

Abstract

Architecture design is a critical stage of the
Electronics/Controls/Software (ECS) -based vehicle design
flow. Traditional approaches relying on component-level
design and analysis are no longer effective as they do not
always allow for the quantitative evaluation of properties
arising from the composition of subsystems. This paper
presents a system level architecture design methodology that
is supported by tools and methods for the quantitative
evaluation of key metrics of interest related to timing,
dependability and cost. An example of its application to a by-
wire system case study is presented, and the challenges faced
in its application in the context of the actual development
process are discussed.

1 Introduction
Function development in electronics/controls/software-

based (ECS) vehicle architectures has traditionally been
component or sub-system focused. Each complex function
is deployed to an Electronic Control Unit (ECU hereafter),
which is mostly autonomous. Any time a new feature is
introduced, a new ECU is added into the system, leading to
the following shortcomings:
• Proliferation in the number of ECUs, subsystems and

busses, making the system difficult to test and validate.
• Legacy architectural decisions constrain the new

features to bandwidth and memory limitations on the
serial data buses and ECUs.

In recent years, there has been a shift from the single ECU
approach towards an increased networking of control
modules within application domains (e.g. Powertrain) as
well as across domains (e.g. Powertrain and Chassis). This
shift has been driven by an exponential increase in the
number of horizontally integrated complex functions (e.g.
Stability Control and Adaptive Cruise Control). Today, the
design and implementation of in-vehicle distributed
architectures require facing new challenges such as:
• The transition to a systems engineering process that

handles the vehicle as a complete, integrated system
• New methodologies and tools are required to handle the

increasing interdependency of many tasks with spatial
distribution and parallel execution across several ECUs
and the evaluation of non-functional design
requirements, such as timing, dependability, cost, time

to market, extensibility over the product family lifetime
and scalability across the OEM’s portfolio.

Furthermore, one of the biggest challenges is the lack of
information when architectural decisions are committed,
which makes the process of architecture selection and design
extremely susceptible to the uncertainty in the requirements.

These challenges require a methodology to assist in the
process of designing, evaluating, and programming
automotive architectures. The evaluation must be based on
qualitative and quantitative metrics both to check
requirements and to assess trade-offs while enabling late-
binding design decisions and early verification of them as
opposed to early-binding decisions with late verification.

2 System level methodology for quantitative
architecture exploration and selection

According to the typical V-cycle development process
[Beck01], a system is the result of multiple refinement stages
encompassing several levels of abstraction, from user
requirements, to system testing and sign-off. Within this
design paradigm, the verification of functional correctness,
most often done by simulation, is the main objective today.
However, complex embedded systems are also characterized
by non-functional requirements, such as timing behavior,
which includes the evaluation of latencies and jitter, and
requirements for safety that may exceed even the stringent
constraints of the aeronautics industry, currently estimated at
a required failure rate of less than 10-10 failures/hour [Rus01].
Finally, a major non-functional metric is cost, and the related
secondary metrics including reusability, flexibility,
scalability and extensibility of the architecture artifacts.

The evaluation of architecture solutions is performed in a
quantifiable manner against a set of constraints and metrics
functions, classified according to a general taxonomy that
identifies three main domains, namely timing, dependability
and cost. The secondary requirements, together with a short
description of their meaning and the associated metrics are
summarized in Table 1.

The selection and the quantitative definition of metrics
and constraints is a challenging task by itself. The
identification of the main domains related to timing,
dependability and cost is common to other architecture
evaluation methodologies, such as the ATAM at the
Carnegie Mellon SEI [Kaz00]. Other domains, including

Towards a Methodology for the Quantitative Evaluation of Automotive Architectures

Patrick Popp+ Marco Di Natale+ Paolo Giusto* Sri Kanajan+ Claudio Pinello*,1

General Motors Research and Development
+30500 Mound Road, Warren, MI 48090-9055 *350 Marine Parkway, RedWood Shores, CA 94065

1 Claudio Pinello is now with Cadence Berkeley Labs.

978-3-9810801-2-4/DATE07 © 2007 EDAA

Authorized licensed use limited to: Seoul National University. Downloaded on November 23, 2009 at 06:30 from IEEE Xplore. Restrictions apply.

energy requirements are of course relevant but are not
targeted by our analysis. Furthermore, a standard definition
of concepts like extensibility, reuse or scalability is still
lacking and our definitions of the metrics definitions are the
result of an ongoing process, far from being completed.

For timing related metrics and use cases (end to end
latency verification, bus/cpu utilization, etc.), we propose the
use of schedulability analysis theory and system-level
simulation to provide formal evaluation of the timing
behavior at the highest possible level in the design flow and
to estimate extensibility by providing a measure of the
available processor and communication time for new
functions and messages in product derivatives.
Architecture options are also scored according to a
quantitative evaluation of reliability based on fault tree
analysis. Monetary cost is evaluated based on the
architecture’s intended product line and life cycle. These
analytical methods must work in the presence of incomplete
information, given that common automotive flows require
the selection of the physical architecture at very early stages.

Collectively, these non-functional properties cannot be
assessed based on an abstract model of the system functions
alone, but they depend upon the computation platform and
the implementation of the function on the underlying
execution architecture, including the topology of the ECUs,
the physical communication links and their scheduling or
access control policies.

2.1 The Platform-based Design Methodology
The match between function and architecture is a key

aspect of the design of embedded systems and the founding
principle of many design methodologies such as the
platform-based design [Vin02] and the Ptolemy and
Metropolis frameworks [Bal03], as well as of emerging
standards and recommendations, such as the UML Profile for

Schedulability, Performance and Time from the Object
Management Group [OMG02] and AUTOSAR.

We advocate the use of the conceptual framework of the
Platform-based design methodology and the meet-in-the-
middle approach as key enablers for the exploration of design
alternatives and architecture level solutions. Platform-based
design requires/entices the identification of clear abstraction
layers and a design interface that allows for the separation of
concerns between the refinement of the functional
architecture specification and the abstractions of possible
implementations. The application-layer software components
are thus decoupled from changes in microcontroller
hardware, ECU hardware, I/O devices, sensors, actuators,
and communication links.
The basic idea is captured in Figure 1. The vertex of the two
cones represents the combination of the functional model and
the architecture platform. Decoupling the application-layer
logic from dependencies on infrastructure-layer hardware or
software enables the application-layer components to be
reused without changes across multiple vehicle programs.

Functional Model
interface

Application Space

Architecture Space

Platform
instance

Architecture
Platform

Application
instance

System
Platform
Stack

Functional
Platform
specification

Architecture Platform space
exploration

Figure 1: Platform-based design ([Vin02])

Primary Secondary What is captured Metrics
End-to-end latency measuring the time distance between two events (related

to stability and performance)
Milliseconds

Jitter maximum delay of a periodic signal with respect to ideal
reference

Milliseconds, or % of period

Timing

Input coherency time distance between two events/samples from multiple
sensors observing the same object/phenomenon

Milliseconds

Reliability expectation on failure, related to warranty cost impact Expected time between failures MTTF or
fault rate (number of faults per hour)

Availability Percentage of uptime MTTF/(MTTF+MTTR)

Dependability

Safety which faults can be tolerated and which cannot. Related
to fault tolerance, fail safe vs fail operational

number of components/cutset that must fail
for the system to fail

Piece cost $
Extensibility room for functional additions (e.g. Complement to

resource utilization)
fraction of resource utilization available for
future use

Degree of Reuse ability to design/deploy using preexisting solutions, (SW
or HW components, schedules and configurations)

number of units deployed

Cost

Scalability suitability for a range of content level (while cost-
effective)

number of products or product lines

Table 1: Definition of Primary and Secondary Metrics

Authorized licensed use limited to: Seoul National University. Downloaded on November 23, 2009 at 06:30 from IEEE Xplore. Restrictions apply.

A prerequisite for the adoption of the platform-based
design and of the meet-in-the middle approach is the
definition of the right models and abstractions for the
description of the functional platform specification and for
the architecture solutions at the top and the bottom of the
hourglass of Figure 1. The platform interface must be
isolated from lower-level details but at the same time, it must
provide enough information to allow design space
exploration with a fairly accurate prediction of the properties
of the final implementation. This model may include size,
reliability, power consumption and timing; variables that are
associated to the lower level abstraction (from the
implementation platform). On the other hand, we pass
constraints from higher levels of abstraction down to lower
levels to satisfy the original design constraints.

Design space exploration consists of seeking the
“optimal” mapping of the system platform model into the
candidate execution platform instances. The mapping must
be driven by a set of methods and tools providing an
objective and quantitative measure of the fitness of the
architecture solutions with respect to a set of feasibility
constraints and optimization metric functions including those
defined in Table 1.

Ideally, there could be the possibility for the automatic
selection of the platform by software tools. In reality, the
technology is not mature for a full synthesis of the mapping
and the platform attributes and the approach that is currently
viable is a what-if analysis where different options are
selected as representatives of the principal platform options
and evaluated according to measurable metrics.

The evaluation and selection of an architecture design
requires as input a complex set of models defining the
functions of the car electronic systems, that is, the
application instance at the top of the hourglass of Figure 1.
Similarly, a model of the available execution platform
instances (at the bottom of the hourglass) is required.

2.2 Functional Models
The starting point for the definition of ECS based vehicle

architecture is the specification of the set of features that the
system is expected to provide. A feature is a very high level
description of a system capability. The subsystem that
determines the feedback force on the brake pedal of a brake-
by-wire system is an example consisting of mechanical,
electronic, and software parts that together emulate key
aspects of the feel of the conventional hydraulic brake pedal.

The software component of each feature is further
developed by control engineers who devise control
algorithms fulfilling the design goals. Typically, these
algorithms are captured by a hierarchical set of block
diagrams produced with commercial tools for control
algorithm design.

The functional model(s) are created from the
decomposition of the feature in a hierarchical network of
components encapsulating a behavior, within a provided and

required interface, expressed by a set of ports or by a set of
methods with the corresponding signature. This view
abstracts from the details of the functional behavior and
models only the interface and the communication semantics,
including the specification of the activation signal for each
functional block, be it a periodic activation signal, or an
activation signal arriving, together with the incoming data,
from one of its input ports, as the result of the computation of
a predecessor block.

A function label fi is associated to each block, which
computes a set of output values oi based on a set of inputs ii
and possibly its internal state Si at some given time, that is,
oi= Fi(ii, Si). Each activation instant triggers a function
instance fi,k, which conceptually executes in zero time (at this
level, the design abstraction is independent from resource
availability).

The functional description is further endowed with the
constraints that are required. For example, timing constraints
are expressed in the context of the functional architecture by
adding end-to-end deadlines to the computation paths,
maximum jitter requirements to any signal and time
correlation constraints between any signal pair originating
from the same functional block or providing input to a
common block.

To give an example of the implications of a choice of an
activation/communication model, the data communication
between any two blocks activated periodically according to
local, non synchronized clocks, is assumed to be
nondeterministic in time and lossy, meaning that output
values may be overwritten before having been read.

2.3 Architecture models
The model of the architecture is hierarchical and captures

the logical topology of the car network, including the
communication busses, such as CAN [CAN91] and time-
triggered links, the number of processors for each ECU and
the resource management policies that control the allocation
of each ECU and BUS, and also the physical and geometric
relationships, including abstractions for modeling wiring
harnesses and connectors. At this stage, the hardware and
software resources that are available for the execution of the
application tasks and the resource allocation and scheduling
policies must also be specified. Each RTOS provides a set of
services and logical resources and has a set of parameters
related to the provided scheduling policy for the ECUs. The
definition of the MAC layer and the scheduling policy of the
physical communication links must also be known.

2.4 System platform model and mapping
If specification of functionality aims at producing a

logically correct representation of system behavior, the
system platform model is where physical concurrency and
resource requirements are expressed.

The system platform model(s) are a representation of the
mapping process and can be of different types for different

Authorized licensed use limited to: Seoul National University. Downloaded on November 23, 2009 at 06:30 from IEEE Xplore. Restrictions apply.

analysis purposes, hiding unnecessary details and exporting
only the necessary amount of information.

At this level, we define tasks as units of computation
processed concurrently in response to environment stimuli or
prompted by an internal clock. Tasks cooperate by
exchanging messages and synchronization or activation
signals and contend for use of the processing and
communication resource(s) (e.g., processors and buses) as
well as for the other resources in the system. The system
platform model entities must, on one hand, be the
implementation of the functional model entities and are, on
the other hand, mapped onto the target hardware.

The mapping phase consists of allocating each functional
block to a software task and each communication signal
variable to a virtual communication object. The task
activation rates must be entered as parameters of the
architectural models and compliance checks are performed
with the functional blocks activation rates. If more than one
functional block is mapped to a task, the order of the
execution must be provided during the mapping phase. The
mapping of the threads and message model into the
corresponding architecture model and the selection of
resource management policies allows the subsequent
validation against non-functional constraints.

As a result of the mapping of the platform model into the
execution architecture, the entities in the functional models
are put in relation with timing execution information derived
by worst case execution time analysis or back-annotations
extracted from physical or virtual implementation.

Given a mapping, it is possible to determine which signals
are local (because the source and destination functions are
deployed onto the same ECU) and which are remote, hence
need to go over the network. Each communication signal is
therefore mapped to a message, or to a task private variable
or to a protected shared variable. Each message, in turn, is
mapped to a serial data link, and the relation can be extended
by mapping serial data links to harnesses, and harnesses to
physical places in the car.

Conceptually, the mapping results in a restriction of the
possible behaviors of the functional model after the
intersection with the set of all the behaviors that are possibly
allowed by the platform implementation. Therefore, not all
the mappings are allowed or should be made legal. For
example, a nondeterministic communication among two
functional blocks can be made deterministic, and a global
execution order for all the functional blocks can be defined,
after mapping them into the task set, in accordance with the
partial order defined by the functional model semantics.

3 A Data model for architecture exploration

Architecture exploration by definition of platform models
and platform mapping can be considerably easier if the
models of the system at the different abstraction levels are
homogeneous.

The Architecture Exploration Tools and Methods (AETM)
Data Model defines the design artifacts needed for
architecture exploration and the relationships among them. It
is a key enabler for an integrated tool framework aimed at
supporting the concept of a virtual integration platform.

In order to favor the flexible mapping/re-mapping
capabilities for fast creation of architecture alternatives and
the re-use of components across different design alternatives,
the data model enables the separate design capture of
different abstraction layers that constitute a design:
functional layer (e.g. signals and functions), software layer
(e.g. software tasks and scheduling), serial data link layer
(e.g. network bus scheduling), and physical layer.

The AETM design model is formally defined and
represented by an XML schema, which controls the format
of all files exchanged by the toolset, defines the elements of
the functional and architecture level design, the mapping
relationships, the annotations adding timing attributes to the
design objects and the schedulability-related information. It
currently allows the expression of the structural properties of
the design models; but a formal definition of the semantics is
still lacking and the interpretation of the model is performed
by the analysis tools.

4 Quantitative what-if analysis

The procedure for architecture selection and evaluation is a
what-if iterative process. First, the set of metrics and
constraints that apply to the design is defined. Then, based
on the designer’s experience, a set of initial candidate
architecture configurations is produced. These architectures
are evaluated based on the methods and tools presented in
the following sections. The architecture options are scored
and, based on the results of quantitative analysis, a final
solution can be extracted from the set as the best fit or a new
set of candidate architectures, possibly, but not necessarily,
produced by incremental modifications on the previously
considered ones, can be selected as the new possible
architecture options. The iterative process continues, until a
solution is obtained.

The intervention of the designer is required in two tightly
related stages of the exploration cycle. Given the set of
metrics and constraints and the use cases, the designer must
provide the initial set of architecture options. After the
options have been scored and annotated by the analysis and
simulation tools, the designer must understand the results of
the analysis and select the architecture options that are the
best fit to the exploration goals and (more importantly)
understand the results of the analysis to add other options to
the next set of architecture configurations that needs to be
evaluated.

Several iterations between mapping and analysis might be
performed before the final design decision. The set of
analysis and synthesis methods that are currently available
include:

Authorized licensed use limited to: Seoul National University. Downloaded on November 23, 2009 at 06:30 from IEEE Xplore. Restrictions apply.

Analysis methods
• Evaluation of end-to-end latency and schedulability

against deadlines for chains of computations spanning
tasks and messages scheduled with fixed priority.

• Sensitivity analysis for tasks and messages scheduled
with fixed priorities and sensitivity analysis for
resources scheduled with fixed priorities.

• Evaluation of message latencies in CAN bus networks.
• System level simulation of time properties and

functional behaviors (based on the Metropolis engine).
• Analysis of fault probability and cutsets (conditions

leading to critical faults) based on fault trees.
• Product line cost analysis.

Synthesis methods
• Automatic generation of fault trees.
• Synthesis of task and message schedules in time

triggered systems - tasks are scheduled according to the
OSEKTime paradigm, and message schedules are
generated for Flexray networks [Fle06].

• Synthesis of the activation model for tasks and messages
for minimizing end-to-end latencies with respect to the
requested deadlines.

• Fault tolerance driven scheduling.

4.1 Tools framework
The tools that are currently in use for the evaluation are

the following.
For timing we tested the use the MAST [Gon01] tools for

the evaluation of the worst case response times of the tasks
[Gon94] and a custom procedure implementing the analysis
of the message latencies in the CAN bus according to the
analysis in [Tin95] and on the refinement that takes into
account the non-preemptability of the TxObjects at the bus
adapter. Task and message response times are then used by
an additional layer of in-house developed code implementing
the computation of the worst case end-to-end latencies.

For dependability analysis and the synthesis of
dependable architecture solutions, we tested the use of Fault
Tree analysis tools and of two other tools that have been
developed as the result of research work at the University of
California at Berkeley, namely the SCRAPE tool and the
Fault Tree Generator program.

Finally, in-house developed programs are used for the
analysis of the product line cost of architecture solutions.

5 Case study

The architecture exploration methodology described in
this paper was applied to a number of case studies, including
integrated active and passive safety systems, and stability
control systems. In this section, we report on the analysis of
five possible options for a steer- by-wire architecture.

The baseline architecture, considered as a starting point
for the analysis of the case, consists of redundant steering

motors, four supervisory ECUs (S-ECU) running the control
algorithms and reading/driving the interface sensors (three
redundant steering angle and steering torque sensors) and
actuators, and peripheral ECUs (P-ECU) controlling the
steering motors and reading the sensors. The supervisory
ECUs are connected by a Flexray bus and each of them has a
CAN link to a motor control unit (Figure 2). The goal of the
case study was to verify the capability of modeling the
system and to evaluate a set of possible execution platforms
according to the following metrics:
• Utilization: the amount of computation per unit time.

Processor utilization and bus bandwidth are the two key
metrics.

• Composability: the ability to integrate components
together without loss of the original properties.

• Reusability/Cost: what parts of the architecture can be
made common in order to leverage economies of scale,
and better unit/costs with suppliers.

• Dependability: The degree of reliability of the
architecture based on a given top event, representing a
fault in the system

• Modifiability/Scalability: the ability to extend or modify
the current architecture in terms of functionality or
execution platform without causing a ripple of changes.

For each of them a range of scores between 0 and 8 was
defined. For example, for the dependability metrics, the
architectures were scored according to the following rules:
– 1-2 points for meeting baseline fault hypothesis assuming

only permanent faults and achieving the baseline system
failure rate.

– 2-4 points for meeting the baseline fault hypothesis
assuming permanent, transient type fault scenarios and
achieving the baseline system failure rate.

– 4-6 points for meeting the fault hypothesis requirements
given an arbitrary failure mode and achieving the
baseline system failure rate.

– 6-8 points for exceeding the fault hypothesis
requirements given an arbitrary failure mode and
achieving a significantly better system failure rate than
the baseline.

This ranking is an attempt at reducing the complexity of the
metrics and allowing an easy visualization of the tradeoffs of
the different architecture options with respect to the multiple
domains of time, dependability and cost.

Five possible options for the physical architecture have been
considered.

Alternative 1 The baseline architecture.
Alternative 2 Obtained by dropping the four CAN busses

connecting the four P-ECUs to the S-ECUs, and by
connecting them using the FlexRay backbone.

Alternative 3 Obtained by removing one of the S-ECU
units (motivated by the results of the analysis showing
that the CPU utilization is very low).

Authorized licensed use limited to: Seoul National University. Downloaded on November 23, 2009 at 06:30 from IEEE Xplore. Restrictions apply.

Alternative 4 Obtained by substituting the Flexray bus
with a triple redundant CAN system (motivated by the
results showing that the FlexRay utilization is very low).

Alternative 5 To reduce the component count, in this
alternative we dropped the four P-MCUs and connected
the sensors and actuators directly to the three S-ECUs.

S-ECU1

S-ECU2

S-ECU3

S-ECU4

3x sensors

P-ECU1

CAN bus

Flexray bus
P-ECU3

P-ECU2 P-ECU4

Figure 2: Baseline architecture of the case study
We used the tools and methods described in [Pin04] and
[McK05] to perform the schedule synthesis, the timing
analysis, and the dependability assessment. Furthermore, a
qualitative assessment of cost was provided. The results of
the evaluation were presented in a combined way (Figure 3).

Figure 3: Evaluation of multiple metrics for the
architecture alternatives.

The case study demonstrates the potential for the
methodology to enable a more through exploration of the
architecture space, thus improving the overall quality of the
final result. This work is focused on indicating the value of a
systematic, quantitative based architecture exploration
methodology. Further development is required to improve
the quality of the input data and the accuracy of our metric
estimates. Furthermore, more testing is required before the
entire methodology and the case study results can be applied
into product development.

6 Challenges and Conclusions
Automotive in-vehicle ECS architectures are increasingly

networked and continuously subject to change. A rigorous

design methodology based on the separation of concerns is
essential to evaluate architecture configurations with the goal
of managing the complexity, improving design quality and
reducing the time to market. This paper presents a design
methodology, together with the definition of metrics for
timing, dependability and cost and appropriate methods and
tools, to support the architecture exploration in a quantitative
manner. Main challenges remain because hardware, software
and business data at the early-stages of the development
cycle often do not exist or lack of the required accuracy.
Sensitivity analysis can be used to some degree to cope with
this uncertainty.

We would like to thank Max Chiodo, Tom Fuhrman and
the ECI group, and professor Alberto Sangiovanni
Vincentelli from UC Berkeley for useful discussions and
feedback. Also, many thanks to Haibo Zeng, Abhijit Davare,
Sampada Sonalkar and Mark McKelvin for their
contributions.

7 Bibliography

[Bal03] Balarin F., Hsieh H., Lavagno L., Passerone C.,
Sangiovanni-Vincentelli A. and Watanabe Y., Metropolis: An
Integrated Environment for Electronic System Design, IEEE
Computer, April 2003.
[Bec01] Beck T., Current Trends in the Design of Automotive
Electronic Systems, DATE Conference, 2001.
[CAN91] R. Bosch. CAN specification, version 2.0. Stuttgart, 1991.
[Fle06] Flexray Standard Specification available from
http://www.flexray.com
[Gon01] M. Gonzalez Harbour et al., MAST: Modeling and
Analysis Suite for Real Time Applications, ECRTS 2001.
[Kaz00] R. Kazman, M. Klein, P. Clements, ATAM: Method for
Architecture Evaluation, Tech. Report CMU/SEI-2000-TR-004,
Aug. 2000
[McK05] M. L. McKelvin Jr., G. Eirea, C. Pinello, S. Kanajan, A.
Sangiovanni-Vincentelli, A Formal Approach to Fault Tree
Synthesis for the Analysis of Distributed Fault Tolerant Systems,
Emsoft, Jersey City, NJ, September 2005.
[OMG02] UML Profile for Schedulability, Performance and Time.
OMG Adopted Specification, July, 1, 2002.
[Pin04] C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli, Fault-
Tolerant Deployment of Embedded Software for Cost-Sensitive
Real-Time Feedback-Control Applications, DATE conference,
Paris February 2004.
[Rus01] J. Rushby, A Comparison of Bus Architectures for Safety-
Critical Embedded Systems, CSL Technical Report, SRI
International, September 2001.
[Tin95] K. Tindell, A. Burns, and A. J. Wellings, Calculating
controller area network (can) message response times, Control Eng.
Practice, v. 3 n. 8, pp. 1163--1169, 1995.
[Vin02] Sangiovanni Vincentelli A. Defining Platform-based
Design. EEDesign of EETimes, February 2002.
[Gon94] M. G. Harbour, M. Klein, and J. Lehoczky, `Timing
analysis for fixed-priority scheduling of hard real-time systems,
IEEE Transactions on Software Engineering, vol. 20, no. 1, January
1994.

4

8

8

Utilization

Dependability

Extensibility

4

Reusability/
Cost Composability 8

8
4

4 4

Baseline

Arch. 5

Arch. 4

8

Authorized licensed use limited to: Seoul National University. Downloaded on November 23, 2009 at 06:30 from IEEE Xplore. Restrictions apply.

