Toward Real-Time Component-based Systems

Shengquan Wang, Sangig Rho, Riccardo Bettati, and Wei Zhao

Abstract— Component technology has become a central focus approaches in component-based systems, components may not
of software engineering in research and development. Reus#iity pe reusable any more in terms of providing real-time sesvice
is a key factor that contributes to its success. The reuse of . goal in this work is to develop a real-time component-
components can lead to a shortening of software development . -
cycles and savings in software development costs. However,baSed Sy_Stem tha_t enables tru_e reus_ab'l'ty of both fumﬂt_'on
existing component models provide no support for real-time and real-time services. To achieve this, we add a real-time
services and some real-time extensions of component modi&sk service specification to each component to make it become
of consideration for reusability of components in providing both what we call a “real-time component”. We build a component-
functional and real-time services. In this work, we developa paqaq resource overlay to isolate the underlying resouaze m
real-time component-based system that enables true reusdiby . . .
of both functional and real-time services. agement from applications. This resource overlay will make

real-time components be truly reusable and also separate th
responsibilities among application designers and compisne
I. INTRODUCTION providers.

Component technology has become a central focus ofTo the best of our knowledge, ours is the first work to
software engineering in research and development dueidentify and address the reusability of components in terms
its great success in market. Reusability is a key factor theft providing both functional and real-time services.
contributes to this success [1]. With component technglogy
software systems are built by_asse_mb_ling componentg. t_Ivat ha Il. COMPONENTBASED RESOURCEOVERLAYS
already been developed earlier, with integration in mind¢hw ,
software component frameworks, the non-functional code isIn pomponent .software,. a cor_‘nponent has three basic char-
automatically generated, and system developers can farus3gteristic properties [1]: (i)solation— A component should
core business logic parts, without wasting time with commdif deployable independently as an isolated part: Neitrer th
non-functional parts. The reuse of components and devdbpgnwronment nor other c_omponents ora th|rd_party have acces
focusing on core parts lead to a shortening of software devi9 _|ts construction deta_lls. .The component is also an gtomlc
opment cycles and savings in software development costs.UNit of deployment, as it will never be deployed partialfy} (

Although component-based models deal successfully wifpmPosability— A component should be composable with
functional attributes, they provide little support for Féiae other components. It needs to be a self-contained function

services. Existing standards — such as CORBA, COM+, aHgit with well-specified interfaces. A third par'Fy can acees
EJB — are unsuitable for real-time applications becaugedbe the component through the contractually specified intedac

not address issues of timeliness and predictability ofiserv (ii) Opagueness A component has no (externally) observable
which is basically required by real-time systems [2]. omdtate. Fig. 1 illustrates a component architecture.

working group has proposed a specification for a real-time dent container
CORBA [3], [4]. However, there is no specification for a S L
real-time EJB or a real-time COM+ yet. The TAO project g

[5] provided a CORBA implementation that guarantees that —O— — O

calls across components preserve priority levels and tiet t e e
overhead in servicing a call request is statically predbieta '
The VEST toolkit [6] provided a rich set of dependency
checks based on the concept of aspects to support disttibute Fig. 1. An illustration of a component architecture

embedded system development via components.

Most of these real-time extensions use traditional ap-We extend the component architecture described above to
proaches to provide real-time service guarantees: Real-tibuild areal-timecomponent architecture. For this, we augment
services are typically provided in form of descriptions bét the largely functional interfaces and context dependesngith
execution time, period, priority, and deadline to meet expe contractually specified temporal interfacasd explicit time-
tions for each method invocation. Applications would need i related context dependenciesny such augmentation of the
tricate knowledge of the underlying hardware architecauré component interface architecture should continue tofgdtie
system software (such as subroutine procedures) in thettatfjgree basic component properties described earlier: (& Th
environment to estimate these parameters accurately.i§higeal-time interface architecture should not interferehwtiie
a big burden for any application, especially in large-seald isolation property. Each component should be separated fro
heterogeneous environments. Moreover, with these tosditi other components in providing real-time service guarantee

_ , For example, uncontrolled resource conflicts among differe

The authors are with the Department of Computer ScienceasTé&&M

University, College Station, TX 77843. Emaifswang, sangigr, bettati, compolnen.ts should be aYOided' (.ii) (;omposability should
zhad @cs.tamu.edu. be maintained. The real-time service interface should well

interface COMpONENt

represent the real-time service provided by the componesgrvice resource unit — an abstraction of resource — besides
Applications can access the service through the real-tirmefunction unit. From the applications’ point of view, the
service interface. (iii) The real-time interface architee resource unitis real-time components instead of the uyider!
should maintain opaqueness. Applications do not need tavkneesource (such as CPU, memory). Component providers will
how real-time services are provided by each component. Tiade care of the mapping of component-based overlay resourc
interfaces should not include information relating to tingler- to the underlying resource while providing real-time seegi
lying component implementation, such as methods’ worsecao applications through the real-time service interfadg. B
execution time, scheduling algorithm used in method exegut ;
in components, for example. “llients ™ Application Development 1

We use a very simple contractual interface, which formu- 3
lates the real-time service provided in terms of the service

real-time component

guarantee (described in form of a deadline) given a worst- e resource | |

case arrival (described in form of an arrival function). Wstfi ? Component Development

introduce the arrival functon.
Definition 1 (Arrival function): If the maximum number of Fig. 2. An illustration of a component-based resource ayer!

method invocations during any time interval of lengthis

bounded byA(I), we defineA as an arrival function of this illustrates a component-based resource overlay. The resou
sequence of method invocations. For example, a burstyaarrigverlay separates component development from application
can be described using a burst sizand average arrival rate development and makes the underlying resource management
pasA(l) =o + pl. totally transparent to application designers. The reakti

The arrival function4 and the deadlin® give a contractual service interface specification in real-time componentssdo
definition of the real-time service provided by the compdner0t touch any information of their underlying implementati
For any sequence of invocations, if its arrival functionésdw ANy change in the implementation of components will not
A, this component will guarantee that any invocation in thiffect the application design.
sequence will meet its deadline at this component.

This interface specification clearly meets the isolatiame
posability, and opaqueness requirements for real-time-comlt is component providers’ responsibility to implement the
ponents. In order to let components provide more flexibRPmponent functionality in the form of a set of interfaces
service and better utilize the underlying resource usage, We,i; Aec,i, De,i)’S. Service implementation issues can be di-
extend the above specification by introducing differenviser vided into two categories: (i) Inter-component — Recallt tha
levels and taking into consideration different methodsosepl €ach real-time component should be isolated from others in
by components. We definelass of serviceas the service terms of the underlying resource usage to meet the isola-
level for each component. Assuming there afeclasses of tion requirement. The underlying resource could be CPU or
service, we define clagsreal-time service for Componeatas memory (here we focus on CPU). We use a guaranteed-rate
(Oc.is Aci, Dei), Wwhere®, ; is a group of methods exposedscheduler to ensure temporal isolation of components on the
by Component, A, ; is an upper-bound on arrival functionsame processor and allocate required processor utilizétio
of invocations of method in®.;, and D., is a deadline each component. A Total Bandwidth Server [7] can achieve
for any invocation of method ir®,. ;. In other words, for this; (i) Intra-component — Each component will provide
a sequence of invocations of methods @n; with arrival multiple classes of service. To differentiate among clagsfe
function A.;, Componente can guarantee a worst-case@ervice in the same component, we use a simple static4yriori
delay bounded byD,; for any method invocation in this scheduler, and use the class-id as priority level.
sequence. For example, assume that Componestposes The only unsolved implementation issue is to how to de-

IIl. BUILDING REAL-TIME COMPONENTS

four method9s, - - - , 6, and defines four classes, an real-timtéermine the processor utilization assigned to each comgone
service interface specification is illustrated in Table I. We will address this in the rest of this section.
Since the component implementation is bound to the un-
TABLE | derlying hardware platform, the execution of the compo-

AN ILLUSTRATION OF A REAL-TIME SERVICE INTERFACE SPECIFICATION nent's methods can be easily characterized at component-
implementation time. In particular, each exposed methad ca

H Classlz | 5)16,7;2 | ?ig} | 0,050D ;ec I be associated with its worst-case execution time (WCET) on
7 01,0 2787 | 0.250 sec the specific platform. We aim to compute the worst-case delay
3| 61,05,03,0, | 3+91 | 0.150 sec suffered by execution of any method #. ;. For this, we
4| 03,64 1+417 | 0.300 sec denoteC, ; as the maximum WCET of all methods #. ;.

In conjunction with the arrival function defined as part oé th
Based on real-time components, we build a resource overlegal-time service interface specification, the WCET gives r
which aims to isolate the underlying resource managemeatthe workload characterization for the method €et; on
from applications. The resource overlay is composed oftlae underlying implementation platform.
bunch of resource overlay nodes — real-time components. IrDefinition 2 (Workload function)if the cumulated execu-
the resource overlay, each real-time component is a n@&l-tition time of a sequence of method executions is bounded by

F(I) during any time interval with lengtli, we defineF as Any task is associated with a end-to-end deadline require-
a workload function of this sequence of method executionsment and a source arrival function. To provide real-time

Given the invocation arrival functio. ;(I) = o.; + peiI Service guarantees, application designers have to ensyre a
for Component of Class: and the associate@. ; of ©.;, invocation in atask meets the end-to-end deadline regeiném
the workload function for Component of Classi can be Moreover, each task will consume the resource in the resourc
expressed a$. ;(I) = C.;A.;(I). If we assume a constantoverlay. The application designer must ensure that the real
processor utilizatiom, to be assigned to real-time Componertime service specified in each real-time component will not
e, we can use a time demand/supply argument [7] to deribe violated. Therefore, an admission control mechanism has
the worst-case delay,. ; suffered by any method invocationto be in place. For an admission request of Téskhere are

in Component of Class: as follows: two issues in admission control procedures that we have to
S _.C address in building real-time applications:
d.; < psi “OP %P < p, .. 1 First, what is the worst-case end-to-end delay experienced
e, = = e,1 y p
Qe — Zp<i CepPep by any invocation in Task'? In TaskT, all of its invocations

In order to satisfy all classes of service, by (1), the alleda have an end-to-end deadlif@” requirement. Assume each
processor utilization for components has to be set at least igvocation in Taskl" will go through sequence of components
ey Of classiy, h =1,2,..., H, and any method Task will
0 = max Z CepOep+ Z Ceppept. (2) callin Componentisin @e i- Recall that the worse-case delay
tsisM D provided by Componert of Classi is D, ;. To guarantee the
When aIIocatlng processor utilization to components, corand-to-end deadline for any invocation in TdBkapplication
ponent developers should ensure that the overall procesgesigners have to ensure that the end-to-end dElaguffered
utilization does not exceed the safe utilization level\alld by any client invocation in Tasi’ should be bounded as
by the specific platform. 4= Deyis -+ Deypy < pT 3)

IV. BUILDING REAL-TIME APPLICATIONS Second, what is the consumed resource by Ta®k Pro-

In our system, applications includgients and application vided that a task has an grrival functiﬂﬁ’f(]) beforeu?rriving
serverswhere a bunch of components have been deployed ff, component, the arrival function will becomi™* (1) <
Each invocation from a client can cascadedly trigger exenut (L +d) Just after a worst-case delayat this component.
of one or more methods, either on a single component or §f defineA = as the source arrl\éal func'uon of ;I'a@k(before
several components. These components in turn can be loc&t@lng the first component). ™ (1) = o'+ p'1, then the
on one or across several application servers. A sequencegpsumed resource by Tagkat Component of Classi is

client invocations resulting in a sequence of cascadedadetn4” = (1) = (67 + p" D, ;, + - + p ' De, i) +p' .

€hslh

execution is called aask (Fig. 3). In a component-based , o 2
client N N “

oY b o specified in each real-time component along the task route
TaskT" will go through will not be violated, i.e.,

Fig. 3. Task Model ZT’GS AZ;“Zh() < A, i (1), (5)
€h 7’h

system, an invocation from a client can pass through sevefere S., i, is the set of existing tasks that use clags-
components and we assume all invocations in the same taskd@ice of Component,.

execute on the same components in the same order. Tasks iBue to the space limitation, the details of the admission

applications can be modeled agask graph(Fig. 4), which control procedures will not be described here.
is, by its nature, a directed acyclic graph. Each node is a

invocations

. V. PERFORMANCE EVALUATION
/}\’ ””” :::><:"—_*; We used Enterprise JavaBeans (EJB) [8] as the underlying
-l N ~~ 7 taskroute framework for the realization of a real-time componenteahs
A . /%\\ #___;____:}; o real-time system. The implementation is based on JBoss [9] (Version
; /7\/\ /:\«1’\/ /,/”" W& component 3.2.1), which is a popular, free, open source Java 2 Platform
. :7’~~~___\::><:j:___~,§ Enterprise Edition (J2EE, including EJB) implementatidre
adopt TimeSys Linux RT 3.1 for our real-time operating
Server 1 Server 2

system [10]. We add real-time RMI into the Reference Im-
Fig. 4. Task graph plementation of Real-Time Specification for Java (RTSJ-RI)
from TimeSys. Based on the real-time infrastructure, wét bui
component and each task formsaak route In a task route, a a real-time component-based system, wlaghaission control
task at a component has a certain set of output, which is a isebne of main modules.
of inputs for the task at next component along the task route.As we know that one of the basic features in our designed
There could be multiple tasks along each task route. systems is the reusability of real-time components. Howeve

this feature cannot be evaluated quantitatively. Insteeel, introduced by component technology in real-time systene. W
will measure the performance in terms of real-time metricevaluate the delay performance for a periodic task in: (Qir@p
the delay for each invocation from clients and the admissioaal-time RMI system; (ii) our designed real-time compdnen
probability with admission control. based system (admission control is disabled). We consiter o
In our experiments, we assume CPUs in EJB servers afereal-time components used in previous experiment arw als
the bottleneck. We choose two Pentium Ill machines witthoose the same implementation of its method in the pure
933 MHz CPU as clients, one Pentium 4 machine with3 real-time RMI system. The period of invocation arrival for
GHz CPU as an application server. These three machines #hie task is0.600 sec. A client will invoke the periodic task
in the same subnet. The application server is installed wigither to the pure real-time RMI system or to our real-time
real-time component-based systems software and deployethponent-based system.
with two real-time componentse;, e2}. Componente; will
expose one method., and define a single class of service
(therefore we can ignore the class index), and its real-time
service interface is(©.,, Ac,, D;), where ©., = {0},
Ae,;(I) =2.542.0I andD,; = 1.250 sec, forj = 1,2. Each
component will be allocated.;, = 40% processor utilization fA ‘ ‘
and the method exposed by each component is associated with 220 230 240 250 260
a WCETC,, = 0.226 sec. The runtime method execution will delay (msec)
be assigned a single real-time priority.

a) Our system with enabled admission control vs. with
disabled admission controlin this experiment, we choose Fig. 6 shows the sampled distribution function of method
two different system configurations in the application 8e1v jnyocation delays. The average delays @e27 sec and
One is our system with enabled admission control and t3&43 sec for the pure real-time RMI system and our system,
other is with disabled admission control. Each client welhe egpectively. The data show that the average deldy0is54
a sequence of periodic tasks. The task arrival from eachtcligec |arger in our system than in the pure real-time RMI system

is a Poisson process. We vary the task arrival rate fiofl component technology introduces little overheads to ntktho
per sec t00.40 per sec. Each task life time is exponentiallynygcation delays.

distributed, and each task includésvocations in a life time

o
©

— real-time component-based
----pure real-time RMI

o
o
.

probability density
o o
N

o

Fig. 6. Comparison of delay probability distribution fuioct

in average. The period for invocation arrival in a task 50 VI. FUTURE WORK
sec and all invocations in a task have a deadli&0 sec In this work, we developed a real-time component-based
requirement. system, where components are truly reusable in providitly bo

functional and real-time services. Furthermore, we ackdes

21.00 { 1.00 { e
5% = how to build real-time applications and real-time compdsen
So.95 | X £0897 based on our proposed resource overlay framework. Thesfutur
2 20.60 - i work lies in two directions: (i) How to specify good real-&m
éo'go’ .%0,40, component interfaces? Basi<_:a||y, given_the applicati(_Bkta
%o.asf _ Disabled AC Eo20 | - Disabled AC grrlval patte.r.n, we cou_ld optimally specify realit.|me. deev
g -~ Enabled AC -~ Enabled AC interfaces; (ii) How to improve the resource utilizationz2 W
T0.80 T T 0.00 S . .

o1 02 03 o4 01 02 03 o4 could. extend deterministic real—tlme guarantees to $iedis

task arival rate task arrival rate real-time guarantees to achieve this.

Fig. 5. Comparison of deadline meeting probabilities andniasion REFERENCES
probabilities

[1] C. Szyperski, D. Gruntz, and S. Murefomponent Software: Beyond
. . . o . Object-Oriented Programming, 2nd Edition New York: Addison-
Fig. 5 shows deadline meeting probabilities for all invo- \yesley / ACM Press, 2002.
cations and admission probabilities for all task admissiofe] A. Pasetti and W. Pree, “The component software chadefay real-

requests from a client (We run two clients and here we 0n|y time system;,” !nProcg_edings of the First International Workshop on
d th th h th imil h Real-Time Mission-Critical SystemScottsdale, AZ, Nov./Dec. 1999.
report one an e other shows the similar phenomenon; Object Management Group, “Realtime CORBA joint revissabmis-

As expected, as the task arrival rate increases, (i) the-dead sion,” March 1999, oMG Document orbos/99-02-12 ed.

line meeting probability is a|Way$00% and the admission [4] D. C. Schmidt and F. Kuhns, “An overview of the real-timé&RBA

I : . . specification,”Computer vol. 33, no. 6, pp. 56-63, 2000.
probability decreases in the system with enabled admissiqg) D? C. Schmidt e? a|f “Real-time C%)RBA with TAO;" http:/-

control; (ii) the deadline meeting probability decreases a www.cs.wustl.edutschmidt/TAO.html.
admission probability is alway300% in the system with [6] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, Mutphrey,

. .. L. and B. Ellis, “VEST: An aspect-based composition tool fomalre
disabled admission control. The data show that the admissio time systems,” inProceedings of the IEEE Real-Time and Embedded

control mechanism really makes any invocation in all adsditt Technology and Applications Symposjuforonto, Canada, May 2003.
tasks meet its end-to-end deadline requirement by regactirrl J Liu, Real-Time Systems New Jersey: Prentice Hall, 2000,

.. 8] Sun Microsystems, “Enterprise JavaBeans technology,”
some task admission request. _) http://java.sun.com/products/ejb.
b) Our system vs. a system without using componerd] JBoss, http:/www.jboss.org.

technology: In this experiment, we measure the overhedd0l TimeSys, “TimeSys Linux 3.1," hitp://www.timesysmo

