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Abstract

Wireless sensor networks (WSNs) have become an in-
creasingly compelling platform for Structural Health Mon-
itoring (SHM) applications, since they can be installed rel-
atively inexpensively onto existing infrastructure. EXxisting
approaches to SHM in WSNs typically address computing
system issues or structural engineering techniques, but not
both in conjunction. In this paper, we propose a holistic
approach to SHM that integrates a decentralized comput-
ing architecture with the Damage Localization Assurance
Criterion algorithm. In contrast to centralized approaches
that require transporting large amounts of sensor data to a
base station, our system pushes the execution of portions of
the damage localization algorithm onto the sensor nodes,
reducing communication costs by an order of magnitude in
exchange for moderate additional processing on each sen-
sor. We present a prototype implementation of this system
built using the TinyOS operating system running on the In-
tel Imote2 sensor network platform. Experiments conducted
using two different physical structures demonstrate our sys-
tem’s ability to accurately localize structural damage. We
also demonstrate that our decentralized approach reduces
latency by 64.8% and energy consumption by 69.5% com-
pared to a typical centralized solution, achieving a pro-
jected lifetime of 191 days using three standard AAA bat-
teries. Our work demonstrates the advantages of a holistic
approach to cyber-physical systems that closely integrates
the design of computing systems and physical engineering
techniques.

1 Introduction

Structural Health Monitoring (SHM) is a promising tech-
nique to determine the condition of a civil structure, pro-
vide spatial and quantitative information regarding struc-
tural damage, or predict the performance of the structure

during its lifecycle. Recent years have seen growing interest
in SHM based on wireless sensor networks (WSNs) due to
their potential to monitor a structure at unprecedented tem-
poral and spatial granularity. However, there remain sig-
nificant research challenges in SHM. Specifically, a SHM
system must (1) detect and localize damages in complex
structures; (2) provide both long-term monitoring and rapid
analysis in response to severe events (e.g., earthquakes and
hurricanes); and (3) meet the stringent resource and energy
constraints of WSNs.

SHM applications are characteristic examples of com-
plex cyber-physical systems where neither the “cyber” as-
pects nor the “physical” aspects can adequately be consid-
ered in isolation. Previous work in the WSN field primarily
addresses system issues like data acquisition and commu-
nication, while previous work in the structural engineer-
ing field has primarily focused on developing algorithms
for damage detection and localization. The separation of
computing system design and SHM techniques may result
in suboptimal system solutions. For example, existing sys-
tems developed in the WSN field usually assume a central-
ized approach that transports large amounts of data from
sensors to a base station. Despite considerable research on
network protocols optimized for SHM applications, central-
ized architectures inherently entail significant communica-
tion and energy overhead for data collection. For example,
a state-of-art system deployed at the Golden Gate Bridge
required 9 hours to collect a single round of data from 64
sensors, resulting in a system lifetime of 10 weeks when
using four 6V lantern batteries as a power source [27]. On
the other hand, while the structural engineering field has
proposed damage detection and localization algorithms that
are potentially suitable for decentralized processing, prior
research in the field usually does not focus on the design
of computing system architectures for implementing such
algorithms on WSNs.

We therefore propose a holistic approach to SHM system
design based on WSNs. Specifically, we make the follow-



ing contributions in this paper. (1) We present the design
of a damage localization system that integrates a decentral-
ized computing architecture optimized for the Damage Lo-
calization Assurance Criterion (DLAC) algorithm [24, 25].
In contrast to centralized approaches that require transport-
ing large amounts of sensor data to a base station, our de-
centralized architecture pushes the execution of portions of
the damage localization algorithm onto each sensor. This
in-situ processing results in significant reductions in com-
munication overhead and energy consumption. (2) We also
present a proof-of-concept implementation of this design
using the TinyOS operating system [1]. In contrast to ear-
lier WSN systems that focus on data collection, our system
can detect and localize damages while consuming only a
small faction of resources available on the Intel Imote2 [9],
an off-the-shelf sensor platform. (3) We provide empiri-
cal results and analysis that demonstrate that DLAC can
accurately detect and localize damage on a simple beam
structure and on a complex truss structure, and that our de-
centralized approach significantly outperforms a centralized
approach in terms of latency, energy efficiency, and system
lifetime. By simultaneously achieving low latency and low
energy consumption, our system increases the wireless sen-
sor network’s utility for routine monitoring (where system
lifetime is an important factor) as well as for use after catas-
trophic events such as earthquakes (where lower latencies
enable more rapid response to potential damage). Our work
provides an example of the key advantages of a holistic ap-
proach to cyber-physical systems.

We begin by discussing related SHM and WSN systems
in Section 2. Section 3 presents the design and implemen-
tation of our damage localization system. In Section 4, we
demonstrate that this system can effectively locate damage
to two different physical structures. Section 5 provides an
empirical analysis of the advantages and efficiency of our
system on the Imote2 platform. Finally, we conclude in
Section 6.

2 Related Work

During the last several years, the structural engineer-
ing community has pursued the development of analytical
methods to detect and quantify structural damage as well
as reliable sensing technologies [10, 20, 21, 30]. WSNs
are gaining the attention of structural engineers as an at-
tractive tool due to their on-board processing and relatively
low capital and maintenance costs [18,32,33]. A survey of
academic and commercial wireless sensor platforms can be
found in [22].

Extensive research in the structural engineering field has
focused on developing sophisticated and fault tolerant al-
gorithms for damage detection [22, 28]. These techniques
are generally centralized, requiring computations involving

global information (usually acceleration data) collected at
a single location, e.g., at the base station. With potentially
hundreds of nodes and sampling frequencies of hundreds of
Hz, these centralized approaches exhibit high energy costs
and long delays due to communication overhead.

A schematic paradigm for distributed wireless monitor-
ing system is discussed in [23,29]. SHM approaches us-
ing a distributed computing strategy have been validated on
a scale three-dimensional truss model [12, 29] using algo-
rithms described in [3, 14]. These works address the prob-
lem primarily from a structural engineering and algorithmic
perspective. In contrast, we propose a holistic approach to
designing and optimizing a decentralized computing archi-
tecture based on the characteristics of a practical damage
localization algorithm. Moreover, our paper presents an in-
depth analysis of the feasibility and advantages of our de-
centralized computing architecture in terms of latency, en-
ergy consumption, and system lifetime.

In the area of sensor networks, Wisden [26,35] provides
services for reliable multi-hop transmission of raw sensor
data, using run-length encoding to compress the data be-
fore transmission. A UC Berkeley project to monitor the
Golden Gate Bridge [15-17] is considered to be the largest
deployment of wireless sensor networks for SHM purposes.
Vibration data is collected and aggregated at a base station
under a centralized network architecture, where frequency
domain analysis is used to perform modal content extrac-
tion. It takes nearly a full day to transmit sufficient data for
such computations, creating latencies that would be inad-
equate for damage detection after extreme events (e.g., an
earthquake). BriMon [5] partially addresses the communi-
cation bottleneck by sampling data at 400 Hz and averag-
ing this data over 40 Hz windows. The data resolution and
network size (a maximum of 12 nodes per span) supported
by BriMon may not be fine-grained enough for damage de-
tection and localization on complex structures. All three
of these projects focus primarily on data collection and net-
working challenges, and rely on a central base station to per-
form actual damage detection. In contrast, our system fea-
tures a decentralized architecture that exploits processing
on each sensor, achieving significant improvements over a
centralized approach in terms of latency, energy efficiency,
and lifetime. Moreover, we provide empirical results that
demonstrate that our system can effectively localize dam-
ages on physical structures, while none of the above papers
present results on damage detection or localization.

3 Design and Implementation

In this section, we describe our SHM system designed
on a holistic approach. We first present a damage localiza-
tion algorithm that is particularly suitable for decentralized
processing on wireless sensors. We then describe a decen-



tralized architecture specifically optimized for this damage
localization algorithm. A salient feature of our architec-
ture is the partitioning of the damage localization algorithm
between the wireless sensors and the base station, which
significantly reduces the sensors’ communication load and
energy consumption in exchange for moderate processing
costs on each sensor. We also discuss an implementation
of our system and the system challenges that we have over-
come during this implementation effort.
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Figure 1. The online phase of damage local-
ization

3.1 Damage Localization Algorithm

Our system is based on the Damage Localization As-
surance Criterion (DLAC) technique [24, 25], which ana-
lyzes data collected at each sensor to detect and localize
structural damage. The DLAC algorithm is especially well-
suited for a decentralized WSN system [4, 7], because it
performs damage localization based on a structure’s natural
frequency data rather than its raw vibration data. As dis-
cussed below, this natural frequency data is computed from
each node’s raw vibration data (i.e., accelerometer read-
ings). In Section 3.2, we discuss how this computation can
be appropriately partitioned between the base station and
sensor nodes, significantly reducing the communication and
energy burden in exchange for moderate in-situ processing.
Moreover, nodes do not need to correlate individual sensor
readings to compute this natural frequency data. Existing
systems based on time-domain analysis require precise time
synchronization across nodes, incurring additional commu-
nication and energy overhead [17,35]. A final important
feature of DLAC is that all nodes perform the same calcu-
lations; even when variations in the data are present due to
noise and similar effects on the calculations, each sensor’s
data is expected to indicate damage at the same location. If
some nodes fail while collecting or transmitting data, then
the other nodes will still detect the damage location. DLAC
is therefore robust to node failures, which is an important

consideration for devices deployed with limited energy sup-
plies and highly variable network conditions.

In the rest of this subsection, we will summarize the
damage localization procedure. For the sake of brevity, we
do not discuss the mathematical foundations of this proce-
dure in detail here; interested readers may find more infor-
mation in [7]. The damage localization process includes
an offline phase and an online phase. In the offline phase,
the system identifies the natural frequencies of the healthy
structure, using observed vibration (acceleration) data and
a series of transformations described below. These natu-
ral frequencies have two important features for structural
health monitoring. First, even localized damage to the struc-
ture will present itself as a global change in natural fre-
quencies. Second, each discrete location along the struc-
ture will produce a different — and predictable — change
in the structure’s natural frequencies if damaged. A struc-
ture’s natural frequencies are therefore an effective “signa-
ture” of the structure’s health. Additionally, as required by
the DLAC technique, an analytical model of the structure
and the estimation of its natural frequencies using purely
numerical techniques are performed'. By comparing the
observed natural frequencies against those estimated by the
numerical model, we are effectively able to capture the nu-
merical errors generated by the imperfect model.

1500

1000 i

500 w

0

s
|

Amplitude

_2000 i i i i i i i
0 1

Figure 2. Raw vibration readings taken after
exciting a steel beam with a hammer

In the system’s online phase, we periodically sample new
vibration data. An example of a raw sensor reading, taken
during the experiment described in Section 4.1, is shown
in Figure 2. We then repeat the natural frequency identi-
fication techniques on this newly-collected data. In the fi-
nal stage of the algorithm, this new frequency data and the

IThe details of the model’s creation, as well as these numerical tech-
niques, are well-established in the structural engineering field and are be-
yond the scope of this paper.



structure’s analytical model enable the DLAC algorithm to
localize the damage to discrete locations on the structure.

The online phase of our system can be decomposed into
four stages, which are summarized in Figure 1. Steps (1)-
(3) are used to compute the current natural frequencies of
the structure based on collected vibration data, which are
then input into the DLAC algorithm in Step (4).

(1) The raw sensor readings are converted from time do-
main data to frequency domain data using a Fast Fourier
Transform (FFT). This produces a series of complex num-
bers as output, represented as an array of floating point num-
bers twice the length of the original input (one real and one
imaginary part per input). A property of the FFT output data
is that its magnitudes are symmetric. To save memory and
computation in later stages, we discard the redundant half
of this frequency domain data, resulting in a final output the
same length as the input.
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Figure 3. Power spectrum analysis results of
raw vibration data, with the redundant upper
half already removed

(2) The FFT’s output is fed into a power spectrum anal-
ysis routine, which calculates the magnitude of each fre-
quency in the FFT output data. Figure 3 demonstrates the
output of power spectrum analysis over the previous raw
sensor data trace.

(3) We can then identify the natural frequencies in this
power spectrum data by performing polynomial curve fit-
ting. The goal of this process is to identify the frequency
values associated with the peaks in the power spectrum
curve for each mode. Empirical study has shown that the
Fractional Polynomial Curve-Fitting (FPCF) technique is
reliable for identifying a structure’s modal frequencies in
an automated manner. FPCF fits the power spectrum data
to a polynomial function in the form of Equation 1, with
the order of its denominator proportional to the number of
frequencies we wish to locate. This function was identified
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Figure 4. Polynomial curve fit to the power
spectrum analysis data

in [19] to extract features from system transfer functions,
and represents both a smoothing and an interpolation of the
raw power spectrum data.

H(s) = B(s) _ bis™ + bys™ L b+ by o
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Figure 4 illustrates the results of fitting a 2nd-order
curve to one of the peaks of the power spectrum data dis-
cussed above. For the purposes of our system, we subdivide
this stage into two procedures: (3a) coefficient extraction,
which represents the curve-fitting problem as a series of ma-
trices; and (3b) equation solving, which applies the matrix
operations necessary to determine the roots of the denomi-
nator polynomial.

(4) Finally, once the structure’s natural frequencies have
been measured, they are used as input into the DLAC al-
gorithm, which ultimately detects and localizes damage to
the structure. The DLAC algorithm also uses the structure’s
numerical model to simulate damage at discrete locations
along the structure, providing an estimate of how the natural
frequencies would change in response to damage at each of
these locations. Finally, DLAC uses the structure’s healthy
frequency data (both the observed and predicted values) to
capture and accommodate errors in the numerical model.
Based on these inputs, DLAC yields a vector of numbers in
the range [0, 1], representing the correlation factors to dam-
age at various discrete locations along the structure. In Fig-
ure 5, we plot DL AC for a steel beam that has been subdi-
vided into 20 discrete regions; relatively high DLAC values
concentrated around X = 5 indicate a strong correlation
with damage at the fifth region.
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Figure 5. DLAC results representing the cor-
relation of damage to 20 discrete locations
along a steel beam; higher numbers repre-
sent a greater likelihood of damage

3.2 Decentralized Architecture

We have implemented the procedure described in Sec-
tion 3.1 in a decentralized architecture consisting of low-
power sensors (also called motes) and a base station con-
nected by a wireless network. Motes typically have lim-
ited resources (e.g., processing capabilities and memory)
and run on batteries. Due to the difficulty of replacing bat-
teries for sensors embedded in a structure, the sensors’ en-
ergy efficiency is a critical concern for SHM systems. In
contrast, the base station (typically a PC) is connected to
a wired power source and has significantly more resources
than the sensors. Each mote collects raw vibration data from
an attached accelerometer and performs parts of the dam-
age localization procedure. The motes transmit their partial
results wirelessly to the base station, which completes the
damage localization procedure.

With the advance of sensor hardware, commercial sen-
sor platforms such as the Imote2 are capable of moderate
amounts of in-network processing. Our decentralized ar-
chitecture exploits these processing capabilities to reduce
the communication and energy costs of damage localiza-
tion. Because portions of the system require complicated
curve-fitting and optimization routines, it is impractical to
perform damage localization entirely on the motes. How-
ever, offloading too much computation onto the base station
would require transmitting large amounts of data, on the or-
der of thousands of floating-point numbers. An important
design goal of our system was therefore to find the proper
balance between the time and energy spent on computations

on the motes, and the time and energy spent sending partial
results to the base station.

To highlight the optimal partitioning between the motes
and the base station, we analyze here the data flow between
stages of the damage localization procedure. As shown in
Figure 1, we parameterize this analysis by the number of
samples being collected, D, and the number of frequencies
to identify, P (D > P). The FFT stage consumes D inte-
ger sensor readings as input, and produces D floating-point
values as output. Power spectrum analysis transforms these
D floating-point values into % floating-point magnitudes.
The coefficient extraction portion of the curve-fitting rou-
tine represents the power spectrum data as 5P floating-point
coefficients; applying the equation solver reduces this to P
floating-point values.

We therefore found the optimal division point to be be-
tween the coefficient extraction and equation solving sub-
stages of the curve fitting routine. The coefficient extraction
performs a large amount of data aggregation: it represents
the hundreds or thousands of collected vibration samples as
a single 5x P matrix. For a typical setup of D = 2048,
P =5, 16-bit accelerometer readings, and single precision
(32-bit) float types, the stages before coefficient extrac-
tion generate from 4 KB to 16 KB of data; in comparison,
coefficient extraction outputs only 100 B. As we discuss
later in Section 5, this aggregation reduces the communi-
cation latency to the point that the raw data collection stage
dominates the algorithm’s running time. Similarly, the ra-
dio’s energy consumption is then dwarfed by the cost of idle
sleeping, and represents only 0.98% of the system’s total
energy budget. Implementing the relatively complex equa-
tion solving routines locally on the Imote2 nodes would of-
fer limited potential gain in terms of latency or energy effi-
ciency. This optimal partitioning of the damage localization
procedure between the motes and the central base station
highlights the importance of an integrated design for the
computing architecture and the damage localization tech-
niques.

3.3 Implementation

Our architecture is implemented as a proof-of-concept
SHM system containing two major software packages,
which are available as open-source software at [2]. The first
package is implemented on top of the TinyOS 1.1 operating
system, and is deployed on the Imote2 hardware platform.
The Imote2 motes are equipped with 32 MB of RAM, XS-
cale CPUs capable of running at speeds up to 614 MHz, and
add-on sensor boards with integrated accelerometers [8].

Our current implementation assumes that sensors are
within a single hop from the base station, as the focus of
this work is on decentralized processing rather than net-
work protocols. However, our system can easily be ex-
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Figure 6. The damage localization user inter-
face

tended to support multi-hop networks by incorporating ex-
isting multi-hop data collection protocols [11, 17]. We dis-
cuss the implications of multi-hop networking on our sys-
tem’s lifetime in Section 5.4.

The second software package consists of a Java applica-
tion and MATLAB scripts running on the base station PC. A
GUI (shown in Figure 6) allows users to set the algorithm’s
parameters, initiate data collection and aggregation on in-
dividual motes, and collect the partial curve fitting results
computed by the motes. Once the application receives par-
tial results from a mote, it completes the curve fitting pro-
cedure using an equation solver written in Java. The results
of this equation solver are then processed using a MATLAB
script that implements the DLAC algorithm. For debugging
purposes, our system can also retrieve the last set of raw
sensor readings from individual motes; this feature is not
used under normal operations.

To simplify the implementation, the SHM algorithm is
currently invoked only when requested by the PC-side GUI.
The motes currently keep their radio on to listen for these
control messages, which can rapidly deplete their batter-
ies. We emphasize that there is nothing inherent in our de-
centralized approach that prohibits performing autonomous
readings at prescheduled intervals and/or managing the ra-
dio power, e.g., by using existing power-efficient MAC pro-
tocols. We discuss these options in greater detail in Section
54.

3.4 Implementation Challenges

Sampling Jitter: One important lesson that we encoun-
tered early in our project is the significant impact of jitter
in sensor sampling intervals on damage localization. We
initially targeted the Imote1 platform for our system but ob-
served poor experimental results. We traced the poor re-
sults back to the Imotel’s sensor board, which sampled the
accelerometer at highly variable intervals. The significant
jitter in the sampling interval resulted in poor damage lo-
calization results, even though the damage localization pro-
cedure itself was implemented properly. We attempted to

debug the Imotel’s sensor drivers but were hindered by the
fact that they are partially closed-source.

After switching to the Imote2 platform, we discovered
other, smaller inaccuracies our experimental results. The
accelerometer chip on the Imote2’s ITS400 sensor board
can be programmed to collect samples at discrete frequen-
cies of 280 Hz, 560 Hz, 1120 Hz, or 4480 Hz. Using an
oscilloscope, we determined that their sensor chips deviated
within +10% of their programmed frequencies. While the
“actual” sensing frequencies varied from board to board, we
did not observe variations in frequency over time for indi-
vidual boards within our controlled lab environment; e.g.,
a board programmed to sample its accelerometer at 560
Hz might actually operate at 550 Hz, but it would consis-
tently operate at 550 Hz. For the purposes of our proof-
of-concept implementation, we therefore simply measured
the real sampling frequency of each board offline using an
oscilloscope and used this calibration data as input to the
power spectrum analysis routine. An autonomous or semi-
autonomous system could perform this calibration online
using the motes’ onboard microsecond clock.

Sensing Noise: After performing initial experiments on
the truss structure, we discovered that our results were not
as high-quality as on the simpler beam structure. We deter-
mined that the truss’s more complex geometry introduced
noise into the sensor readings that degraded the DLAC re-
sults. Additionally, a 280 Hz sampling rate was insufficient
to identify the higher frequencies in this structure. As a re-
sult, we increased the frequency of data collection from 280
Hz to 560 Hz and performed averaging over five consecu-
tive sets of readings.

4 Evaluation: Damage Localization

In this section, we present an evaluation of our SHM sys-
tem’s physical performance, discussing our system’s abil-
ity to localize damage on two sample structures. The two
structures’ different physical properties serve as good in-
dicators of DLAC’s performance under ideal and complex
conditions, respectively.

4.1 Beam

To validate our damage localization system, we first per-
formed a series of experiments on a steel cantilever beam
in the Structural Control and Earthquake Engineering Lab
at Washington University in St. Louis. The beam, depicted
in Figure 7, is 2.75 m long, 7.6 cm wide, and 0.6 cm thick
and fixed to the ground to approximate a cantilever support.
Damage along the beam can be simulated at three distances
from the beam support by attaching a 1.5 kg steel bar. Be-
cause this beam has relatively simple structural properties,
it serves as a test of our system under ideal conditions.
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Figure 7. Diagram of cantilever beam test struc-
ture

Mode | 1 | 2 | 3 | 4 | 5
Measured | 0.5381 | 4.0240 | 11.4705 | 22.5506 | 37.4316
Analytical | 0.6564 | 4.1133 | 11.5180 | 22.5710 | 37.3160

Table 1. Measured and analytical natural fre-
quencies for the healthy beam

We collected data about the beam’s healthy state by at-
taching seven Imote2 wireless sensors at equidistant inter-
vals along the beam. Each mote was equipped with a Cross-
bow ITS400 sensor board with embedded 3-axis accelerom-
eters; tests on a shake table confirmed that these accelerom-
eters are sufficiently accurate for DLAC purposes within
their saturation range of +2.0g. After exciting the beam
with a hammer, we collected vibration data from each mote.
Using this data, we determined the beam’s healthy natural
frequencies offline, as shown in Table 1.

A corresponding 2D Bernoulli beam model was gener-
ated in MATLAB, which subdivided the beam into 20 el-
ements with 42 global degrees of freedom (Figure 8). As
shown in Table 1, the first natural frequency predicted by
the model is within 22% of the experimental value, while
the other predicted frequencies fall within 2% of the exper-
imental data. These discrepancies can be explained by sim-
plifying assumptions in the model; e.g., the Imote2 nodes
were not included in the model. We remind the reader that
the DLAC algorithm uses both measured data and analytical
data as inputs, thus accounting for such discrepancies.

We then tested our system’s ability to detect and local-
ize damage along the beam structure. Using the procedure
described in Section 3, we collected and analyzed vibra-
tion data at 280 Hz, both in its healthy condition and with
the steel bar attached at each of the three damage locations
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Figure 8. Cantilever beam finite element model

Mode 1 2 3 4 5

Analytical | 0.6555 | 4.0105 | 10.6192 | 20.8768 | 36.1469
Sensor 1 0.5506 | 3.9043 | 10.2473 | 20.7641 | 36.6415
Sensor 2 0.5374 | 3.8902 | 10.2779 | 20.8069 | 36.6396
Sensor 3 0.5402 | 3.8977 | 10.2714 | 20.7964 | 36.6048
Sensor 4 0.5316 | 3.8564 | 10.2744 | 20.8470 | 36.6785
Sensor 5 0.5371 | 3.7678 | 10.0707 | 20.4038 | 36.9797
Sensor 6 0.5427 | 3.8488 | 10.3217 | 20.7546 | 36.5919
Sensor 7 0.5392 | 3.9012 | 10.2533 | 20.7751 | 36.6570

Table 2. Analytical and identified natural fre-
quencies for the damaged beam
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Figure 9. DLAC results for the beam damaged
at element 5



shown in Figure 7. We added an arbitrary amount of mass at
each position in our analytical model to develop the matrix
of damage cases for computation of the correlation factors.
The amount of mass that we added to the model intention-
ally did not match the steel bar’s actual mass. We included
this discrepancy to reflect the fact that the amount of dam-
age to a structure is not known ahead-of-time, and to il-
lustrate that DLAC will still adequately localize damage as
long as a reasonable guess is used.

For the sake of brevity, we present here only the results
for the first scenario, which simulates damage at the beam’s
fifth element. As shown in Table 2, the natural frequencies
measured by each of the 7 sensor nodes closely match those
predicted by the “damaged” analytical model. Each node
therefore correctly predicts structural damage at the beam’s
fifth element with a correlation of 94% or higher (Figure 9).
We observed similar results during the other two damage
scenarios, with the nodes consistently localizing the damage
at the correct element with correlations of 90% or higher.

Figure 10. 3D truss test structure

Truss Frontal Panel
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Figure 11. Truss experimental setup; high-
lighted elements were replaced to simulate
damage

4.2 Truss

To evaluate our system under more complex structural
configurations, we then performed tests on a 5.6 m steel
truss structure [6] at the Smart Structure Technology Lab-
oratory (SSTL) at the University of Illinois at Urbana-

Mode 1 2 3 4 5
Measured | 20.65 | 41.49 | 64.59 | 69.41 | 95.51
Analytical | 19.88 | 38.31 | 66.26 | 67.17 | 92.25

Table 3. Measured and analytical natural fre-
quencies for the healthy truss
Mode 1 2 3 4 5

Analytical | 19.19 | 38.35 | 63.58 | 66.30 | 90.96
Sensor 1 | 20.27 | 41.37 | 63.04 | 67.79 | 94.89
Sensor2 | 20.28 | 41.40 | 63.17 | 67.89 | 95.08
Sensor3 | 20.20 | 41.29 | 63.01 | 67.67 | 94.82
Sensor4 | 20.17 | 41.23 | 63.05 | 67.68 | 94.73
Sensor 5 | 20.31 | 41.30 | 63.10 | 67.73 | 94.89
Sensor 6 | 20.23 | 41.29 | 63.02 | 67.68 | 94.81

Table 4. Analytical and identified natural fre-
quencies for the damaged truss

Champaign (see Figure 10). 11 Imote2 sensors were de-
ployed on the frontal panel of the truss, as shown in Fig-
ure 11; USB cabling was deployed to power the motes, but
all communication occurred over their wireless radios. The
truss consists of fourteen bays 0.4 m-long bays and sits on
four rigid supports. Different structural configurations and
damage scenarios can be emulated by removing or replac-
ing the truss’s members and its supports.

As with the beam, we used collected truth data and a
MATLAB model to compute the natural frequencies in the
truss’s healthy state. We collected the truth data by verti-
cally exciting the truss structure using a magnetic shaker.
(To ensure a consistent mass distribution with later exper-
iments, the Imote2 motes were left installed but were not
activated.) A force transducer was used to measure the in-
put force, and six wired sensors were used to measure the
vibrations at different points on the truss’s frontal panel.
A corresponding numerical finite element model with 160
beam elements and 336 global degrees of freedom (Figure
12) was generated in MATLAB. As shown in Table 3, the
natural frequencies predicted by this model are within 2—7%
of the experimental data. Again, these discrepancies can be
explained by simplifying assumptions in the model and are
accommodated by the DLAC algorithm.
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Figure 12. Truss finite element model



To simulate damage along the truss structure, we re-
placed the beam elements of the third bay (highlighted in
Figure 11) with smaller elements. Specifically, two diago-
nal elements were reduced in area by 52.7%, and two bot-
tom elements were reduced in area by 63.7%. We simu-
lated damage to the truss’s numerical model by reducing
the model’s corresponding beam elements.

DLAC WS #32 DLAC WS #45 DLAGC WS #67 DLAC WS #28 DLAC WS #35 DLAC WS #75
1 1 1 1 1 1

o o o o o o
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Figure 13. DLAC results for the damaged
truss

We then excited the “damaged” truss structure and used
the Imote2 nodes to collect vibration data. Because the truss
has more complex behavior than the beam, we increased
the sampling frequency to 560 Hz. To reduce noise, we
also averaged the power spectrum results over five consec-
utive readings. 6 of the 11 sensors reported enough vibra-
tion data® to compute natural frequencies with a DLAC cor-
relation of 85%. The natural frequency data and DLAC
results are shown in Table 4 and Figure 13, respectively.
The DLAC results strongly predict damage in the third bay,
which is where the elements were replaced.

5 Evaluation: Feasibility and Advantages

We now evaluate the cyber aspects of our cyber-physical
SHM system. Specifically, we demonstrate that our pro-
totype application’s memory, computational, and energy
requirements all fall within the capabilities of current-
generation sensor network hardware. We also show that our
system significantly outperforms a centralized approach in
terms of latency and energy requirements. Based on these
findings, we project that our system would achieve a life-
time of approximately 191 days between battery replace-
ments with appropriate power management techniques. In

2The Imote2 vibration sensor will occasionally fail to collect a round
of samples, due to a driver bug that could not be isolated by the time the
experiments were run.

. Fraction of Imote2
Type Size capacity
ROM 248172 bytes | 0.74%
RAM (heap) | 63588 bytes
RAM (stack) | 9126 bytes 0.22%

Table 5. The ROM and RAM footprint of the
SHM application

the interest of brevity, we will only discuss here the effects
of partitioning our decentralized application in the way de-
scribed in Section 3.2. Readers may find a performance
comparison of different partitioning schemes in [13].

5.1 Memory

We present the RAM consumption of the entire WSN
component of the system when compiled for the Imote2
platform in Table 5 along with its ROM footprint. These
ROM and RAM requirements are well within the capacity
of current-generation mote hardware. Indeed, on platforms
such as the Imote2 (which is equipped with 32 MB each
of flash ROM and SDRAM) this application would signifi-
cantly underutilize the hardware capabilities.
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Figure 14. The latency of sensor data collec-
tion and aggregation

5.2 Latency

To evaluate the latency of a single round of damage lo-
calization, we timed the execution of the round’s five stages:
collecting raw sensor from the accelerometer, computing
the FFT of the raw data, performing power spectrum anal-
ysis on the transformed data, constructing the matrix for
root detection, and transmitting the matrix coefficients to
the base station. For the purposes of comparison, we also
measured the latency of transmitting all 2048 raw sensor
readings back to the base station for centralized process-
ing. Where possible, we measured these latencies using the
Imote2’s onboard microsecond timer and took the mean of
50 rounds. Because the Imote2’s onboard radio interferes
with the hardware microsecond timer, the data transmission
latencies were collected over 10 rounds using an oscillo-
scope. We focus here on the latencies incurred by on-board



processing and communication, excluding processing at the
base station. We note that this decision benefits the cen-
tralized approach, which will pay a comparatively higher
processing cost at the base station.

Figure 14 presents the average latency for the decen-
tralized algorithm (which performs computation locally and
only transmits the matrix coefficients) and a centralized ap-
proach (which performs no computation but transmits all
raw sensor readings). For the purposes of legibility, we have
grouped the FFT, power spectrum analysis, and root detec-
tion stages together into a single computation stage.

Both the centralized and the decentralized schemes incur
a mean cost of 3772 ms (o = 0.80 ms) to collect raw sen-
sor data. This closely matches the 526%431 ~ 3.7 s needed
to collect 2048 samples, with some additional overhead to
copy the sensor data into a local buffer. The decentralized
approach incurs a mean 681 ms latency (o = 2.79 ms) for its
computation stage which the centralized approach does not
need. However, the data aggregation performed in this stage
reduces the data to be transmitted by 98.8%, from 2048 data
points to 25. Therefore, the decentralized scheme takes only
270 ms (o = 10 ms) to transmit the computed coefficients to
the base station, whereas the centralized approach requires
9638 ms (0 = 28 ms) to transmit its raw data.

By performing computation and aggregation on the
nodes, we incur very little system overhead on our current-
generation sensor hardware. 77.4% of the system’s time
is spent collecting data; only 22.6% of the latency repre-
sents reducible overhead. In comparison, the centralized
approach spends 71.9% of its time transmitting data to the
base station. As a result, our decentralized system can
achieve latencies 64.8% lower than those of a centralized
algorithm.
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Figure 15. The energy consumption of sensor
data collection and aggregation

5.3 Energy Consumption

The current version of our SHM system performs only
limited power management, since the TinyOS 1.1 drivers
for the Imote2 do not put all of the hardware to sleep when
deactivated. As of this writing, the Imote2 driver subsys-
tem is being rewritten for TinyOS 2, which we expect to
fix this shortcoming. Nevertheless, we can estimate the en-
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ergy consumption of a fully power-managing SHM system
by combining the latency statistics given above with current
consumption data for the radio, sensor, and CPU taken from
the corresponding datasheets [9,31,34].

Figure 15 shows the energy cost of a single round of
SHM data collection. Our decentralized solution signifi-
cantly reduces energy consumption compared to a central-
ized approach, from 0.222 mAh to 0.067 mAh. This re-
duction is mainly due to the expense of sending raw sen-
sor readings to the base station. The decentralized approach
consumes 0.006 mAh (31 mA [9] for 681 ms) to perform its
computations. However, this computation saves the mote an
average of 0.160 mAh during transmission, since it reduces
the time that the radio is active and transmitting by 9367
ms.
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Figure 16. System lifetime under different us-
age patterns

5.4 Projected Lifetime

We can estimate the system’s expected lifetime by noting
that the Imote2 consumes 382 A in its deep sleep state [9],
plus 15 pA for the accelerometer [31]. Figure 16 presents
the estimated system lifetime when the Imote2 is deployed
with a standard 3x AAA battery pack providing 2400 mAh
of charge. If we assume that the system remains asleep be-
tween periodic readings, then the decentralized approach
achieves a projected lifetime of 213 days, even at a rela-
tively aggressive hourly schedule. In contrast, the central-
ized approach achieves a lifetime of 160 days at an hourly
schedule, though it stays within 2% of the decentralized ap-
proach’s lifetime at lower frequencies. The sharp drop in the
centralized system’s lifetime occurs because sleeping dom-
inates the system’s energy cost at lower frequencies, while
the high communications costs dwarf the sleeping cost at
an hourly frequency. As a result, in-situ processing enables
more frequent monitoring than is realistically possible for a
centralized scheme.



In practice, a SHM system may not be able to behave au-
tonomously: its deployers may want some kind of manual
control (e.g., to perform on-demand readings after a nat-
ural disaster). This can be achieved by having the nodes
listen for radio transmissions between readings. Keeping
the CPU and radio active at 100% duty cycles would reduce
the node lifetime to only 55 hours. However, power-saving
MAC layers like SCP [36] can achieve duty cycles as low as
0.1% with reasonable responsiveness tradeoffs. As shown
in Figure 16, this would have a fairly low impact on sys-
tem lifetime (an 8.5%-9.8% reduction in the decentralized
case).
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Figure 17. System lifetime with hourly read-
ings and 0.1% radio duty cycle, under various
network configurations

The difference in communication costs between a cen-
tralized approach and our decentralized approach are am-
plified under a multi-hop network configuration. This kind
of network configuration is necessary for monitoring many
real-world structures, since the structure’s length will ex-
ceed the motes’ communication range. For example, [17]
required a 46-hop network to span the Golden Gate Bridge,
and [5] estimates that 3—4 hops will be needed to span small
bridges. The nodes closest to the sink suffer the most from
communication overhead, since they must receive and relay
packets from all of the nodes further away from the sink.
If we assume that nodes are configured in an n-hop line, as
in [17], then the node closest to the sink will have to receive
n — 1 sets of data and transmit n sets each time damage
detection is performed.

As shown in Figure 17, under the centralized approach
this node’s lifetime will drop dramatically as the number
of hops increases. The mote must keep its radio active for
an extra 19.2 seconds for each additional hop, transmitting
during half of this time and receiving during the other half.
This quickly depletes the mote’s battery power, decreasing
the network’s lifetime from 191 days in a single-hop con-
figuration to 180 days under a 4-hop network, and to 95
days under a 46-hop network. In contrast, the decentral-
ized approach transmits a much smaller amount of data, so
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that the cost of idle sleeping still dwarfs the communication
cost under any realistic hop count. A 4-hop network will
reduce the decentralized system’s lifetime by 9 hours, and
a 46-hop network will reduce the lifetime from 196 days to
191 days. Our decentralized approach therefore represents a
9.1% increase in lifetime under a 4-hop network compared
to a centralized scheme, and a 100.0% increase with a larger
46-hop network.

As observed in [17], reliably transporting large amounts
of data over lossy links is challenging. The lifetimes of both
approaches will be reduced compared to those projected
here, due to packet retransmissions. However, we note that
packet retransmissions will have a significantly higher im-
pact on a centralized system’s lifetime, since its communi-
cation costs represent a much higher proportion of the total
energy budget.

6 Conclusions

We propose a holistic approach to SHM that features a
decentralized computing architecture specifically optimized
for the DLAC damage localization algorithm. We have im-
plemented our prototype SHM system on an off-the-shelf
sensor platform while using less than 1% of its memory
capacity. Our experiments show that, compared to earlier
centralized solutions, our system can reduce the latency and
energy consumption of each damage localization round by
64.8% and 69.5% respectively, increasing the system’s pro-
jected lifetime by by up to 100% under an hourly schedule.
We also demonstrate that our system is able to effectively
localize damage to discrete locations on the structure on
two physical structures. These results highlight the advan-
tages of closely integrating the design of computing systems
and physical engineering techniques for cyber-physical sys-
tems.
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