
1

Toward Real-Time Component-based Systems
Shengquan Wang, Sangig Rho, Riccardo Bettati, and Wei Zhao

Abstract— Component technology has become a central focus
of software engineering in research and development. Reusability
is a key factor that contributes to its success. The reuse of
components can lead to a shortening of software development
cycles and savings in software development costs. However,
existing component models provide no support for real-time
services and some real-time extensions of component modelslack
of consideration for reusability of components in providing both
functional and real-time services. In this work, we developa
real-time component-based system that enables true reusability
of both functional and real-time services.

I. I NTRODUCTION

Component technology has become a central focus of
software engineering in research and development due to
its great success in market. Reusability is a key factor that
contributes to this success [1]. With component technology,
software systems are built by assembling components that have
already been developed earlier, with integration in mind. With
software component frameworks, the non-functional code is
automatically generated, and system developers can focus on
core business logic parts, without wasting time with common
non-functional parts. The reuse of components and developers’
focusing on core parts lead to a shortening of software devel-
opment cycles and savings in software development costs.

Although component-based models deal successfully with
functional attributes, they provide little support for real-time
services. Existing standards – such as CORBA, COM+, and
EJB – are unsuitable for real-time applications because they do
not address issues of timeliness and predictability of service,
which is basically required by real-time systems [2]. OMG
working group has proposed a specification for a real-time
CORBA [3], [4]. However, there is no specification for a
real-time EJB or a real-time COM+ yet. The TAO project
[5] provided a CORBA implementation that guarantees that
calls across components preserve priority levels and that the
overhead in servicing a call request is statically predictable.
The VEST toolkit [6] provided a rich set of dependency
checks based on the concept of aspects to support distributed
embedded system development via components.

Most of these real-time extensions use traditional ap-
proaches to provide real-time service guarantees: Real-time
services are typically provided in form of descriptions of the
execution time, period, priority, and deadline to meet expecta-
tions for each method invocation. Applications would need in-
tricate knowledge of the underlying hardware architectureand
system software (such as subroutine procedures) in the target
environment to estimate these parameters accurately. Thisis
a big burden for any application, especially in large-scaleand
heterogeneous environments. Moreover, with these traditional

The authors are with the Department of Computer Science, Texas A&M
University, College Station, TX 77843. Email:{swang, sangigr, bettati,
zhao}@cs.tamu.edu.

approaches in component-based systems, components may not
be reusable any more in terms of providing real-time services.

Our goal in this work is to develop a real-time component-
based system that enables true reusability of both functional
and real-time services. To achieve this, we add a real-time
service specification to each component to make it become
what we call a “real-time component”. We build a component-
based resource overlay to isolate the underlying resource man-
agement from applications. This resource overlay will make
real-time components be truly reusable and also separate the
responsibilities among application designers and components
providers.

To the best of our knowledge, ours is the first work to
identify and address the reusability of components in terms
of providing both functional and real-time services.

II. COMPONENT-BASED RESOURCEOVERLAYS

In component software, a component has three basic char-
acteristic properties [1]: (i)Isolation – A component should
be deployable independently as an isolated part: Neither the
environment nor other components or a third party have access
to its construction details. The component is also an atomic
unit of deployment, as it will never be deployed partially. (ii)
Composability– A component should be composable with
other components. It needs to be a self-contained function
unit with well-specified interfaces. A third party can access
the component through the contractually specified interfaces.
(iii) Opaqueness– A component has no (externally) observable
state. Fig. 1 illustrates a component architecture.

interface

client container

component

Fig. 1. An illustration of a component architecture

We extend the component architecture described above to
build areal-timecomponent architecture. For this, we augment
the largely functional interfaces and context dependencies with
contractually specified temporal interfacesand explicit time-
related context dependencies. Any such augmentation of the
component interface architecture should continue to satisfy the
three basic component properties described earlier: (i) The
real-time interface architecture should not interfere with the
isolation property. Each component should be separated from
other components in providing real-time service guarantees.
For example, uncontrolled resource conflicts among different
components should be avoided. (ii) Composability should
be maintained. The real-time service interface should well



2

represent the real-time service provided by the component.
Applications can access the service through the real-time
service interface. (iii) The real-time interface architecture
should maintain opaqueness. Applications do not need to know
how real-time services are provided by each component. The
interfaces should not include information relating to the under-
lying component implementation, such as methods’ worst-case
execution time, scheduling algorithm used in method execution
in components, for example.

We use a very simple contractual interface, which formu-
lates the real-time service provided in terms of the service
guarantee (described in form of a deadline) given a worst-
case arrival (described in form of an arrival function). We first
introduce the arrival function.

Definition 1 (Arrival function): If the maximum number of
method invocations during any time interval of lengthI is
bounded byA(I), we defineA as an arrival function of this
sequence of method invocations. For example, a bursty arrival
can be described using a burst sizeσ and average arrival rate
ρ asA(I) = σ + ρI.

The arrival functionA and the deadlineD give a contractual
definition of the real-time service provided by the component:
For any sequence of invocations, if its arrival function is below
A, this component will guarantee that any invocation in this
sequence will meet its deadlineD at this component.

This interface specification clearly meets the isolation, com-
posability, and opaqueness requirements for real-time com-
ponents. In order to let components provide more flexible
service and better utilize the underlying resource usage, we
extend the above specification by introducing different service
levels and taking into consideration different methods exposed
by components. We defineclass of serviceas the service
level for each component. Assuming there areM classes of
service, we define class-i real-time service for Componente as
〈Θe,i,Ae,i, De,i〉, whereΘe,i is a group of methods exposed
by Componente, Ae,i is an upper-bound on arrival function
of invocations of method inΘe,i, and De,i is a deadline
for any invocation of method inΘe,i. In other words, for
a sequence of invocations of methods inΘe,i with arrival
function Ae,i, Componente can guarantee a worst-cased
delay bounded byDe,i for any method invocation in this
sequence. For example, assume that Componente exposes
four methodsθ1, · · · , θ4 and defines four classes, an real-time
service interface specification is illustrated in Table I.

TABLE I

AN ILLUSTRATION OF A REAL-TIME SERVICE INTERFACE SPECIFICATION

classi Θe,i Ae,i(I) De,i

1 θ1, θ2 1 + 2 I 0.050 sec
2 θ1, θ2 2 + 8 I 0.250 sec
3 θ1, θ2, θ3, θ4 3 + 9 I 0.150 sec
4 θ3, θ4 1 + 4 I 0.300 sec

Based on real-time components, we build a resource overlay,
which aims to isolate the underlying resource management
from applications. The resource overlay is composed of a
bunch of resource overlay nodes – real-time components. In
the resource overlay, each real-time component is a real-time

service resource unit – an abstraction of resource – besides
a function unit. From the applications’ point of view, the
resource unit is real-time components instead of the underlying
resource (such as CPU, memory). Component providers will
take care of the mapping of component-based overlay resource
to the underlying resource while providing real-time services
to applications through the real-time service interface. Fig. 2

resource resource

real-time component
clients

Application DevelopmentApplication Development

Component DevelopmentComponent Development

Fig. 2. An illustration of a component-based resource overlay

illustrates a component-based resource overlay. The resource
overlay separates component development from application
development and makes the underlying resource management
totally transparent to application designers. The real-time
service interface specification in real-time components does
not touch any information of their underlying implementation.
Any change in the implementation of components will not
affect the application design.

III. B UILDING REAL-TIME COMPONENTS

It is component providers’ responsibility to implement the
component functionality in the form of a set of interfaces
〈Θe,i,Ae,i, De,i〉’s. Service implementation issues can be di-
vided into two categories: (i) Inter-component – Recall that
each real-time component should be isolated from others in
terms of the underlying resource usage to meet the isola-
tion requirement. The underlying resource could be CPU or
memory (here we focus on CPU). We use a guaranteed-rate
scheduler to ensure temporal isolation of components on the
same processor and allocate required processor utilization to
each component. A Total Bandwidth Server [7] can achieve
this; (ii) Intra-component – Each component will provide
multiple classes of service. To differentiate among classes of
service in the same component, we use a simple static-priority
scheduler, and use the class-id as priority level.

The only unsolved implementation issue is to how to de-
termine the processor utilization assigned to each component.
We will address this in the rest of this section.

Since the component implementation is bound to the un-
derlying hardware platform, the execution of the compo-
nent’s methods can be easily characterized at component-
implementation time. In particular, each exposed method can
be associated with its worst-case execution time (WCET) on
the specific platform. We aim to compute the worst-case delay
suffered by execution of any method inΘe,i. For this, we
denoteCe,i as the maximum WCET of all methods inΘe,i.
In conjunction with the arrival function defined as part of the
real-time service interface specification, the WCET gives rise
to the workload characterization for the method setΘe,i on
the underlying implementation platform.

Definition 2 (Workload function):If the cumulated execu-
tion time of a sequence of method executions is bounded by



3

F(I) during any time interval with lengthI, we defineF as
a workload function of this sequence of method executions.

Given the invocation arrival functionAe,i(I) = σe,i + ρe,iI

for Componente of Classi and the associatedCe,i of Θe,i,
the workload function for Componente of Class i can be
expressed asFe,i(I) = Ce,iAe,i(I). If we assume a constant
processor utilizationαe to be assigned to real-time Component
e, we can use a time demand/supply argument [7] to derive
the worst-case delayde,i suffered by any method invocation
in Componente of Classi as follows:

de,i ≤

∑
p≤i Ce,pσe,p

αe −
∑

p<i Ce,pρe,p

≤ De,i. (1)

In order to satisfy all classes of service, by (1), the allocated
processor utilization for components has to be set at least as

αe = max
1≤i≤M

{
1

De,i

∑
p≤i

Ce,pσe,p +
∑

p<i
Ce,pρe,p}. (2)

When allocating processor utilization to components, com-
ponent developers should ensure that the overall processor
utilization does not exceed the safe utilization level allowed
by the specific platform.

IV. BUILDING REAL-TIME APPLICATIONS

In our system, applications includeclients and application
serverswhere a bunch of components have been deployed in.
Each invocation from a client can cascadedly trigger execution
of one or more methods, either on a single component or on
several components. These components in turn can be located
on one or across several application servers. A sequence of
client invocations resulting in a sequence of cascaded method
execution is called atask (Fig. 3). In a component-based

client 
invocations

Fig. 3. Task Model

system, an invocation from a client can pass through several
components and we assume all invocations in the same task to
execute on the same components in the same order. Tasks in
applications can be modeled as atask graph(Fig. 4), which
is, by its nature, a directed acyclic graph. Each node is a

Server 1 Server 2

task route

real-time 
component

Fig. 4. Task graph

component and each task forms atask route. In a task route, a
task at a component has a certain set of output, which is a set
of inputs for the task at next component along the task route.
There could be multiple tasks along each task route.

Any task is associated with a end-to-end deadline require-
ment and a source arrival function. To provide real-time
service guarantees, application designers have to ensure any
invocation in a task meets the end-to-end deadline requirement.
Moreover, each task will consume the resource in the resource
overlay. The application designer must ensure that the real-
time service specified in each real-time component will not
be violated. Therefore, an admission control mechanism has
to be in place. For an admission request of TaskT , there are
two issues in admission control procedures that we have to
address in building real-time applications:

First, what is the worst-case end-to-end delay experienced
by any invocation in TaskT? In TaskT , all of its invocations
have an end-to-end deadlineDT requirement. Assume each
invocation in TaskT will go through sequence of components
eh of classih, h = 1, 2, . . . , H, and any method TaskT will
call in Componente is in Θe,i. Recall that the worse-case delay
provided by Componente of Classi is De,i. To guarantee the
end-to-end deadline for any invocation in TaskT , application
designers have to ensure that the end-to-end delaydT suffered
by any client invocation in TaskT should be bounded as

dT = De1,i1 + · · · + DeH ,iH
≤ DT . (3)

Second, what is the consumed resource by TaskT? Pro-
vided that a task has an arrival functionAin(I) before arriving
at a component, the arrival function will becomeAout(I) ≤
Ain(I + d) just after a worst-case delayd at this component.
We defineAT as the source arrival function of TaskT (before
calling the first component). IfAT (I) = σT + ρT I, then the
consumed resource by TaskT at Componente of Classi is

AT
eh,ih

(I) = (σT + ρT De1,i1 + · · · + ρT Deh−1,ih−1
) + ρT I.

(4)

The application designer must ensure that the real-time service
specified in each real-time component along the task route
TaskT will go through will not be violated, i.e.,

∑
T ′∈Seh,ih

AT ′

eh,ih
(I) ≤ Aeh,ih

(I), (5)

where Seh,ih
is the set of existing tasks that use class-ih

service of Componenteh.
Due to the space limitation, the details of the admission

control procedures will not be described here.

V. PERFORMANCEEVALUATION

We used Enterprise JavaBeans (EJB) [8] as the underlying
framework for the realization of a real-time component-based
system. The implementation is based on JBoss [9] (Version
3.2.1), which is a popular, free, open source Java 2 Platform,
Enterprise Edition (J2EE, including EJB) implementation.We
adopt TimeSys Linux RT 3.1 for our real-time operating
system [10]. We add real-time RMI into the Reference Im-
plementation of Real-Time Specification for Java (RTSJ-RI)
from TimeSys. Based on the real-time infrastructure, we built
a real-time component-based system, whereadmission control
is one of main modules.

As we know that one of the basic features in our designed
systems is the reusability of real-time components. However,



4

this feature cannot be evaluated quantitatively. Instead,we
will measure the performance in terms of real-time metrics:
the delay for each invocation from clients and the admission
probability with admission control.

In our experiments, we assume CPUs in EJB servers are
the bottleneck. We choose two Pentium III machines with
933 MHz CPU as clients, one Pentium 4 machine with2.53
GHz CPU as an application server. These three machines are
in the same subnet. The application server is installed with
real-time component-based systems software and deployed
with two real-time components{e1, e2}. Componentej will
expose one methodθej

and define a single class of service
(therefore we can ignore the class index), and its real-time
service interface is〈Θej

,Aej
, Dej

〉, where Θej
= {θej

},
Aej

(I) = 2.5 + 2.0I andDej
= 1.250 sec, forj = 1, 2. Each

component will be allocatedαej
= 40% processor utilization

and the method exposed by each component is associated with
a WCETCej

= 0.226 sec. The runtime method execution will
be assigned a single real-time priority.

a) Our system with enabled admission control vs. with
disabled admission control:In this experiment, we choose
two different system configurations in the application server:
One is our system with enabled admission control and the
other is with disabled admission control. Each client will send
a sequence of periodic tasks. The task arrival from each client
is a Poisson process. We vary the task arrival rate from0.10
per sec to0.40 per sec. Each task life time is exponentially
distributed, and each task includes4 invocations in a life time
in average. The period for invocation arrival in a task is1.250
sec and all invocations in a task have a deadline1.250 sec
requirement.

0.80

0.85

0.90

0.95

1.00

0.1 0.2 0.3 0.4
task arrival rate

de
ad

lin
e 

m
ee

tin
g 

pr
ob

ab
ili

ty

Disabled AC
Enabled AC

0.00

0.20

0.40

0.60

0.80

1.00

0.1 0.2 0.3 0.4
task arrival rate

ad
m

is
si

on
 p

ro
ba

bi
lit

y

Disabled AC
Enabled AC

Fig. 5. Comparison of deadline meeting probabilities and admission
probabilities

Fig. 5 shows deadline meeting probabilities for all invo-
cations and admission probabilities for all task admission
requests from a client (we run two clients and here we only
report one and the other shows the similar phenomenon).
As expected, as the task arrival rate increases, (i) the dead-
line meeting probability is always100% and the admission
probability decreases in the system with enabled admission
control; (ii) the deadline meeting probability decreases and
admission probability is always100% in the system with
disabled admission control. The data show that the admission
control mechanism really makes any invocation in all admitted
tasks meet its end-to-end deadline requirement by rejecting
some task admission request.

b) Our system vs. a system without using component
technology: In this experiment, we measure the overhead

introduced by component technology in real-time systems. We
evaluate the delay performance for a periodic task in: (i) a pure
real-time RMI system; (ii) our designed real-time component-
based system (admission control is disabled). We consider one
of real-time components used in previous experiment and also
choose the same implementation of its method in the pure
real-time RMI system. The period of invocation arrival for
this task is0.600 sec. A client will invoke the periodic task
either to the pure real-time RMI system or to our real-time
component-based system.

0

0.2

0.4

0.6

0.8

220 230 240 250 260

delay (msec)

pr
ob

ab
ili

ty
 d

en
si

ty real-time component-based
pure real-time RMI

Fig. 6. Comparison of delay probability distribution function

Fig. 6 shows the sampled distribution function of method
invocation delays. The average delays are0.227 sec and
0.243 sec for the pure real-time RMI system and our system,
respectively. The data show that the average delay is0.0154
sec larger in our system than in the pure real-time RMI system.
Component technology introduces little overheads to method
invocation delays.

VI. FUTURE WORK

In this work, we developed a real-time component-based
system, where components are truly reusable in providing both
functional and real-time services. Furthermore, we addressed
how to build real-time applications and real-time components
based on our proposed resource overlay framework. The future
work lies in two directions: (i) How to specify good real-time
component interfaces? Basically, given the application task
arrival pattern, we could optimally specify real-time service
interfaces; (ii) How to improve the resource utilization? We
could extend deterministic real-time guarantees to statistical
real-time guarantees to achieve this.

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer,Component Software: Beyond
Object-Oriented Programming, 2nd Edition. New York: Addison-
Wesley / ACM Press, 2002.

[2] A. Pasetti and W. Pree, “The component software challenge for real-
time systems,” inProceedings of the First International Workshop on
Real-Time Mission-Critical Systems, Scottsdale, AZ, Nov./Dec. 1999.

[3] Object Management Group, “Realtime CORBA joint revisedsubmis-
sion,” March 1999, oMG Document orbos/99-02-12 ed.

[4] D. C. Schmidt and F. Kuhns, “An overview of the real-time CORBA
specification,”Computer, vol. 33, no. 6, pp. 56–63, 2000.

[5] D. C. Schmidt et al., “Real-time CORBA with TAO,” http://-
www.cs.wustl.edu/∼schmidt/TAO.html.

[6] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis, “VEST: An aspect-based composition tool for real-
time systems,” inProceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada, May 2003.

[7] J. Liu, Real-Time Systems. New Jersey: Prentice Hall, 2000.
[8] Sun Microsystems, “Enterprise JavaBeans technology,”

http://java.sun.com/products/ejb.
[9] JBoss, http://www.jboss.org.

[10] TimeSys, “TimeSys Linux 3.1,” http://www.timesys.com.


