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http://www.mrtc.mdh.se
johan.fredriksson@mdh.se

Abstract. The embedded systems domain represents a class of systems
that have high requirements on cost efficiency as well as run-time prop-
erties such as timeliness and dependability. The research on component-
based systems has produced component technologies for guaranteeing
real-time properties. However, the issue of saving resources by allocating
several components to real-time tasks has gained little focus. Trade-offs
when allocating components to tasks are, e.g., CPU-overhead, footprint
and integrity. In this paper we present a general approach for allocating
components to real-time tasks, while utilizing existing real-time analy-
sis to ensure a feasible allocation. We demonstrate that CPU-overhead
and memory consumption can be reduced by as much as 48% and 32%
respectively for industrially representative systems.

1 Introduction

Many real-time systems (RTS) have high requirements on safety, reliability and
availability. Furthermore the development of embedded systems is often sensitive
to system resource usage in terms of, e.g., memory consumption and process-
ing power. Historically, to guarantee full control over the system behaviour, the
development of embedded systems has been done using only low level program-
ming. However, as the complexity and the amount of functionality implemented
by software increase, so does the cost for software development. Also, since prod-
uct lines are common within the domain, issues of commonality and reuse are
central for reducing cost. Component-Based Development (CBD) has shown to
be an efficient and promising approach for software development, enabling well
defined software architectures as well as reuse. Hence, CBD can be used to
achieve goals such as cost reduction, and quality and reliability improvements.

In embedded RTS timing is important, and scheduling is used to create pre-
dictable timing. Furthermore, these systems are often resource constrained; con-
sequently memory consumption and CPU load are desired to be low. A prob-
lem in current component-based embedded software development practices is
the allocation of components to run-time tasks [1]. Because of the real-time re-
quirements on most embedded systems, it is vital that the allocation considers



temporal attributes, such as worst case execution time (WCET), deadline (D)
and period time (T). Hence, to facilitate scheduling, components are often allo-
cated to tasks in a one-to-one fashion. However, for many embedded systems it
is desired to optimize for memory and speed [2], thus the one-to-one allocation
is unnecessarily memory and CPU consuming.

Embedded RTS consist of periodic and sporadic events that usually have end-
to-end timing requirements. Components triggered by the same periodic event
can often be coordinated and executed by the same task, while still preserving
temporal constraints. Thus, it is easy to understand that there can be profits
from allocating several components into one task. Some of the benefits are less
memory consumption in terms of stacks and task control blocks or lower CPU
utilization due to less overhead for context switches. Different properties can be
accentuated depending on how components are allocated to tasks, e.g., mem-
ory usage and performance; Hence, there are many trade-offs to be made when
allocating components to tasks.

Allocating components to tasks, and scheduling tasks are both complex prob-
lems and different approaches are used. Simulated annealing and genetic algo-
rithms are examples of algorithms that are frequently used for optimization
problems. However, to be able to use such algorithms, a framework to calculate
properties, such as memory consumption and CPU-overhead, is needed. The
work presented in this paper describes a general framework for reasoning about
trade-offs concerning allocating components to tasks, while preserving extra-
functional requirements. Temporal constraints are verified and the allocations
are optimized for low memory consumption and CPU-overhead. The framework
is evaluated using industrially relevant component assemblies, and the results
show that CPU-overhead and memory consumption can be reduced by as much
as 48% and 32% respectively.

The idea of assigning components to tasks for embedded systems while con-
sidering extra-functional properties and resource utilization is a relatively un-
covered area. In [3, 4] Bondarev et. al. are looking at predicting and simulating
real-time properties on component assemblies. However, there is no focus on
increasing resource utilization through component to task allocation. The prob-
lem of allocating tasks to different nodes is a problem that has been studied by
researchers using different methods [5, 6]. There are also methods proposed for
transforming structural models to run-time models [7, 8, 1], but extra-functional
properties are usually ignored or considered as non-critical [9]. In [10], an archi-
tecture for embedded systems is proposed, and it is identified that components
has to be allocated to tasks, however there is no focus on the allocation of com-
ponents to tasks. In [9] the authors propose a model transformation where all
components with the same priority are allocated to the same task; however no
consideration is taken to lower resource usage. In [11], the authors discuss how
to minimize memory consumption in real-time task sets, though it is not in the
context of allocating components to tasks. Shin et. al [12] are discussing the code
size, and how it can be minimized, but does not regard scheduling and resource
constraints.



The outline for the rest of the paper is as follows; section 2 gives an overview of
the component to task allocations, and describes the structure of the components
and tasks. Section 3 describes a framework for calculating the properties of
components allocated to tasks. Section 4 discusses allocation and scheduling
approaches, while evaluations and simulations are presented in section 5. Finally
in section 6, future work is discussed and the paper is concluded. Detailed data
regarding the simulations can be found in [13].

2 Allocating components to real-time tasks

In RTS temporal constraints are of great importance and tasks control the execu-
tion of software. Hence, components need to be allocated to tasks in such a way
that temporal requirements are met, and resource usage is minimized. Given an
allocation we determine if it is feasible and calculate the memory consumption
and task switch overhead. To impose timing constraints, we define end-to-end
timing requirements and denote them transactions. Transactions are defined by
a sequence of components and a deadline. Thus, the work in this paper has three
main concerns:

1. Verification of allocations from components to tasks.
2. Calculating system properties for an allocation
3. Minimizing resource utilization

CBSE is generally not used when developing embedded RTS, mostly due
to the lack of efficient mappings to run-time systems and real-time properties.
One approach that allows an efficient mapping from components to a RTS is the
Autocomp technology [14]. An overview of the Autocomp technology can be seen
in Fig 1. The different steps in the figure are divided into design-time, compile-
time, and run-time to display at which point in time during development they are
addressed or used. The compile-time steps, illustrated in Fig 1, incorporate an
allocation from the component-based design, to a real-time model and mapping
to a real-time operating system (RTOS). During this step the components are
allocated to real-time tasks and the component requirements are mapped to
task-level attributes.

By combining the notion of transactions and the pipe-and-filter interaction
model we get a general component model that is easy to implement for a large
set of component technologies for embedded systems such as Autocomp [14],
SaveCCM [15], Rubus [16], Koala [17], Port-based objects [18], IEC61131[19]
and Simulink[20]. The component model characteristics are described in the
section 2.1 and the task model characteristics are described in section 2.2.

2.1 Component model characteristics

In this section we describe characteristics for a general component model that
is applicable to a large set of embedded component models. Both component
and task models described are meta-models for modelling the most important
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Fig. 1. Autocomp system description

attributes of an allocation between components and tasks. The component inter-
action model used throughout this paper is a pipe-and-filter model with trans-
actions. Each component has a trigger; a time trigger or an event trigger or a
trigger from a preceding component. A component transaction describes an or-
der of components and defines an end-to-end timing requirement. In Fig 2, the
notation of a component assembly with six components and four transactions is
described. The graphical notation is similar to the one used in UML.

The component model chosen is relatively straight forward to analyse and
verify. The pipe-and-filter interaction model is commonly used within the em-
bedded systems domain. Many component models for embedded systems have
the notion of transactions built in; however, if a component model lacks the
notion of transactions, there are often possibilities to model end-to-end timing
requirements and execution order at a higher abstraction level. In general a sys-
tem is described with components, component relations, and transactions (flow)
between components. The component model is described with:

Component ci is described with the tuple < Si, Qi, Xi, Mi >, where Si is
a signal from another component, an external event or a timed event. Qi

represents the minimum inter arrival time (MINT) in the case of an external
event. It represents the period in the case of a timed trigger and it is unused
if the signal is from another component. The parameter Xi is the WCET for
the component, and Mi is the amount of stack required by the component.

Isolation set I defines a relation between components that should not be allo-
cated. It is described with a set of component pairs I =< (c1, c2), (c3, c4) >

that define what components may not be allocated to the same task. There
may be memory protection requirements or other legitimate engineering rea-
sons to avoid allocating certain combinations of components; for example,



if a component has a highly uncertain WCET. The isolation set is indexed
with subscripts denoting next inner element, i.e., I1 = (c1, c2) and I12 = c2.

Component Transaction ctri is an ordered relation between components Ni =
c1, c2, ..., cn, and an end-to-end deadline dci. The deadline is relative to the
event that triggered the component transaction, and the first component
within a transaction defines the transaction trigger. A component transac-
tion can stretch over one or several components, and a component can partic-
ipate in several component transactions. The component ca should execute
before the component cb, and the component cb should execute before cc to
produce the expected results etc. The correct execution behaviour for the
set N = c1, c2, ..., cn can be formalized with the regular expression denoted
in 1.

c1Σ
∗c2Σ

∗...cn (1)

Where Σ∗ denotes all allowed elements defined by N .
In a component assembly, event triggers are treated different from the peri-

odic triggers as the former is not strictly periodic. There is only a lower boundary
restricting how often it can occur, but there is no upper bound restricting how
much time may elapse between two invocations. Thus, if an event trigger could
exist inside or last in a transaction, it would be impossible to calculate the re-
sponse time for the transaction, and hence a deadline could never be guaranteed.
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2.2 Task characteristics

The task model specifies the organization of entities in the component model
into tasks and transactions over tasks. During the transformation from com-
ponent model to run-time model, extra-functional properties like schedulability
and response-time constraints must be considered in order to ensure the correct-
ness of the final system. Components only interact through explicit interfaces;
hence tasks do not synchronize outside the component model. The task model
is for evaluating schedulability and other properties of a system, and is similar
to standard task graphs as used in scheduling theory, augmented with exclusion
constraints (isolation). The task model is described with:



System K is described with the tuple < A, τ, ρ > where A is a task set sched-
uled by the system. The constant τ is the size of each task control block,
and can be considered constant and the same for all tasks. The constant
ρ is the time associated with a task switch. The system kernel is the only
explicitly shared resource between tasks; hence we do not consider blocking.
Also blocking is not the focus of this paper.

Task ti is described with the tuple < Ci, Ti, wceti, stacki > where Ci is an
ordered set of components. Components within a task are executed in se-
quence. Components within a task are executed at the same priority as the
task, and a high priority task pre-empts a low priority task. Ti is the period
or minimum inter arrival time of the task. The parameters wceti and stacki

are worst case execution time and stack size respectively. The wceti, stacki

and period (Ti) are deduced from the components in Ci. The wceti is the
sum of all the WCETs for all components allocated to the task. Hence, for
a task ti, the parameters wceti and stacki are calculated with (2) and (3) .

wcetn =
∑

∀i(ci∈Cn)

(Xi) (2)

stackn = ∀i(ci ∈ Cn)max(Mi) (3)

Task transaction ttri is a sequence of tasks Oi = t1, t2, ..., tk and a relative
deadline dti. Oi defines an ordered relation between the tasks, where in the
case of O = t1, t2; t1 is predecessor to t2. The timing and execution order
requirements of a task transaction ttri are deduced from the requirements
of the component transactions ctri. The task transaction ttri has the same
parameter as the component transactions ctri but t1, t2,..., tk are the tasks
that map the component ca, cb, ..., cn, as denoted in Fig 4. If several task
transactions ttri span over the exact same tasks, the transactions are merged
and assigned the shortest deadline. An event-triggered task may only appear
first in a transaction. Two tasks can execute in an order not defined by the
transactions. This depends on that the tasks have different period times, and
thereby suffer from period phasing; hence transactions can not define a strict
precedence relation between two tasks. Fig 3 is an execution trace that shows
the relation between tasks and transactions. The tasks and transactions are
the same as in Fig 4, left part.

3 Allocation framework

The allocation framework is a set of models for calculating properties of allo-
cations of components to tasks. The properties calculated with the framework
are used for optimization algorithms to find feasible allocations that fulfil given
requirements on memory consumption and CPU-overhead.

For a task set A that has been mapped from components in a one-to-one fash-
ion, it is trivial to calculate the system memory consumption and CPU-overhead
since each task has the same properties as the basic component. When several
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Fig. 3. Task execution order and task transactions.

components are allocated to one task we need to calculate the appropriateness
of the allocation and the tasks properties. For a set of components, c1,...,cn,
allocated to a set of tasks A, the following properties are considered.

– CPU-overhead pA

– Memory consumption mA

Each component ci has a memory consumption stack. The stack of the task is the
maximum size of all components stacks allocated to the task since all components
will use the same stack. The CPU overhead p, the memory consumption m for
a task set A in a system K are formalized in equations 4 and 5:

pA =
∑

∀i(ti∈A)

ρ

Ti

(4)

mA =
∑

∀i(ti∈A)

(stacki + τ ) (5)

Where pA represents the sum of the task switch overhead divided by the period
for all tasks is the system, and mA represents the total amount of memory used
for stacks and task control blocks for all tasks in the system

3.1 Constraints on allocations

There is a set of constraints that must be considered when allocating compo-
nents. These are:

– Component isolation
– Intersecting transactions
– Trigger types and period times
– Schedulability

Each constraint is further discussed below:
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Fig. 4. Two allocations from components to tasks dependent on intersecting transac-
tions.

Isolation It is not realistic to expect that components can be allocated in an
arbitrary way. There may be explicit dependencies that prohibits that certain
components are allocated together, therefore the isolation set I defines which
components may not be allocated together. There may be specific engineering
reasons to why some components should be separated. For instance, it may
be desired to minimize the jitter for some tasks, thus components with highly
uncertain WCET should be isolated. There may also be integrity reasons to
separate certain combinations of components. Hence it must be assured that
two components that are defined to be isolated do not reside in the same task.
This can be validated with equation 6:

Iso(a, b) : ca has an isolation requirement to cb

¬∃i(∀j∀k(cj ∈ Ci ∧ ck ∈ Ci ∧ Iso(j, k))) (6)

Where there must not exist any task ti that has two components cj and ck,
if these components have an isolation requirement.

Intersecting transactions If component transactions intersect, there are dif-
ferent strategies for how to allocate the component where the transactions in-
tersect. The feasibility is described in equations 7 and 8. A component in the
intersection should not be allocated with any preceding component if both trans-
actions are event triggered; the task should be triggered by both transactions
to avoid pessimistic scheduling. A component in the intersection of one time-
triggered transaction and one event-triggered transaction can be allocated to a
separate task, or with a preceding task in the time-triggered transaction. A com-
ponent in the intersection of two time-triggered transactions can be allocated
arbitrarily. In Fig 4, two different allocations are imposed due to intersecting
event-triggered transactions. In the left part of Fig 4 there is an intersection be-
tween a time triggered and an event triggered transaction. Then the intersecting



component c3 is allocated to the task triggered by the time triggered transaction.
In the right part of the figure, where two event triggered transactions intersect,
the component c3 is allocated to a separate task, triggered by both transactions.

TE(tr) : transaction is event triggered

TT (tr) : transaction is time triggered
P (a, b, d) : ca is predecessor to cb in the set Nd

Xbc
a = ca ∈ Nb ∧ ca ∈ Nc

Y c
ab = ca ∈ Cc ∧ cb ∈ Cc

¬∃i(∀j∀k∀l∀m(Xjk
l ∧ Y

i
lm ∧ TE(ctrj) ∧ TE(ctrk) ∧ (P (m, l, k) ∨ P (m, l, j)))) (7)

¬∃i(∀j∀k∀l∀m(Xjk
l ∧ Y

i
lm ∧ cm ∈ Nk ∧ TT (ctrj) ∧ TE(ctrk) ∧ P (cm, cl, Nk))) (8)

Where there must not exist any task ti that has two components cl and cm

in a way that two component transactions ctrj and ctrk intersect in cl, and cm

precedes cl in the transactions ctrj or ctrk, if ctrj or ctrk are event-triggered.

Triggers Some allocations from components to tasks can be performed without
impacting the schedulability negatively. A component that triggers a subsequent
component can be allocated into a task if it has no other explicit dependencies,
see (1) in Fig 5. Components with the same period time can be allocated together
if they do not have any other explicit dependencies, see (2) in Fig 5. To facilitate
analysis, a task may only have one trigger, so time triggered components with
the same period can be triggered by the same trigger and thus allocated to the
same task. However, event triggered components may only be allocated to the
same task if they in fact trigger on the same event, and have the same minimum
inter arrival time, see (3) in Fig 5. Components with harmonic periods could also
be allocated to the same task. However, harmonic periods create jitter. Consider
two components with the harmonic periods five and ten that are allocated to
one task. The component with the period five will run every invocation, while
the other component will run every second invocation, which creates a jitter;
therefore we have chosen not to pursue this specific issue.

 
A B => A B (1)

T T => T T (2)

E E => (3)A A EA EA

Fig. 5. Component to task allocation considering triggers.



Schedulability Schedulability analysis is highly dependent on the scheduling
policy chosen. Depending on the system design, different analyses approaches
have to be considered. The task and task transaction meta-models are con-
structed to fit different scheduling analyses. In this work we have used fixed
priority exact analysis. However, the model can easily be extended with jitter
and blocking for real-time analysis models that use those properties. The frame-
work assigns each task a unique priority pre run-time, and it uses exact analysis
for schedulability analysis, together with the Bate and Burns [21] approach for
verifying that the transaction deadlines are met.

4 Using the framework

An allocation can be performed in several different ways. In a small system all
possible allocations can be evaluated and the best chosen. For a larger system,
however, this is not possible due to the combinatorial explosion. Different al-
gorithms can be used to find a feasible allocation and scheduling of tasks. For
any algorithm to work there must be some way to evaluate an allocation. The
proposed allocation framework can be used to calculate schedulability, CPU-
overhead and total memory load. The worst-case allocation is a one-to-one allo-
cation where every component is allocated to one task. The best-case allocation
on the other hand, is where all components are allocated to one single task. To
allocate all components to one task is very seldom feasible. Also, excessive allo-
cation of components may negatively affect scheduling, because the granularity
is coarsened and thereby the flexibility for the scheduler is reduced.

Simulated annealing, genetic algorithms and bin packing are well known al-
gorithms often used for optimization problems. These algorithms have been used
for problems similar to those described in this paper; bin packing, e.g., has been
proposed in [22] for real-time scheduling. Here we briefly discuss how theses al-
gorithms can be used with the described framework, to perform component to
task allocations.

Bin Packing is a method well suited for our framework. In [23] a bin pack-
ing model that handles arbitrary conflicts (BPAC) is presented. The BPAC
model constrains certain elements from being packed into the same bin,
which directly can be used in our model as the isolation set I, and the
bin-packing feasibility function is the schedulability.

Genetic algorithms can solve, roughly, any problem as long as there is some
way of comparing two solutions. The framework proposed in this paper give
the possibility to use the properties memory consumption, CPU-overhead
and schedulability as grades for an allocation. In, e.g., [24] and [25], genetic
algorithms are used for scheduling complex task sets and scheduling task
sets in distributed systems.

Simulated annealing (SA) is a global optimization technique that is regu-
larly used for solving NP-Hard problems. The energy function consists of a
schedulability test, the memory consumption and CPU-overhead. In [6][26]
simulated annealing is used to place tasks on nodes in distributed systems.



5 Evaluation

In order to evaluate the performance of the allocation approach the framework
has been implemented. We have chosen to perform a set of allocations and com-
pare the results to a corresponding one-to-one allocation where each component
is allocated to a task. We compare the allocations with respect to if the allocation
is feasible (real-time analysis), memory consumption and CPU overhead.

The implementation is based on genetic algorithms (GA) [27], and as Fig 6
shows, each gene represents a component and contains a reference to the task it
is assigned. Each chromosome represents the entire system with all components
assigned to tasks. Each allocation produced by the GA is evaluated by the frame-
work, and is given a fitness value dependent on the validity of the allocation, the
memory consumption and the CPU overhead.
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Fig. 6. The genetic algorithm view of the component to task allocation; a system with
ten components, allocated to four tasks.

5.1 Fitness function

The fitness function is based on the feasibility of the allocation together with
the memory consumption and CPU overhead. The feasibility part of the fitness
function is mandatory, i.e., the fitness value for a low memory and CPU over-
head can never exceed the value for a feasible allocation. The feasibility function
consists of: I which represents component isolation, IT representing intersecting
transactions, Tr representing trigger types and period times, and finally Sc rep-
resent scheduling. Consider that each of these feasibility tests is assigned a value
greater than 1 if they are true, and a value of 0 if they are false. The parameter
n represents the total number of components. Then, the fitness function can be
described as with equation 9.

Fitness =
(

(I + IT + Tr + Sc)F +
( n

mA

+
∑

∀i(ti∈A)

ρ · n

Ti

)

O

)

· (I · IT · Tr ·Sc + 1) (9)

Where the fitness is the sum of all feasibility values times a factor F, added
with the inverted memory usage and performance overhead, times a factor O,
and F >> O. The total fitness is multiplies with 1 if any feasibility test fail, and
the products of all feasibility values plus 1 if all feasibility tests succeed.



5.2 Simulation set up

This section describes the simulation method and set up. For each simulation
the genetic algorithm assigns components to tasks and evaluates the allocation,
and incrementally finds new allocations.

The system data is produced by creating a random schedulable task set, on
which all components are randomly allocated. The component properties are
deduced from the task they are allocated. Transactions are deduced the same
way from the task set. In this way it is always at least one solution for each
system. However, it is not sure that all systems are solvable with a one-to-one
allocation. The components and component transactions are used as input to
the framework. Hereafter, systems that are referred to as generated systems
are generated to form input to the framework. Systems that come out of the
framework are referred to as allocated systems. The simulation parameters are
set up as follows:

– The number of components of a system is randomly selected from a number
of predefined sets. The numbers of components in the systems are ranging
in twenty steps from 40 to 400, with a main point on 120 components.

– The period times for the components are randomly selected from a predefined
set of different periods between 10 and 100 ms.

– The worst case execution time (WCET) is specified as a percentage of the
period time and chosen from a predefined set. The WCETs together with
the periods in the system constitutes the system load.

– The transaction size is the size of the generated transactions in percentage
of the number of components in the system. The transaction size is ran-
domly chosen from a predefined set. The longer the transactions, the more
constraints, regarding schedulability, on how components may be allocated.

– The transaction deadline laxity is the percentage of the lowest possible trans-
action deadline for the generated system. The transaction deadline laxity is
evenly distributed among all generated systems and is always greater or
equal to one, to guarantee that the generated system is possible to map.
The higher the laxity, the less constrained transaction deadlines.

One component can be involved in more than one transaction, resulting in more
constraints in terms of timing. The probability that a component is participating
in two transactions is set to 50% for all systems.

To get as realistic systems to simulate as possible, the values used to gen-
erate systems are gathered from some of our industrial partners. The industrial
partners chosen are active within the vehicular embedded system segment. A
complete table with all values and distributions, of the system generation val-
ues, can be found in [13]. The task switch time used for the system is 22 µs, and
the tcb size is 300 bytes. The task switch time and tcb size are representative of
commercial RTOS tcb sizes and context switch times for common CPUs.

The simulations are performed for four different utilization levels, 30%, 50%,
70% and 90%. For each level of utilization 1000 different systems are generated
with the parameters presented above.



5.3 Results

A series of simulations have been carried out to evaluate the performance of
the proposed framework. To evaluate the schedulability of the systems, FPS
scheduling analysis is used. The priorities are randomly assigned by the genetic
algorithm, and no two tasks have the same priority. We compare the allocation
approach described in this paper to one-to-one allocations. Table 5.3 summa-
rizes the results from the simulations. The columns entitled ”stack” and ”CPU”
displays the average memory size (stack + tcb) and CPU overhead respectively,
for all systems with a specific load and transaction deadline laxity. The column
entitled ”success” in the 1-1 allocation section displays the rate of systems that
are solvable with the 1-1 allocation. The column entitled ”success” in the GA
allocation section displays the rate at which our framework finds allocations,
since all systems has at least one solution. The stack and CPU values are only
collected from systems where a solution was found.

Load Laxity
1-1 allocation GA allocation

Stack CPU success stack CPU success

30%

All 28882 4,1% 74% 17380 2,0% 87%

1.1 25949 3,5% 39% 14970 1,6% 58%
1.3 33077 4,4% 78% 21005 2,2% 97%
1.5 26755 4,1% 95% 15503 2,0% 99%

50%

All 37277 4,8% 82% 24297 2,4% 90%

1.1 35391 4,3% 49% 23146 2,3% 64%
1.3 38251 4,8% 88% 25350 2,5% 96%
1.5 37043 4,9% 98% 23740 2,3% 100%

70%

All 44455 5,1% 85% 30694 2,7% 91%

1.1 44226 5,0% 58% 31638 2,7% 73%
1.3 44267 5,1% 94% 30686 2,7% 98%
1.5 44619 5,2% 98% 30232 2,6% 100%

90%

All 46943 5,6% 87% 37733 3,1% 93%

1.1 54858 5,7% 65% 41207 3,4% 80%
1.3 49607 5,5% 92% 35470 3,0% 98%
1.5 53535 5,7% 98% 38260 3,1% 99%

Table 1. Memory, CPU overhead and success ratio for 1-1 and GA allocations

The first graph for the simulations (Fig 7) shows the success ratio, i.e., the
percentage of systems that were possible to map with the one-to-one allocation,
and the GA allocation respectively. The success ratio is relative to the effort of
the GA, and is expected to increase with a higher number of generations for
each system. Something that might seem confusing is that the success ratio is
lower for low utilization than for high utilizations, even though, intuitively, it
should be the opposite. The explanation to this phenomenon is that the timing
constraints become tighter as fewer tasks participate in each transaction (lower
utilization often leads to fewer tasks). With fewer tasks the task phasing, due to
different periods, will be lower, and the deadline can be set tighter.

The second graph (Fig 8) shows that the deadlines are relaxed with higher
utilization, since the allocations with relaxed deadlines perform well, and the



systems with a more constrained deadline show a clear improvement with higher
utilization.

The third graph (Fig 9) shows for both approaches the average stack size for
the systems at different utilization. The comparison is only amongst allocations
that are have been successfully mapped by both strategies. The memory size
consists of the tcb and the stack size, and the tcb size is 300 bytes. As described
earlier, each task allocates a stack that is equal to the size of the largest stack
among its allocated components.

The fourth graph (Fig 10) shows the average task switch time in micro sec-
onds for the entire system. The task switch overhead is only dependent on how
many tasks there are in the system. The average improvement of GA allocation
in comparison to the 1-1 allocation is, for the success ratio, 10%. The memory
size is reduced by 32%, and the task switch overhead is reduced by 48%. Hence
we can see a substantial improvement in using smart methods to map com-
ponents to tasks. A better strategy for setting priorities would probably lead
to an improvement in the success ratio. Further we observe that lower utiliza-
tion admits larger improvements than higher laxity of the deadlines; and since
lower utilization in the simulations often gives tighter deadlines, we can conclude
that the allocation does not negatively impact schedulability. However, regard-
ing the improvements, the more components the more constrains are put on each
transaction, and thereby on the components, making it harder to perform good

allocations.
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6 Conclusions and Future Work

Resource efficiency is important for RTS, both regarding performance and mem-
ory. Schedulability, considering resource efficiency, has gained much focus, how-
ever the allocation between components to tasks has gained very little focus.
Hence, in this paper we have described an allocation framework for allocating
components to tasks, to facilitate existing scheduling and optimization algo-
rithms such as genetic algorithms, bin packing and simulated annealing. The
framework is designed to be used during compile-time to minimize resource us-
age and maximize timeliness. It can also be used iteratively in case of design
changes; however with some obvious drawbacks on the results. The framework
can easily be extended to support other optimizations, besides task switch over-
head and memory consumption. Results from simulations show that the frame-
work gives substantial improvements both in terms of memory consumption and
task switch overhead. The described framework also has a high ratio in find-
ing feasible allocations. Moreover, in comparison to allocations performed with
a one-to-one allocation our framework performs very well, with 32% reduced
memory size and 48% reduced task switch overhead. The simulations show that
the proposed framework performs allocations on systems of a size that covers
many embedded systems, and in a reasonable time for an off-line tool. We have
also shown how CPU load and deadline laxity affects the allocation. Future work
includes adding other allocation criteria, e.g., by looking at jitter requirements,
and blocking. By adding jitter constraints and blocking, trade-offs arise between
switch overhead and memory size versus deviation from nominal start and end
times and blocking times. Furthermore, a more efficient scheduling policy and
priority assignment will be applied. Due to the nature of GA it is easy to add
new optimizations as the ones suggested above.
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13. Fredriksson, J., Sandström, K., Åkerholm, M.: Optimizing resource usage
in component-based real-time systems - appendix. Technical report, Techni-
cal Report, Mälardalen Real-Time Research Centre, Väster̊as, Sweden (2005)
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