool has exactly one thread associated with
each rate. As noted earlier in the discussion of Figure 3, each non-
time-triggered event port also has a rate specified at configuration
time which indicates itsrate group, i.e., the pool thread that should
run the event handler when the event is dispatched.

The event channel also provides event correlation and event fil-
tering mechanisms. In the example system,and-correlation is used,
for instance, to combine event flows fromNavSteering andAir-
Frame into NavDisplay. The semantics ofand-correlation on two
eventse1 ande2 is that the event channel waits for an instance of
bothe1 ande2 to be published before creating a notification event
that is dispatched to the consumer of the correlation. The semantics
of a correlator is defined by an automaton over event traces derived
from the correlation expression [21].

Note that CCM IDL captures the interface properties of compo-
nents – Cadena’s notation for capturing interesting high-level be-
havioral patterns is presented in the next section.

3. CADENA ARCHITECTURE
Figure 4 displays the internal structure of the Cadena toolset. Ca-

dena projects contain four high-level specification forms: a CORBA
3 IDL file that defines the structure of component types (see Fig-
ure 2), a Cadena Property Specification (CPS) file that specifies
various aspects of component behavior (see Figure 5), a Cadena As-
sembly Description (CAD) that specifies the components instances
that form the system, the connections between them, along with
other real-time and distribution property information, and a spec-

component BMLazyActive {
mode dataStatus;
dependencydefault == none ;

dependencies {
case dataStatus of {

stale: inDataAvailable -> outDataAvailable;
dataOut.get_data(); -> dataIn.get_data();

fresh: inDataAvailable -> outDataAvailable;
}

}

behavior {
any internalData;

dataAvailable.push(_) {
if (dataStatus == fresh)

dataStatus = stale;
outDataAvailable.push(_);

}

any dataOut.getData() {
if (dataStatus == stale) {

internalData <- dataIn.get_data();
dataStatus = fresh;

}
return internalData;

}
}

}

component BMDevice {
behavior { ... }

}

component BMModal1 {
mode modeChange.modeVar;
dependencydefault == all ;

dependencies {
modeChange ->;
case modeChange.modeVar of {

enabled: inDataAvailable
-> dataIn.get_data(),

outDataAvailable;
disabled: inDataAvailable ->;

}
}

behavior { ... }
}

Figure 5: Cadena Property Specification (CPS) (excerpts)

ification file that stores information about the desired correctness
properties of the system. These input artifacts are created using
customized editors built using Eclipse plug-in facilities. In partic-
ular, the CAD format has a textual editor, a graphical editor (to
view systems as graphs similar to style of Figure 1)3, and a form-
based editor that allows one to easily define different projections of
the component assembly (e.g., connections only, distribution and
rate assignments only, etc.). The graph structure described by the
CAD is the basic data structure that is used by the dependency ana-
lyzer (discussed in Section 4), the graphical view displayer, and the
deployment code generator (which generates Java code to allocate
and connect components).

Figure 5 displays excerpts of the CPS file for our example sys-
tem. In a CPS description, developers may declare intracomponent
dependencies between ports and simple behavioral descriptions of
a component’s event handlers and other methods. The dependence
declarations take the formtrigger-port-action -> response-port-
action. For example, Figure 5 declares that consumption of an
event on theinDataAvailable port of aBMLazyActive com-
ponent may trigger a publish on theoutDataAvailable port in

3We do not use an actual screen shot for Figure 1 because the cur-
rent version of Eclipse does not include zoom in/out capabilities,
and the current layout is too large to fit on a screen.
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bothstate andfresh modes. The absence of a dependence for
the dataOut port in thefresh mode indicates that any call on
dataOut should not result in an action on any other port.

A dependencydefault may have one of two settings: a
none setting allows developers to start with an empty dependence
relation and add new dependencies (i.e., dependences do not exist
except when declared), anall setting allows developers to start
with a universal dependence relation and then prune dependences
(i.e., by default all possible dependencies between ports exist). In
theall setting, once a port is mentioned on the left-hand-side, then
only declared dependences apply for that port. For example, for
BMModal1 which has theall setting, the absence of declarations
for thedataOut port specifies that the ports (outDataAvailable
and dataIn ) do dependon dataOut (note that is an overap-
proximation of the actual behavior). Dependencies are pruned in
BMModal1 by giving refining declarations such as those for the
modeChange andinDataAvailable ports that list no depen-
dents to the right of the-> .

Since transition systems for model-checking are generated from
behavioral descriptions, their primary purpose is to capture (a) the
actions that one wishes to reason about in temporal specifications
and (b) simple control-flow relationships between these actions.
Cadena supports such observable actions as event publish and con-
sume, method call and return, data flows between system variables,
assignments to mode variables. Each behavioral description in the
CPS format gives both a data and control abstraction of a compo-
nent’s actual implementation of an event handler or method. Data
abstraction is achieved by only exposing concrete values of mode
variables (or other application variables with bounded domains).
This was motivated by the fact that Bold Stroke engineers are pri-
marily concerned with reasoning about modal behavior at design
time since analysis of system modes and mode transitions can be
leveraged in several ways. Even though concrete values of other
application variables are usually not modeled, data flows between
such variables can be captured. For example,internalData
<- dataIn.get data(); in theLazyActive behavior mod-
els a flow from the result of theget data(); method into the
internalData variable. This may abstract many actual compu-
tation steps in the actual implementation. The behavioral language
contains simple control structures such as sequencing and condi-
tionals and abstracts control by simple omitting commands from
the implementation that one does not wish to observe. Note that
dependence information can also be derived from behavioral spec-
ification, and this provides a form of checkable redundancy. The
intent is that developers begin with the more light-weight depen-
dence specifications, leverage those, then only move to the more
verbose behavioral specifications when model-checking analysis is
to be applied.

Cadena uses the OpenCCM tools [11] to generate system im-
plementations. The OMG CORBA 3.0 specification standardizes a
strategy for compiling IDL (of which the CCM IDL is part) down
to CORBA IDL 2, which can then be translated to an underlying
implementation language such as Java or C++. This translation
process automatically generates a substantial amount of infrastruc-
ture code for tasks such as component creation and connecting and
disconnecting ports. The output code contains the usual CORBA
stubsandskeletons, along with skeletonimplementationsof com-
ponent methods and event handlers. With this code generation, the
developer only needs to implement event handlers and methods on
provided interfaces.

When applying model-checking, a partial transition system is
generated from the system IDL3, CPS, and CAD inputs. This is
then composed with a transition model of the CORBA event chan-
nel to obtain a complete model of system behavior. Transition
system and selected system properties are then submitted to the
DSpin model-checker for analysis. Counter-examples are rendered
in terms of actions defined in the Cadena models, e.g., event pub-
lishes and method calls.

When building systems with Cadena, we intend for developers to
take the following steps: (1) load a library of domain-specific com-
ponents and associated CPS specifications, (2) define new project-
specific components and associated behavioral CPS specifications,
(3) use various supported editors to configure connections between
components, (4) use dependency viewer to examine dependencies,
(5) use non-functional aspect synthesis tools to attach distribution
and rate information, (6) specify desired global correctness proper-
ties, (7) generate a transition system model and model-check cor-
rectness properties, and (8) revise system based on feedback from
analysis tools.

4. DEPENDENCY ANALYSIS
Even with small systems of around 20-30 components, relation-

ships between components and component dependences are often
hard to determine from visual inspections of textual or graphical
component assembly views. Bold Stroke systems can have 1000s
of components, and Bold Stroke engineers have identified develop-
ment of automated support for component dependency analysis and
visualization as a high priority. As discussed in the previous sec-
tion, Cadena provides several different layers of dependency spec-
ification and analysis with the goal of enabling incremental con-
struction of dependency specifications – little or no specification
effort should still allow useful tool feedback since a fair amount
of dependency information (inter-component dependences) can be
derived from the CAD information. Increasing the details of spec-
ifications should yield more precise visualizations and analysis.
Here are the steps that we expect developers to take when creat-



ing and refining dependence information: (1) give component as-
sembly without CPS dependence information using the global de-
pendence default that all actions on input ports of a componentC
give rise to actions on all output ports ofC, (2) refine by giving de-
pendences without taking into account modal behavior, (3) refine
by considering modes in CPS dependence declarations, (4) refine
by giving behavioral descriptions (which capture dependence in-
formation via control-flow properties). Bold Stroke developers cur-
rently use dependency information in manually to determine non-
functional aspects such as distribution, connection implementation
(synchronous vs. non-synchronous calls), rate group assignment,
etc. At any point in the steps above, Cadena can leverage partial
dependence information to provide automated support for develop-
ers.

4.1 Basic notions of dependency
Given a component library and component assembly description

(along with optional Cadena property specification file), Cadena’s
port-level dependency module builds aport dependence graphPDG
= (N,E) where each noden ∈ N is a component/port pairi.p.
Edges (i.e., dependences) between PDG nodes arise from two sources:
inter-component dependencescorresponding to port connections
specified in component assembly description,intra-component de-
pendencescaptured by CPS declarations in component property
specifications. Whether or not intra-component dependences are
generated for a particular instanceC depends on thedefault de-
pendence settingfor C as discussed previously. The default set-
ting is given by the global default dependence declaration unless a
component-local default declaration exists.

For inter-component dependences, when there is a connection
betweeni1.p1 and i2.p2 in the component assembly description,
we say thati1.p1 is event dependenton i2.p2 (written i2.p2

e→
i1.p1 – the arrow pointing in the direction of the event flow) if
p2 (resp. p1) is an event source (resp. sink). Similarly, with the
above connection,i1.p1 is interface dependenton i2.p2 (written
i2.p2

n→ i1.p1) whenp2 (resp.p1) is a facet (resp. receptacle). For
example, from the CAD information in Figures 1 and 3, we have,
e.g.,GPS.outDataAvailable e→ AirFrame.inDataAvailable and
GPS.dataOut n→ AirFrame.dataIn.

For intra-component dependences, for an instancei of compo-

nent typec, i.p1 is trigger dependentoni.p2 (writteni.p2
t→ i.p1)

when either (1)p2 is declared to triggerp1 in the CPS forc, or (2)
the default dependency status forc is all and there exists no trigger
declaration forp2 in the Cadena specification forc.

As with conventional work on dependences, a system slice for
a particular point(s) of interest (referred to as theslicing criterion)
is computing by taking the transitive of the PDG from the PDG
node(s) corresponding to the slicing criterion. Basic slicing ac-
tions provided by Cadena include forward slice, backward slice,
and slice intersections.

4.2 Mode-aware dependences
To reason about mode-aware dependences, the mode state of

the system is captured formally via a mode-state vectorm which
holds values for one or more mode variables from the system be-
ing analyzed. In the ModalSP scenario, it is useful to consider a
two-variable mode-state vector that holds the mode state ofNavS-
teering and the mode state ofTacticalSteering. Given a PDG
P = (N, E) for a system, a modal PDGPm = (Nm, Em) for
mode-state vectorm is formed by settingNm = N and having
Em include all inter-component edges, but only intra-component
edges that are enabled according tom.

Cadena provides mechanisms for collecting a set of mode-state
vectors and using these to drive visualization of dependences (i.e.,
Cadena users can choose to visualize dependences for a particu-
lar vector). Mode-state vector sets can be entered explicitly in a

form-based view or generated automated from the state-exploration
techniques discussed in the following section. For instance, for
the mode-vector mentioned above, it is instructive to have a mode-
based dependency view for the three mode-state vectors (disabled,
disabled), (enabled, disabled), and (disabled,enabled).

4.3 Dependency-driven analyses
In the Bold Stroke development process, several non-functional

system aspects that are currently designed using manual efforts
primarily can be aided or even synthesized automatically using
the dependence analysis capabilities described above. These in-
clude (following the order in which they are carried out) assign-
ing priorities/execution-rates to event consumer ports, appropri-
ately distributing component instances to network nodes, and iden-
tifying opportunities for switching asynchronous remote event de-
livery (the default mechanism) to synchronous local method calls.

Automated rate assignment begins by assigning rates to each
event consumer port that subscribes to a time-triggered event – the
port simply is assigned the rate of the event. Using the results of the
dependency analysis above, the process continues by propagating
rate information along the PDG in a forwards direction and assign-
ing the propagated rate value to each input and output port encoun-
tered. In cases where a port has more than one rate propagated to
it (e.g., when event correlation is used, or when two different input
ports influence an output port), the highest of the rates is propa-
gated. The process continues until a fixpoint is reached and the
resulting rates on event consumer ports bind CAD rate variables.

In the example in Figure 1, automated rate assignment would re-
sult in assigning 1Hz to the event consumer ofPilotControl, and
to the receptacles ofPilotControl and the facets ofTacticalSteer-
ing andNavSteering connected toPilotControl. Similarly, (a) all
ports inNavigator, NavSteeringPoints are assigned 5Hz, and the
two ports ofNavSteering connected toNavSteering are assigned
5Hz, and (b) all ports inGPS andAirFrame are assigned 20Hz.
There is now a conflict for the rates on the output ports ofNavS-
teering due to the fact both 5Hz and 20Hz rates are flowing in, so
the higher rate of 20Hz is used. The process continues until the
remainder of the unassigned ports have a value of 20Hz.

The distribution algorithm then uses the rate information gath-
ered above (a) to determine the traffic on the connections between
components, and (b) to identify components to be deployed on a
common location. In the example, the algorithm would group com-
ponents closer to their trigger source with the traffic and rate infor-
mation used as the arbitrating criteria.

In the example,Navigator andPilotControl would be assigned
distinct locations,l1 and l2 . The rest of the components would
be assigned locationl3 as the traffic between them is higher as-
suming all data and event types are of unit size. However, if the
traffic on the data connection betweenNavigator andNavSteer-
ingPoints was higher than the cumulative traffic on other connec-
tions onNavSteeringPoints thenNavSteeringPoints would be
assigned locationl1 . Although this simplistic example is not a
realistic example, the ability to automatically leverage connection
and rate information to provide developers with guidance about
component distribution can be a significant advantage for large sys-
tems.

For the reduction of asynchronous remote event deliveries, an
event delivery between two component instance portsi1.p1 and
i2.p2 that does not involve correlation can be reduced to a local
method call wheni1 andi2 are co-located and when the rates at-
tached top1 andp2 through the propagation above are the same. In
the example, this optimization can be applied to all non-correlated
event connections. However, ifNavSteeringPoints and NavS-
teering were assigned different locations in the distribution step
above, the optimization would not apply to that connection.

Finally, although we do not implement schedulability analysis in



Cadena, we note that Cadena’s dependency specifications (in par-
ticular, mode-aware dependence information) can be used to im-
prove static scheduling. Currently, static schedulability analysis in
Bold Stroke is based on summing execution costs along call-tree
paths deduced from component connections only (i.e., ourall
dependence mode with no declared dependences). Cadena spec-
ifications prune away many infeasible dependences, and therefore
prune away infeasible paths that may cause worst-case execution
time estimates to be more conservative than necessary. This can
sometimes save a surprising amount of development time since sys-
tems are often restructured in significant ways to obtain schedulable
computations.

5. MODEL-CHECKING DESIGNS
As illustrated in the previous section, light-weight dependence

analyses can provide a wealth of information about relationships
among design components. In addition to this, Cadena supports
deeper semantic analysis of design behavior using model check-
ing. Specifically, we support reasoning about logical properties of
component-based designs expressed as assertions, invariants and
sequencing properties over system states and actions, such as method
calls and returns and event publications and consumptions.

In order to maximize the flexibility of Cadena in targeting differ-
ent classes of component-based systems, we have designed a lay-
ered translation from our extended CCM-based specification lan-
guages to the input language of the DSpin [7] model checker. The
translation includes modeling of: (i) design component interfaces
and behavior, (ii ) the semantics of middleware components through
which component execution is orchestrated, and (iii ) event and data
sources and sinks in the system environment. These translation as-
pects have well defined interfaces that make it easy to vary, for
example, the semantics of middleware functions to suit a particular
application domain. In the remainder of this section, we discuss
each of these aspects in turn as well as our approach to specifying
the properties to be checked. Unlike much of the existing work in
model checking system designs, we found it necessary to exploit
knowledge of the middleware and environment to achieve models
that were compact enough to check in a reasonable amount of time.
We describe how we abstracted domain knowledge for the Bold
Stroke architecture to encode it into our models. We conclude with
a discussion of our experiences model checking properties of sev-
eral variations of models generated for the design from Figure 1.

5.1 Why DSpin?
Cadena uses DSpin as its model checking engine. In principle

we could use any one of a number of available model checking
tools, such as Spin [13] or NuSMV [2], however, component-based
designs have a number of features that are difficult to express in the
low-level input languages of such tools. For example, one needs
to be able to define an object, i.e., a collection of data attributes,
manipulate references to an object, and invoke the methods asso-
ciated with an object. It is clearly possible to map such high-level
constructs onto a model checker input language as JPF [12] and
Bandera [4] do, but it is much easier when the model checker sup-
ports those constructs directly. DSpin is an extension to Spin that
adds support for objects, functions, and references, among other
features. DSpin is implemented in such a way that it runs as least
as fast as Spin for the functionality they have in common [7] and
our experience is that the performance penalty for using the exten-
sions is minimal when compared to hand-optimized models.

5.2 Component Modeling
Translating Cadena components is straightforward. A compo-

nent is implemented as a group of state variables, for attributes and
modes, and DSpin function references, for the receptacle methods
consumed from other components. Associated with each compo-

any NavSteering_internalData;
mode NavSteering_componentState;
ftype Ref_NavSteering_dataIn1_getData,

Ref_NavSteering_dataIn2_getData;
ftype Ref_NavSteering_update;

function Fun_NavSteering_source1 ( mtype t) {
printf ("NavSteering: source1 handler invoked.\n");
if

:: NavSteering_componentState == enabled ->
NavSteering_internalData =

Ref_NavSteering_dataIn1_getData ();
printf ("NavSteering: publishing update.\n");
Ref_NavSteering_update (NavSteering_DataAvailable)

:: else
fi

}

function Fun_NavSteering_switch_getData () : int {
atomic {

P <= 1 ->
printf ("NavSteering: switch getData invoked.\n");
P = MaxPriority

}
return NavSteering_componentState;

}

Figure 6: DSpin model for NavSteering BMModal Component (ex-
cerpts)

proctype RateGroup_1Hz () {
ftype f;
mtype m;
...
do

:: skip ->
S_timeout?b;
...
do

:: Rate1_queue?[f, m] -> Rate1_queue?f(m); f(m)
:: else -> break

od
od

}

Figure 7: DSpin model of Event Channel Rate-specific Thread

nent are a group of functions that implement the event consumer
methods (i.e., handlers) and methods provided by the component.

There are two advantages to this translation: it has a natural
mapping back to the Cadena model which facilitates expressing
diagnostic information about detected errors and it decouples the
component from other components so that models can be easily re-
configured. For example, theNavSteering component, shown
in Figure 6, does not encode the identity ofsource1 from which
it readsdataIn1 . Rather, the component has a function refer-
ence that is assigned to the appropriate method reference based on
configuration information. We have generated models with static
configurations to date, but it is trivial to support dynamic reconfig-
uration.

5.3 Modeling Middleware Services
CCM systems assume the presence of middleware services such

as an event-channel with a pool for dispatching threads to execute
component code.

Modeling Event Services:In our DSpin models an event publi-
cation is achieved by sending the function reference for the com-
ponent’s event handler and the identity of the event as a message
to the process modeling the event-channel thread. That thread then
invokes the event handler code for the component instance as illus-
trated in Figure 7, whereftype is a DSpin function reference and
mtype is an enumeration encoding the events in the system.

It is easy to identify pairs of component instances where one pub-
lishes an event that is consumed by the second. Under certain con-
straints the behavior of those components may be sequenced, for



function Proxy_NavSteering_update ( mtype t) {
int i = 0;
printf ("NavSteering-Proxy: Calling subscriber methods.\n");
do

:: i < NavSteering_update_NumberSubscribers ->
NavSteering_update_SubscriberList[i].Entry(t);
i = i + 1

:: else -> break
od

}

Figure 8: DSpin Model of intra-Rate-Group Push Proxy

example when they have the same rate assignments in a Bold Stroke
application. Under these conditions, the generic function-event pair
queuing mechanism described above may be replaced by direct
calls from the component instance publishing the event to the han-
dlers for component instances subscribed to that event. For exam-
ple, all publications ofdataAvailableevents from theNavSteering
component are made by calling theRef NavSteering update
function reference which is bound to the function in Figure 8. Sequencing
execution of event publications and consumer code yields a smaller
state space4 by reducing the data states associated with the thread
queues, e.g.,Rate1 queue .

Each event correlation in the system has its own DSpin function.
This function is generated based on the automaton that defines the
meaning of the correlation expression [21]. The correlation func-
tion acts as a handler for its input events, updates the state of the
automaton, and when an accepting state is reached it publishes the
correlated event to subscribers using the same mechanisms as de-
scribed above. Since the correlation functionality is internal to the
middleware service its internal steps are unobservable to the appli-
cation, thus we model them as atomic transitions.

Modeling Thread Services:Middleware provides the threads on
which application components execute, and it may also define a
scheduling policy for those threads. When such a policy is avail-
able it can be exploited to reduce the state space of the generated
model by eliminating interleavings of thread executions that violate
the scheduling policy. Eliminating such interleavings also has the
beneficial effect of improving the precision of analysis performed
on the model.

Bold Stroke applications use rate monotonic scheduling [15] for
event-channel threads. Rate monotonic scheduling is a pre-emptive
priority based scheduling policy where higher rates are assigned
higher priorities. Like most model checkers, DSpin does not sup-
port the definition of a specific scheduling policy, so we encode the
policy directly in the DSpin model. This is achieved by guarding
all component actions with a test that blocks the action if the com-
ponent’s priority is less than the current runnable priority, which
is stored in a global variableP . The print statement of function
Fun NavSteering switch getData in Figure 6 illustrates
such a guard. Guarded component actions are only enabled when
the current runnable priority has been decremented to the compo-
nent’s priority. A decrement is performed only when there are no
enabled steps in the model which can be detected by thetimeout
predicate of Spin. Since this priority decrementing process must
operate independent of component or event-channel thread execu-
tion it is modeled as the separate process shown in Figure 9.

The resulting model has several interesting properties. It assures
that the highest-priority runnable action will be performed; this
yields a dramatic reduction in the system state space as discussed
below. Note that components running at the highest system wide
priority need not have their actions guarded. This, combined with
the direct call modeling of event publication and handling, means
that high-priority behavior effectively executes as a single atomic

4A similar event-channel performance optimization is applied quite
frequently in Bold Stroke applications.

active proctype PriorityHandler () {
do

:: timeout ->
d_step {

if
:: P > 0 -> P = P - 1;
:: else

fi
}

od
}

Figure 9: Rate Selection Process

step in the model. The introduction of an explicit global priority
does add a state variable to the system, but note that it only changes
value when no other transitions in the model are enabled. Conse-
quently, there are no possible interleavings of the different priority
values with component/thread execution and the effect on the state
space is trivial.

5.4 Environment Modeling
Cadena models capture the combined behavior of a collection

of component instances working in concert to respond to external
inputs and to produce appropriate outputs. We use the termen-
vironmentto describe the entities that interact with the explicitly
modeled system. Since Cadena models do not attempt to accu-
rately model data values flowing between the environment and the
system the only relevant inputs are environment initiated events.
The semantics of those events and the pattern of event arrival at the
system will vary with each application.

Our experience suggests that accurate modeling of environment
initiated events is necessary both for precision in reasoning and for
state space reduction. The Cadena tools have builtin support for
generating environment models for Bold Stroke system designs.
These systems are driven by periodic events generated by the mid-
dleware. The rates of these events are typically harmonic to enable
reasoning about schedulability via rate monotonic analysis.

Our generated transition system models do not represent time
explicitly, rather they constrain the number of timeout event pub-
lishes for a given rate relative to timeout publishes for its adjacent
rates. For example, in the interval defined by a pair of 5 Hz timeout
events there must be four 20 Hz timeouts. Constraining the time-
out events appropriately is achieved by including a separateTimer
process in the transition system that keeps track of an abstraction
of time and triggers timeout events appropriately.

For a system with harmonic rates, one could simply keep a counter,
t , that is incremented from 0 up to the maximum rate,m, by one
to maintain an abstract time. For ak Hz rate group, initiation of the
timeout event would then be guarded by testing that:

t % m/k == 0
m/k is guaranteed to be a whole number since the rates are har-
monic. If the rates are not harmonic, then instead of the maximum
rate, the counter is incremented up to the least common multiple
(LCM) of the rate groups in the system and the rate specific guards
use LCM rather thanm in their modulo tests.

Depending on the exact rates used in a system we can reduce
the granularity of abstract time and achieve a state space reduction
by reducing the number of values thatt will take on. To do this
we scale the LCM and each of the rates down by their greatest
common factor (GCF) and adjust the modulo tests appropriately.
For example, if the rates in a system are 5, 10 and 15, then the
LCM is 30, the GCF is 5, and we incrementt from 1 up to 6. The
generated timer process for such a system is shown in Figure 10.

Rather than use the event publication mechanisms described in
the previous section, for timeout events we use rendezvous chan-
nels to couple the timer and the processes that model rate-specific
event channel threads (see Figure 7). The rate-specific processes



proctype Timer () {
int t = 0;
do

:: (t >= 6) -> t = 0
:: (t < 6) ->

if
:: (t % 2) == 0 -> S_timeout15!1
:: else

fi ;
if

:: (t % 3) == 0 -> S_timeout10!1
:: else

fi ;
if

:: (t % 6) == 0 -> S_timeout5!1
:: else

fi ;
t = t + 1

od ;
}

Figure 10: Timeout Generation Process for 5, 10 and 15 Hz Rate
Groups

5 hz

20 hz

A
B

C

Figure 11: Interleaving of Rate Group Thread Execution

force all processing of published events handled by components in
that rate group to complete before executing the rendezvous with
the timer. Figure 11 illustrates the possible behaviors that can arise
in the generated transition system as a result ofTimer ’s behavior
and the enforcement of rate monotonic scheduling. Processing in
each rate group is forced to complete before the next timeout for
that rate group. Processing in lower-priority rate groups can occur
only after higher-priority processing has completed. No attempt is
made in the transition system, however, to ensure that the amount
of lower-priority processing that occurs is appropriate, either by
restricting the amount that can occur (e.g., region A in Figure 11
performs an infeasibly large amount of work) or by forcing it to oc-
cur (e.g., the region between regions B and C in Figure 11 performs
an infeasibly small amount of work).

5.5 Property Specification
We divide the problem of stating correctness properties of Ca-

dena designs into two parts: defining observations of the behavior
of the system that one wishes to make and defining patterns of ob-
servations that constitute correct system behavior. Our approach is
similar to the one taken in the Bandera Specification Language [5].

In Cadena designs user’s may wish to reason about the call or
return from a component method, the publication or consumption
of an event, or the values of component modes. These basic ob-
servations can be qualified by component instance identity (e.g., a
method call to a specific instance), parameter values (e.g., the re-
turn of a specific value from a method), component ports (e.g., the
handling of an event on a specific component port), or rate groups
(e.g., publishing an event from a specific rate group). The syntax
for defining theseobservablesmirrors the syntax of CCM and the
Cadena extensions defined in this paper.

User’s can instantiate an existing set of property specification
patterns [9] with Cadena observables to form specifications of de-
sired system behavior. In addition, Cadena generates observable
definitions in a format that is compatible with the Timeedit tool
[22]. Timeedit supports graphical specification of properties that
are made up of complex chains of observations. Figure 12 illus-
trates a Timeedit specification for the constrained response prop-
erty: “when a 20 Hz timeout occurs and navigation steering mode

Figure 12: Timeline property

is enabled, the display will be updated by the navigation component
and not the tactical component”.

5.6 Experience
We have model checked properties of several Cadena designs.

The most interesting of these is the modal scenario of Figure 1.
As a point of comparison, we generated a DSpin model for this

scenario that did not enforce the rate-monotonic scheduling pol-
icy and performed an exhaustive state-space exploration for the
number of timeouts issued in a single second of system execu-
tion. We ran DSpin using the maximal state compression settings
available (which are the same Spin’s compression settings) and the
check aborted after generating 26 million states using 1 Gigabyte of
RAM. Clearly, some form of state space reduction was necessary.
A state-space exploration on a model of the same design that en-
coded rate-monotonic scheduling for an arbitrary number of time-
outs, ran in less than a minute and generated 1.4 million states using
130 Megabytes of RAM. Similar state space sizes were found for
all of our checks on the modal scenario.

We attempted to check several assertions, invariants and the dis-
play mode related response property shown in the previous sec-
tion. The property from Figure 12 failed on the model with non-
deterministic scheduling due to the fact that execution of a 20 Hz
component was preempted by a 1 Hz component. Thus, the steer-
ing component mode settings could change after the 20 Hz timeout
and before the display update occurred. This is clearly infeasible in
the actual system and performing the check on the rate-monotonic
model described above bore that out by verifying the property.

The modal scenario is unrealistic in the number of components,
but it is quite realistic in the number of rate groups. Recall that
high-priority component execution is effectively atomic in mod-
els that encode rate-monotonic scheduling. This suggests that the
rate of growth of the state space with increasing numbers of high-
priority components will be linear whereas increasing numbers of
lower-priority will yield faster rates of growth. We are conduct-
ing experiments with a variety of Cadena designs of Bold Stroke
applications and plan to report on the scalability of our approach.

6. RELATED WORK
There has been a large body of work on on timing and schedula-

bility analysis for component-based systems. As these techniques
have matured, they have been integrated into environments that
support the development of real-time systems. For example, MetaH
[23] and Geodesic [6] are frameworks that support the reuse of
components written in Ada and Java, respectively, in real-time sys-
tems. These frameworks include a range of timing analyses and
automatically generate infrastructure code that coordinates the ex-
ecution of component code in a way that achieves the system’s tim-
ing requirements. Cadena is complementary to this work in that it
targets logical properties of a system using both light-weight and
heavy-weight analysis techniques.

Ptolemy [17] is a framework that allows a wide variety of for-
mal descriptions of components and their behavior to be integrated
into a single system. User’s provide sufficient detail in these de-



scriptions to allow implementations to be automatically generated.
Ptolemy provides a run-time infra-structure to mediate between
components that have different execution models. In contrast, Ca-
dena models intentionally leave out detail in order to provide more
abstract system descriptions that are amenable to analysis for large
systems. While Cadena provides some code generation capabil-
ities, we do attempt to generate component method implementa-
tions.

Dependence analysis has a long history of uses in program un-
derstanding, transformation, maintenance and testing (e.g., [14]).
Our use of dependence analyses is essentially an adaptation of ex-
isting techniques to the level of abstraction present in CCM de-
signs. Unlike most program dependence analyses which work from
a fixed language definition, we have engineered the annotation lan-
guages in Cadena to provide a layering of detail that will allow for
more precise dependences to be calculated and exploited for im-
proved user feedback.

Model checking [3] has become extremely popular as a tech-
nology for analyzing behavioral models of software artifacts. Re-
searchers have extracted such models from source code (e.g., [12,
4]), UML design artifacts (e.g., [18, 16]) and architectural descrip-
tions (e.g., [1]). The difficulty with all applications of model check-
ing is scaling it up to apply to realistically large and complex sys-
tems. Recent years have seen an enormous amount of research on
the systematic abstraction of models to enable more tractable rea-
soning. We take a different approach in Cadena by exploiting the
natural abstractions that arise when developing high-level design
models of systems.

Our model extraction techniques are based on our experiences
with Bandera [4]. We have adapted those techniques to exploit
knowledge of the execution environment of Bold Stroke applica-
tions. This can provide significant state space reduction, but, in
support of broad applicability of Cadena to CCM-based systems it
was important to engineer the model extraction framework to ac-
commodate the semantics of different middleware infrastructures
in the spirit of Garlan [10].

7. CONCLUSION
Component frameworks have proven to be effective in dealing

with the challenges associated with building complex distributed
systems. We believe that the high-level architectural descriptions
used by CCM and other component oriented frameworks are an ex-
cellent vehicle for injecting light-weight formal methods and so-
phisticated automated analysis techniques across the entire soft-
ware development process. In particular, we have built Cadena to
explore how static analysis and model-checking can be integrated
into CCM development by capitalizing on the use of CCM IDL
to define what are, in effect, system abstractions that make such
checking feasible for realistic systems.

We have applied Cadena to small and simple avionics systems
based on the Boeing Bold Stroke architecture, and the initial results
are encouraging. We believe that the strategies that we have devel-
oped for modeling middleware event services can scale reasonably
well to larger systems. However, for systems with 1000s of com-
ponents as one would find in product-line applications, we plan to
investigate the use of compositional checking. In addition, there
are many other forms of analysis needed for developing product-
line avionics applications; Cadena current focuses on dependence
analysis and behavioral analysis using model-checking techniques.

Concerning the tool itself, we believe building Cadena as a plug-
in to IBM’s Eclipse using the OpenCCM tools can provide a tool
environment robust enough to experiment with designs of real sys-
tems. We are plan to do an alpha-release of Cadena to our re-
search partners in late October, with a full public release coming
early next year. More information about the tool (with example
artifacts and screen shots) can be found atwww.cis.ksu.edu/

santos/cadena .
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