
The Need of a Timing Model for the AUTOSAR 
software standard 

 
Razvan Racu, Rolf Ernst 

Institute of Computer and Communication Network Engineering 
Technical University of Braunschweig 

Hans-Sommer Str. 66 
D-38106 Braunschweig, Germany 

 
Kai Richter 

Symtavision GmbH 
Frankfurter Str. 3b 

D-38122 Braunschweig, Germany 
 
 

Abstract— Even though recognized as a major 
challenge in system integration, the recently published 
AUTOSAR standard lacks aspects of timing and 
performance.  Reasons include mismatch between 
industry requirements and many –mostly academic– 
timing analysis approaches. The talk highlights key 
technical and non-technical challenges for defining a 
comprehensive timing model for AUTOSAR, and 
outlines requirements for possible solutions. Examples 
from practice and a look into the industrial process of 
designing –and the way of thinking– shall help 
structuring the discussions. 

I. INTRODUCTION 
The increasing application complexity, together with a 

strong time-to-market pressure, requires a massively 
parallel design of systems, whether in automotive, 
avionics, multimedia, or telecommunications industries. 
The supply-chain often contains hundreds of companies 
that design their individual components based on 
requirement definitions from the OEMs or Tier-1 
suppliers.  

Systems integration is a major challenge. Dynamic 
component interactions result in a variety of non-
functional timing and performance dependencies due to 
scheduling, arbitration, blocking, buffering etc., 
eventually generating hard-to-find timing problems, 
including transient overload, buffer under- and over-
flows, and missed deadlines. Not having a systematic 
timing analysis procedure is currently challenging the 
automotive design process. At the same time, the cost of 
electronic systems has been rising. This cost increase is 
mainly due to a lack of understanding and control of 
integration effects, and a resulting conservative design 
style. 

II. AUTOSAR AND TIMING 
The AUTOSAR partnership [1, 4], an alliance of OEM 

manufacturers and Tier-1 automotive suppliers with many 
associates, has recognized integration as a major 
challenge several years ago. Since then, a number of de-
facto open industry standards for automotive E/E 
architectures have been developed: first confidentially, 

now open to the public. The main goal of AUTOSAR is 
to define a standard software infrastructure for application 
and basic software, which allows exchanging parts of the 
system’s software without rebuilding everything. This 
shall enable modularity, scalability, transferability and re-
usability of software among projects, variants, suppliers, 
customers, etc. Figure 1 shows the software layers within 
a component, as specified in the AUTOSAR standard. 
Interestingly though, the current AUTOSAR standard still 
does not contain key aspects of timing and performance. 

 

 
Figure 1 Standardized AUTOSAR software 

 
It is important to understand that the primary objective 

of AUTOSAR is not solving timing problems in 
particular but supporting integration from a software-
engineering perspective. Timing properties shall be added 
to the existing component models in a second step. 
However, the host of interaction and communication 
mechanisms defined by AUTOSAR –many of them 
borrowed from earlier standards such as OSEK/VDX [5, 
6]– leads to numerous timing use-cases. These, in turn, 
have many possible interpretations of timing with no 
obvious solution. In the next section we present some 
examples that show why timing represents a major issue 
for the correct component integration, and should be 
considered from the beginning by the AUTOSAR 
standard. But why is defining a timing model so 
complex?  



The reasons are manifold. Technically, the software-
engineering view of AUTOSAR lacks clear execution 
semantics, on which the known approaches to timing 
analysis could build upon. The simultaneous use of 
heterogeneous interaction mechanisms complicates 
timing analysis further and does not match the clear, well-
defined models of computation used in real-time systems. 
Introducing an effective timing model after the software 
architecture has been defined is a tough technical 
challenge and requires practical restrictions.  

Practicability concerns and economical issues add to 
that dilemma. A successful technology must support 
designers in consequently taking decisions; directly and 
quickly. Therefore, a suitable methodology for using the 
model and applying the analysis must be in place. The 
model and methodology must further consider established 
design and supply-chain processes. IP protection, in 
particular, complicates modeling as important details are 
often not available in a particular design stage today. 

III. MODEL MISMATCH 
In this section we present three key examples of model 

mismatches that emphasize the complex relations 
between the timing properties of the system components. 

A. Runnables 
At the ECU level, AUTOSAR defines so called 

software components (SW-Cs) as atomic entities from a 
software development view. However, when it comes to 
scheduling, each SW-C comprises several so called 
runnables. In the implementation, runnables belonging to 
different software components are then grouped into 
tasks, which are finally put under operating system 
control.  

 
SW-C1runnableA

runnableB

runnableC

SW-C2

runnableY

runnableX

runnableZ

SW-C1runnableA
runnableB

runnableC

SW-C2

runnableY

runnableX

runnableZ

O
S

O
S

O
S

O
S Task 4

O
S

O
S

O
S

O
S

O
S Task 4

O
S

 
 
Figure 2 Hidden timing dependencies between SW-Cs  
 

Figure 2 shows two software components containing 
more runnables building three distributed tasks: the first 
task contains runnableX, on SW-C2 and runnableC and 
runnableB on SW-C1; the second task contains runableA 

on SW-C1 and runableY on SW-C2; the third task 
contains runnableZ on SW-C2.  The Gantt-diagram 
shown in Figure 2 shows the execution trace of the three 
tasks. As we can observe, implementation dependent 
timing behavior results from the low level dependencies 
crossing he component boundaries. This challenges the 
real-time behavior of the high level components, by 
introducing hidden, implementation and state dependent 
additional jitters and delays at the level of software 
components.  

Clearly, a scheduling analysis can be performed on the 
low level, but the resulting task timing reveals hardly any 
direct and intuitive timing-relation with the high-level 
software components, to which timing information shall 
finally be attached. 

B. End-to-End Timing 
The second example illustrates another important type 

of model mismatch at a higher level of communication. 
With the increasing distribution of functions over several 
ECUs in a car, the importance of end-to-end timing (and 
deadlines) is also increasing. AUTOSAR has already 
defined models for capturing such timing chains 
composed of communicating software components (SW-
C). Figure 3 illustrates the software component view of 
the timing dependencies, mostly determined by the 
logical flow of data between the software components. 
Hand-over points (HOPs) shall enable easy composition 
and decomposition of such chains, thereby providing a 
framework for system-level timing considerations. 

 

SWC 2SWC 1 SWC 3SWC 2SWC 1 SWC 3  
 

Figure 3 AUTOSAR View on “Timing Chains” 

 
Similar models are also known from data-flow theory, 

where clear semantics relate the execution of nodes (here: 
software components) with timing behavior of the stream. 
However, AUTOSAR has not yet defined clear rules to 
describe the activation of the tasks within the software 
components. Hence, the actual timing of software 
components is undetermined. Moreover, there exist 
several valid communication semantics including client-
server (remote procedure call), periodic sampling 
including under- and over-sampling, polling, and event-
driven. This leads to a variety of indirect causality chains 
in the actual implementation. Figure 4 shows examples 
for these causality chains through the layered software 
defined by AUTOSAR. 

So, what does end-to-end timing mean in absence of 
clear execution, communication, and HOP-buffering 
semantics? The timing is a result of implementation 
properties and will change with the implementation, 
uncontrolled by specification and untestable against test 
component model that lacks the necessary details. There 
are timing models available that could unambiguously 
capture and specify such timing properties. 



C. Bus communication 
A look at bus communication reveals another type of 

mismatch. AUTOSAR defines a detailed API for the 
communication stack including several frame 
transmission modes (direct, periodic, mixed, none) and 
signal transfer properties (triggered, pending) with key 
influences on communication timing. Interestingly, the 
role of buffers and, in particular, buffer access strategies 
(FIFO, priority order, etc.) and the over-/underflow 
mechanisms are mostly left open, despite their enormous 
influence on signal timing. Figure 5 illustrates the 
communication mechanism between the software 
components of two ECUs connected via a CAN bus. The 
messages to be transmitted are translated into signals and 
sent into a waiting queue through periodic, direct or 
mixed frames. The waiting signals are buffered into the 
queue according to different buffering strategies (FIFO, 
priority ordered, hybrid). The signals waiting in the queue 
are dispatched by driver interrupts and send over the bus 
as message objects. Obviously, the frame generation 
modes and the buffering strategy complicate the timing 
behavior of the transmitted frames and introduce 
ambiguity and implementation dependency. 

IV. PRACTICABILITY CONCERNS 
 In addition to a clear and intuitive timing model, 

designers also need a methodology to determine and to 
utilize the timing model in the established design flow. 
Based on the feedback we have been receiving from a 
variety of designers, this in particular requires: 

• Generating or obtaining the data needed for 
analysis (be it by definition, measurement, test, 
or simply asking the right people). 

• Having a specific strategy when and how to 
apply the technology. 

• Interpreting the results and consequently taking 
decisions. 

• Being able to do all this in a reasonable amount 
of time, after a reasonable amount of training on 
that technology. 

If a technology appears too complex, designers will 
avoid it. If input data is not readily available, they cannot 
use it, and if using the technology takes longer than 
finding a sub-optimal but acceptable manual solution, it 
will be considered equally useless. We highlight this, as 
researches (rightfully) tend to do work that is elegant or 
systematic in itself without paying too much attention to 
practical issues.  

BSW
RTE

SWC 1

CAN

M2N7

BSW
RTE

SWC 2
M2N7

BSW
RTE

SWC 3
M2N7

TTTT

TT

BSW
RTE

SWC 1SWC 1

CAN

M2M2M2N7N7N7

BSW
RTE

SWC 2SWC 2
M2M2M2N7N7N7

BSW
RTE

SWC 3SWC 3
M2M2M2N7N7N7

TTTTTTTT

TT

time-driven task

remote procedure call

event-driven task

cyclic CAN 
frames

immediate CAN frames
(event-driven)

Figure 4 Causality Chains in Automotive Implementations 

CAN HW

CAN
BSW

RTESIG SIG

MO

INT

SEND

SIG

Queue

Frame generation timing 
(cyclic and/or event driven)

Buffering strategy
(FIFO, priority ordered, hybrid)

Use of message objects
(hardware buffers)

MO MO

SWC 2

SWC 3

SWC 1

SWC 3

SIG SIG

MO

INT

RECV

CAN HW

CAN
BSW

RTE

CAN HW

CAN
BSW

RTESIG SIG

MO

INT

SEND

SIG

Queue

Frame generation timing 
(cyclic and/or event driven)

Buffering strategy
(FIFO, priority ordered, hybrid)

Use of message objects
(hardware buffers)

MO MO

SWC 2

SWC 3

SWC 1

SWC 3

SIG SIG

MO

INT

RECV

Figure 5 The communication mechanism defined in AUTOSAR 



A. Supply-Chain Issues 
Specifically car manufacturers nowadays have to cope 

with an increasing number of unprecedented real-time 
problems that are caused by the integration of networked 
applications. Even though OEMs do not develop large 
parts of the software, they are responsible for the network 
that is the main basis of integrations. The network timing, 
however, depends not only on the protocol but also on 
driver hardware and software (SW-Cs and COM stack), 
which is mostly out of the OEM’s scope of responsibility 
and control. The supply-chain communication between 
OEMs and suppliers will have to evolve, most likely by 
establishing timing contracts between OEMs and 
suppliers. In order to be accepted  

• Responsibilities and scope must be clearly 
defined, and must match the established roles of 
suppliers and OEMs. 

• IP protection must be ensured, in particular on 
the supplier’s side. Together with already 
existing standards like AUTOSAR, this will 
have a dominant impact on the abstraction of a 
timing model. 

• A comprehensive and reliable timing verification 
methodology must be in place, since there is no 
point in modeling something that cannot be 
analyzed. 

• It must be clarified what kind of analysis results 
and what level of accuracy can be obtained at a 
particular design stage, and the required effort.  

V. EXPERIENCE WITH FORMAL TIMING MODELS 
We have applied the SymTA/S [7] scheduling analysis 

technology [8] in several projects with OEMs, Tier-1 and 
Tier-2 suppliers [9]. SymTA/S allows to capture timing 
information that is currently available in many stages of 
the automotive design flow. Experience shows that each 
particular partner is capable and willing to apply a certain 
amount of timing analysis, if only the scope is suitable, 
the analysis can be performed efficiently, and they see a 
real value for them.  

It is clear that automotive platform design and planning 
can be much more systematic, if supported by a suitable 
global timing view, the enables reasoning about timing 

across company borders. On the one hand, academic 
expertise and support in defining such a model is 
extremely welcome but it must carefully consider 
established technological and business processes. On the 
other hand, industry design practice must also evolve to 
make designs much more transparent and analyzable, 
possibly imposing new roles and responsibilities (and 
liabilities?) for both OEMs and suppliers. As we have 
shown in the examples above, such a trend is not well 
supported by the current AUTOSAR standard. Rules and 
best practice examples are needed to avoid intransparent 
and inflexible designs that counter some of the key goals 
of AUTOSAR, platform and supplier independence.  

VI. REFERENCES 
 
[1] AUTOSAR Partnership. www.autosar.org 
[2] Kai Richter, Rolf Ernst. Real-Time Analysis as a 

Quality Feature: Automotive Use-Cases and 
Applications. In Embedded World Conference, 
Nuremberg, Germany, February 2006. 

[3] Kai Richter, The AUTOSAR Timing Model—Status 
and Challenges, ARTIST2 Workshop “Beyond 
AUTOSAR”, Innsbruck, 2006 

[4] AUTOSAR Partnership. AUTOSAR—Current 
results and preparations for exploitation. 7th 
EUROFORUM conference Software in the vehicle.  
3-4 May 2006, Stuttgart, Germany 

[5] OSEK/VDX Communication. v.3.0.3, OSEK/VDX 
Consortium, July 2004 

[6] OSEK/VDX Operating System. V.2.2.3, 
OSEK/VDX Consortium, February 2005 

[7] SymTA/S Project. Institute of Computer and 
Communication Network Engineering, Technical 
University of Braunschweig, Germany, 
www.symta.org 

[8] Rafik Henia, Arne Hamann, Marek Jersak, Razvan 
Racu, Kai Richter, Rolf Ernst. System Level 
Performance Analysis - the SymTA/S Approach. IEE 
Proceedings Computers and Digital Techniques, 
2005. 

[9] Kai Richter, Marek Jersak, Rolf Ernst. How OEMs 
and Suppliers can tackle the Network Integration 
Challenges. In Proc. Embedded Real-Time Software 
Congress (ERTS), Toulouse, France, January 2006. 

 


