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Abstract

The wide applications of cyber-physical systems (CPS)
call for effective design strategies that optimize the perfor-
mance of both computing units and physical plants. We
study the task scheduling problem for a class of CPS whose
behaviors are regulated by feedback control laws. We co-
design the control law and the task scheduling algorithm for
predictable performance and power consumption for both
the computing and the physical systems. We use a typi-
cal example, multiple inverted pendulums controlled by one
processor, to illustrate our method.

1. Introduction

Cyber-physical systems range from relatively small sys-
tems, such as aircrafts and automobiles, to large systems
like the national power grid. The physical characteristics of
such systems can be well regulated by controllers by putting
computers and algorithms into the loop, but to achieve the
full benefit of integrating cyber and physical systems, con-
trol, computing, and power consumption can no longer be
optimized separately. The dynamics of computers and the
dynamics of physical systems interact in ways that require
fundamentally new design approaches.

In this paper, we demonstrate our results towards devel-
oping a theoretical framework aiming to provide guidelines
for computing-control-power co-design. More specifically,
considering the power of the entire system is constrained,
we address the interactions between control algorithms and
the scheduling algorithms to implement multiple control al-
gorithms on one single processor. The key question is that
how can we ensure robustness of controller performance in
the case of variations in the scheduling software under low
power conditions. This question is often encountered in ap-
plications where cyber-physical systems are employed.

Development of theoretical results often requires that we
simplify real world systems to achieve idealized models that

capture the most significant properties. In this paper, we
study an idealized example where multiple inverted pendu-
lums are controlled by a single processor. The inverted pen-
dulum model is chosen since the related control problems
have been intensively studied and well understood by the
control community. In addition, a large class of real world
control problems, for example, stabilizing robotic arms and
legs, can be simplified to studying the inverted pendulum
problems c.f. [2, 11].

We develop both off-line and on-line algorithms for de-
termining the period of multiple control tasks to balance ro-
bustness of the system and power consumption under the
constraints of schedulability. In particular, a simple propor-
tional feedback controller is used to stabilize each pendu-
lum under sampling effect and delay. Due to differences
in the physical parameters, the control gain and the period
of the control tasks for each controller is different. The rate
monotonic scheduling (RMS) algorithm of Liu and Layland
[10] is applied. Hence the periods of control tasks are con-
strained by the RMS schedulability condition.

Noise enters the pendulum control systems through im-
perfect sensors and actuators. The sensitivity function is a
gain function that associates the fluctuations of the inverted
pendulum around its upright position with the strength of
noise. The H∞ norm measures the magnitude of the sen-
sitivity function for noise with all possible frequencies.
Hence, if the sensitivity function of a system has a lower
H∞ norm, the system is more robust to noise.

To find the optimal time period for each control task,
we define the objective function to be optimized as the
sum of the H∞ norm of the sensitivity functions of all
the pendulums. We first develop an off-line algorithm to
find the task periods that minimize the objective function.
Then we design an online feedback scheduling algorithm
that yields sub-optimal solutions but with short comput-
ing times. Next, we incorporate power consumption of the
system into the objective function and derive algorithms to
optimize both system robustness and power consumption.
Such algorithms balance the robustness, schedulability, and



power consumption of the cyber physical system.
Some of the early approaches on period selection and

adaptive load adjustment are presented in [9] and [14].
There are a number of recent papers addressing the period
selection problem for control-scheduling co-design. The
popular approach is to formulate the problem as a con-
strained optimization problem [5]. Different methods are
distinguished by the cyber-physical models, the selection of
objective function for system performance, the constraints,
and the optimization algorithms. In [12], the robustness
of the system with respect to parameter uncertainty is op-
timized and a “branch and bound” algorithm is proposed.
However, performance degradation caused by sensor noise
is not considered. In [17], the objective function measures
error between a planned path and the actual path for a robot
manipulator. An online feedback scheduling algorithm is
developed to reduce such error. This objective function ex-
cluded effects of time delay. The system performance in
[15] is based on a quadratic cost function for which an op-
timal controller is designed. Simulation tools that help to
determine system performance with changing time periods
under time delay, i.e. “Jitterbug” and “TrueTime”, are in-
troduced by the authors of [4]. Reviews of the current state
of the field are presented in [18] and [16].

A significant number of results have been obtained in
real-time scheduling for dynamic voltage scaling (DVS).
Yao et al. [19] propose one of the first DVS-aware schedul-
ing algorithms. Ishihara and Yasuura [7] analyze DVS
scheduling with discrete voltages. Azevedo et al. [1] de-
velop heuristic schedulers that take advantage of program
profile information. Jejurikar et al. [8] introduce procras-
tination scheduling, which maximizes idle periods. Some
recent results on power management in sensor network ap-
plications are presented in [13].

This paper distinguishes from existing published work in
that we measure the system performance by its robustness
subject to sensor noise, sampling effect, and time delay. In
addition, we add a measurement of power consumption to
the objective function. We introduce the concept of non-
critical system and non-critical operation points which are
optimal solutions that are robust to variations in comput-
ing time and physical parameters. We show that although
computing such a non-critical operation point usually re-
quires complex algorithms, simple heuristic algorithms can
be designed to find sub-optimal solutions. These heuristic
algorithms can then be implemented as online scheduling
algorithms. Shifting between operation points will create
transients for the physical system and a transient time needs
to be guaranteed for stability.

The paper is organized as follows. Section 2 introduces
the problem of using one processor to control N inverted
pendulums. Control laws are designed to stabilize the pen-
dulums under sampling effects and time delay. Section 3

presents online and offline task scheduling algorithms that
decide the operation points of the cyber-physical system.
Section 4 analyzes the transient performance of the system.
Section 6 presents simulation results. Conclusions and fu-
ture work are discussed in Section ??.

2. Control of inverted pendulums with delay

In this section, we introduce an idealized model of a sin-
gle processor controlling N inverted pendulums. We give
an introduction and overview of the procedure to design a
feedback controller that stabilizes each single inverted pen-
dulum.

An N -inverted pendulum system controlled by a single
processor is illustrated in Figure 1. We let m be the total
mass of a pendulum and plot the mass as a solid ball on
top of a weightless strut in Figure 1. Let l be the length
of the pendulum and let g be the gravity constant. We de-
fine J = ml2 as the moment of inertia. The position of a
pendulum is described by θ, that is, the angle that the pen-
dulum makes with its vertical axis. The angular speed of the
pendulum is θ̇. Since there is usually friction at the base, we
use a symbol γ to represent the friction constant and assume
that the friction force applied to the ball works against the
direction of motion with strength γθ̇.

PROCESSOR

Figure 1. A single processor controlling N
pendulums with different physical parame-
ters.

An inverted pendulum needs to be actively controlled in
order to stay in the upright state corresponding to θ = 0.
Such control can be achieved by installing a motor at its
base providing a torque that is equivalent to a force u ap-
plied at the center of mass. Stability will be achieved if we
design u as a function of the position θ that can be measured
by sensors such as a shaft encoder in the motor. Such a func-
tion is called a feedback control law. Since the physical pa-
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rameters l, J and γ of the pendulums are usually different,
the control laws are different for different pendulums.

2.1. Modeling of an inverted pendulum

The dynamics of the single inverted pendulum system
can be described by a set of differential equations, called the
state-space model. The differential equations are then lin-
earized to simplify the model. Defining x(t) = [θ(t), θ̇(t)]′

and

A =
[

0 1
g
l − γ

J

]
Bc =

[
0
l
J

]
C =

[
1 0

]
we can write the linearized state-space equations for the in-
verted pendulum as:

ẋ = Ax(t) +Bcu(t− T ) (1)
y(t) = Cx(t) (2)

Since the controller is implemented on a computer which
is based on discrete time signals, we measure the state of
the system at discrete time intervals, with sampling interval
T . The corresponding control effort must typically be com-
puted by the processor in some time Q < T . Assuming that
the result of each computation is released at the same time
as the start of the next computation, there will be a time de-
lay T associated with the control effort u. This explains the
use of u(t − T ) in the above equation. We assume that u
is constant on each time interval kT ≤ t < (k + 1)T , and
T is constant and known. The sampling and control delay
can be captured more concisely by discretizing the above
system equations to get the following:

xk+1 = eATxk +Buk−1 (3)

where xk and uk−1 are shorthand notations for x(kT ) and
u((k − 1)T ), eAT denotes the matrix exponential of AT ,
and B =

∫ T
0
eA(T−σ)Bcdσ.

The inverted pendulum model and its variations play
an important role in control theory and applications such
as control of robotic manipulators or legged robots. In
this paper, we will only generalize results obtained for this
model to a class of systems called single input, single out-
put (SISO) linear systems. For the inverted pendulum, the
single input is the control torque u and the single output is
the measurement of angle θ.

A typical SISO linear system with computing delay can
be modeled using a block diagram, as shown in Figure 2.
The diagram is generated by applying the Z-transform to
the state space model to convert the state space recursive
difference equations into algebraic equations. The variable
z here is a complex variable that represents frequencies. To

Figure 2. The block diagram of a single input,
single output system. The tasks for comput-
ing, sensing and actuation are illustrated.

understand the diagram, let us start with the signals. The
symbol yd(z) is the “desired” output value, which the sys-
tem should track, and y(z) is the measured output. The
input ε(z) represents random noise in the measured output
signal which is fed back to the controller. Next, the blockK
represents the implementation of the controller by a proces-
sor, the block z−1 represents the time delay in computing,
the block L(z) represents the physical plant (e.g., motor
and pendulum), and the block H(z) represents any possi-
ble sensing and noise reduction algorithm. For the inverted
pendulum we have

L(z) = C
(
Iz − eAT

)−1
B (4)

and H(z) = 1.
A simple feedback control law to stabilize the inverted

pendulum at its upright position is uk−1 = −Kθk−1 with
K a non-negative constant called the gain of the controller.
Then the transfer function, which describes the relationship
between the input yd(z) and the output y(z), is

G(z) =
KC

(
Iz − eAT

)−1
Bz−1

1 +KC (Iz − eAT )−1
Bz−1

(5)

which results in y(z) = G(z)yd(z).

2.2. Controller performance

Applying control theoretic methods, we compute the re-
lationship between system stability, gain, and computing
delay for an inverted pendulum system. Results pertaining
to the pendulum system can be easily generalized to SISO
linear systems. Although these results are well known in
the control community, we feel it is necessary in this paper
to illustrate these results to reveal the connections between
controller design, scheduling algorithms, and power analy-
sis.

In classical control, there are several graphical ap-
proaches to analyze the stability of SISO linear system. We
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perform an analysis based on the root-locus plot to deter-
mine how stability of the system depends on gain K and
delay T . The basic idea of root-locus plot is to plot the tra-
jectories of the complex singular values of the closed loop
system (i.e., complex values that make the magnitude of the
transfer function go to infinity) when the gain K changes.
The singularities are also called the poles of the system. If
all the poles are inside the unit circle in the complex plane
where z belongs, then the system is stable; if any pole is
outside of the unit circle, then the system is unstable [2, 11].

Using the root-locus plot approach, we determine the
values of the time delay τ for which the system is stabiliz-
able. We say the inverted-pendulum system is stabilizable
only if there exists a value of gain K such that the poles of
the system lie inside the unit circle. This can only be true
when T ≤ γl

Jg = γ
mgl . This maximum time delay serves as

the hard deadline for the computing task. In addition, we
must have K ≥ Jg

l = mgl for the system to be stabilized,
for any value of T that is shorter than the hard deadline γ

mgl .
Next, we derive a deadline for computation delay for a

specific gain K. When K is fixed, we solve for the max-
imum corresponding delay such that the overall feedback
system is stable. A plot of this maximum delay versus K
is shown in Figure 3. This figure is achieved by solving for
values of T such that the significant branches of the root-
locus plot cross the unit circle boundary when a specific
value of gain K is used.

Figure 3. Maximum period T for which the
system is stable as a function of gain K. The
horizontal axis is for the gain and the verti-
cal axis is for the maximum time delay. The
system is always unstable for K ≤ mgl

From Figure 3, we see that using higher gains allows sig-
nificantly shorter periods for computing the control laws.
This is equivalent to saying that if longer computing delays

are expected, lower gain should be used to control the phys-
ical system, i.e., the pendulum.

Even if the system is stable, however, delay may re-
sult in unacceptable degradation in controlled system per-
formance. We measure system performance by analyzing
the sensitivity function S(z) which is the transfer function
from disturbances in the measurements (represented by ε(z)
in the block diagram Figure 2) to the tracking error e(z).
For the inverted pendulum system, the sensitivity function
S(z) is:

S(z) =
1

1 +KC (Iz − eAT )−1
Bz−1

. (6)

To track the input signal yd(z) and to reject noise in the
measurement, the magnitude of the (complex) sensitivity
function S(z) i.e., |S(z)|, should be as close to 0 as possi-
ble across all frequency spectrum to keep e(z) small for all
frequencies. However this goal cannot be realized because
decreasing |S(z)| at one frequency range will inevitably in-
crease |S(z)| at another frequency range as illustrated by
Figure 4. The best approach is to keep |S(z)| very small at
low frequency and the maximum value of |S(z)| not too big.
The controlled system will be effective in rejecting low fre-
quency noise and allowing some amount of high frequency
noise. This can be achieved for the inverted pendulum sys-
tem by choosing sufficiently high values of the gain K (see
Figure 4). It eventually becomes impossible to choose an
appropriate gain K so that the peak value of S(z) is suffi-
ciently small, as suggested by Figure 3.

Before we finish this section, we would like to point out
that the results generalize to other SISO systems. In fact
the relationship between control gain and deadline shown
in Figure 3 is typical for any SISO system, and the maxi-
mum magnitude of S(z) is the H∞ norm of the sensitivity
function for a SISO system [20]. These performance mea-
sures can also be extended to multiple input and multiple
output linear systems (MIMO), which will not be discussed
in this paper.

3. Task scheduling algorithms

In this section, we develop task scheduling algorithms
that schedule the computation of controllers on a single
processor to simultaneously control N pendulums. Each
controller is implemented by a computing task and there is
no data dependency between the tasks. Therefore the rate-
monotonic scheduling (RMS) method by Liu and Layland
[10] is appropriate. We assume the time spent to compute
each controller is fixed. Our goal is to find the optimal peri-
ods for all tasks, which we call an optimal operation point
that guarantees both the schedulability and the controller
performance of the N tasks and the N pendulums.
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(a) K = 20

(b) K = 4

Figure 4. Magnitude of sensitivity functions
for inverted pendulum system with T = 0.01
and gain K = 20 (a) and K = 4 (b). Note
that too high a gain produces an undesir-
able resonance peak, while too low a gain
causes undue sensitivity to low-frequency
disturbances.

3.1. Problem setup

We represent each controlling task using a three tuple
(Pi, Qi, Ti) where Pi is the priority of the task, Qi is the
computing time and Ti is the period for task i. RMS claims
that the sufficient condition for schedulability of theN tasks
is
∑
iQi/Ti ≤ a where a < 1 is known. The priority of

the tasks are assigned such that Pi > Pk if Ti < Tk.
Consider the control systems design results shown in

Figure 3. The computing period Ti should be less than the
control deadline τi(Ki), i.e., Ti ≤ τi(Ki). This require-
ment is to guarantee that any pendulum is still stable in the
worst case scenario. Letting Ti = τi may guarantee the
schedulability, but this sacrifices the physical system per-
formance and may even result in instability under perturba-
tions. Therefore, a critical question is how to determine Ti
to ensure both schedulability and robustness of the physical

systems. We call the collection (T1, T2, ..., TN ) an opera-
tion point of the CPS.

As an example, let us consider the case N = 2. We have
two independent pendulum systems with different physical
parameters, controlled by a single processor. Since we are
considering a simple proportional-gain feedback controller,
the computation time for both pendulum systems are equal
(Q1 = Q2). Without loss of generality, assume that task1 is
the higher-priority task. Suppose now that Q1 is preempted
by an interrupt or an unexpected task running on the same
processor orQ1 becomes longer due to faults in the comput-
ing systems. The task set (task1, task2) is no longer feasi-
ble under RMS. To maintain feasibility, we can increase the
task deadlines T1 or T2. Which deadline can be extended
depends on the physical performances of the systems being
controlled. Using the conclusions from root-locus methods,
we know that each pendulum system has a maximum delay
γi

mgli
. If this maximum delay is exceeded, the system be-

comes unstable regardless of the control effort. If, however,
we can extend either T1 or T2 without danger of destabiliz-
ing either pendulum system, our choice for which deadline
to extend should depend on the expected performance of
each system under additional delay.

3.2. Optimal operation points

We measure the performance of the inverted-pendulum
system by the H∞ norm of the sensitivity function, repre-
sented by ‖S(z)‖∞. Let z = ejωT , we obtain S(ω, T ),
the Fourier transform of the sensitivity function. Then
‖S(z)‖∞ is the maximum magnitude |S(ω, T )| for all fre-
quencies ω. The H∞ norm tells us the worst-case noise
amplification factor that needs to be minimized. In addi-
tion, the value of |S(ω, T )| when ω = 0, i.e., |S(0)|, mea-
sures rejection of low frequency noise. We must maintain
sufficient low-frequency attenuation that can be represented
by smaller |S(0)|. Figure 5 shows a plot of ‖S(z)‖∞ as a
function of controller gain K and delay T (upper branch),
as well as the low frequency sensitivity value |S(0)| as a
function of K and T (lower branch). We can observe that
lower gain K decreases the H∞ norm but increases |S(0)|.

For continuous systems, the value |S(0)| is independent
of time delay. Therefore, the control gainK can be selected
to achieve a small low frequency sensitivity value that is
not significantly affected by sampling time and delay. After
the gain is fixed for each pendulum, the overall system per-
formance as a function of time delay (T1, T2, ...TN ) for all
pendulums can be measured by summing all theH∞ norms:

Sa(T1, T2, ...TN ) =
N∑
i=1

‖Si(ω, Ti)‖∞. (7)

Therefore, to determine Ti, we need to solve the following
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(a) l = 0.1

(b) l = 0.37

Figure 5. Peak and low-frequency values of
‖S(z)‖∞ as a function of controller gain K
and delay T , for different values of pendulum
length l.

minimization problem:

Minimize Sa(T1, T2, ..., TN )
under the following constraints:

0 ≤
∑
i

Qi/Ti ≤ a

Qi ≤ Ti ≤ τi . (8)

where a < 1 is known.

Similarly, we can also define another performance mea-
sure to be

Sb(T1, T2, ...TN ) = max
i

[‖Si(ω, Ti)‖∞], (9)

and a constrained minimization problem using performance

measure Sb:

Minimize Sb(T1, T2, ..., TN )
under the following constraints:

0 ≤
∑
i

Qi/Ti ≤ a

Qi ≤ Ti ≤ τi . (10)

The following lemma claims that a solution to each of these
minimization problem always exists as long as the feasible
set defined by

F ={(T1, T2, ..., TN )|0 ≤
∑
i

Qi/Ti ≤ a

and Qi ≤ Ti ≤ τi)}. (11)

is not empty. This is based on the fact that F is a compact
set.

Lemma 3.1 If the feasible set F is not empty, then a solu-
tion to each of the minimization problems exists.

Figure 6. The objective function Sa of two
controlled pendulums. The pendulums have
lengths l1 = 0.1 and l2 = 0.37.

For pendulum control, numerical analysis shows that for
each i, the ‖Si(ω, Ti)‖∞ is a monotone function of Ti. This
can be observed from Figure 6 where the objective function
for two pendulums are illustrated. Therefore, we have the
following result.

Theorem 3.2 If ‖Si(ω, Ti)‖∞ is monotone in Ti for each
i, then the optimal operation point lies on the Liu-Layland
hyper-surface L defined by

L = {(T1, T2, ..., TN )|
∑
i

Qi/Ti = a and Qi ≤ Ti ≤ τi}.

(12)
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Proof We prove the claim by contradiction. Suppose we
can find an operation point (T 0

1 , T
0
2 , ..., T

0
N ) that belongs to

F , but does not lie on L, resulting in a minimum of the
cost function Sa or Sb. Then

∑
iQi/T

0
i < a. Without lost

of generality, assume that T 0
1 > T1 > Q1. We can then

decrease T 0
1 to T1 but hold other T 0

i unchanged such that
Q1/T1 +

∑N
i=2Qi/T

0
i = a. Since ‖S1‖∞ is monotone

for T1, the point (T1, T
0
2 , ..., T

0
N ) yields a smaller value for

Sa. This results in a contradiction. For Sb, without loss
of generality, we can assume that ‖S1‖∞ is greater than all
other ‖Si‖∞ in the neighborhood of the minimum operation
point. Then changing from T 0

1 to T1 decreases ‖S1‖∞ and
also decreases Sb, a contradiction.

The monotonicity of the H∞ norm in Ti results in very
simple algorithms to solve the optimization problems. We
can compute the function ‖Si‖∞ and its derivative ∂‖Si‖∞

∂Ti

off-line. Using this information and the knowledge that
the optimal operation point lies on the Liu-Layland hyper-
surface, we can find the optimal operation point using a gra-
dient based optimization algorithm [3] that searches for the
minimum point on the hyper-surface. This algorithm can be
performed online. But it still requires searching in theN−1
dimensional hyper-surface, and this may occupy significant
amount of CPU time.

The optimization problem can also be solved by using
the Lagrange multiplier method. Define the Lagrangian L
as follows:

L = Sa + λ(
N∑
i=1

Qi
Ti
− a) (13)

where λ is the Lagrange multiplier. Taking derivatives with
respect to Ti and λ, we get, for i = 1, 2, ..., N , the following
set of equations:

∂‖Si‖∞
∂Ti

− λQi
T 2
i

= 0 (14)

N∑
i=1

Qi
Ti
− a = 0. (15)

Solving the N equations in (14) for λ, we obtain λ =
T 2

i

Qi

∂‖Si‖∞
∂Ti

for i = 1, 2, ..., N . Then equation (15) can be
solved for Ti. We use the short hand notation ∂i‖Si‖∞ to
represent ∂‖Si‖∞

∂Ti
. Then for all i, j = 1, 2, ..., N , we have

Tj =

√
Qj
Qi

∂i‖Si‖∞
∂j‖Sj‖∞

Ti. (16)

Next we solve (15) to get the following results:

Ti =
1
a

N∑
j=1

√
QiQj

∂j‖Sj‖∞
∂i‖Si‖∞

. (17)

This is the solution for the operation point (T1, T2, ..., TN )
on the Liu-Layland hyper-surface L.

To reduce the computing time, we can use a heuristic
algorithm to find a suboptimal operation point for the ob-
jective function Sa. We first estimate the average gradient
of the objective function:

∇̄Sa ,
[
∂̄1‖S1‖∞, ∂̄2‖S2‖∞, ..., ∂̄N‖SN‖∞

]
. (18)

This estimation can be performed off-line. If we replace
∂i‖Si‖∞ and ∂j‖Sj‖∞ in (17) with the components of
the averaged gradient ∂̄i‖Si‖∞ and ∂̄j‖Sj‖∞ in (18), then
a heuristic operation point can be computed by (17) for
i = 1, 2, ..., N . This heuristic algorithm serves as an online
feedback scheduling algorithm that adjusts the task periods
(T1, T2, ..., TN ) according to the changing task execution
time (Q1, Q2, ..., QN ).

This feedback scheduling algorithm also works for the
case when the objective function Sb is used. In this case
the optimal operation point still locates on the Liu-Layland
hyper-surface. The optimal points locate either inside the
hyper-surface where Ti < τi for all i, or locate at the bound-
ary of the hyper-surface where Ti = τi for some i. If the
operation point is in the interior of the hyper-surface, the
normal vector to the hyper-surface must belong to the gen-
eralized gradient of the non-smooth function Sb [6].

The normal vector to the hyper-surface is aligned with
the vector

[
−Q1
T 2

1
,−Q2

T 2
2
, ...,−QN

T 2
N

]
but with unit length. The

generalized gradient of Sb is the set that contains all the
N dimensional vectors v such that the ith component vi
satisfies

vi = µi
∂̄‖Si‖∞
∂Ti

(19)

for some 0 ≤ µi ≤ 1 and for i = 1, 2, ..., N . The rule to
determine µi is as follows: if Sb = Si, then µi can be any
number between 0 and 1; if Sb 6= Si, then µi = 0.

Theorem 3.3 At the optimal operation point in the inte-
rior of the hyper-surface L, ‖Si‖∞ are identical for all
i = 1, 2, ..., N .

Proof We prove by contradiction. Suppose ‖S1‖∞ >
‖Si‖∞ for all i = 2, ..., N . Since the function ‖S1‖∞
is monotone, we can move the operation point along the
hyper-surface to reduce T1 and hence reduce ‖S1‖∞. The
decrease in T1 causes increases in other time periods. But
since no time period is at the boundary of L, this move-
ment of the operation point is valid. This will then reduce
Sb. This contradicts with the assumption that the operation
point is optimal.

With the above theorem, we conclude that at the optimal
operation point, 0 < µi ≤ 1 for all i. Let all µi to be
identical will give us a heuristic operation point that is the
same as the one when Sa is used.
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3.3. Non-critical operation points

In the most general situation, the H∞ norm may not be
monotone in T . In this case, we may still apply the heuristic
algorithms to find the optimal solutions on the Liu-Layland
hyper-surface. However, we are also interested in local op-
timal solutions that occur in the interior of the feasible set
F . Let us call solutions in the interior of F the interior min-
imums and solutions at the boundaries of F the boundary
minimums. An interior minimum is often preferred since
they are robust to boundary changes. Hence, small pertur-
bations ofQi and τi do not trigger significant changes in the
scheduling algorithm and in the system performance.

Definition 3.4 We name an interior (local) minimum for
the optimization problem (8) or (10) a non-critical opera-
tion point. We say a cyber-physical system is non-critical if
there exists at least one non-critical operating point.

The non-critical operation points can be computed off-
line by finding the points where the gradient of the cost
function vanishes. A list of these points can be stored in
memory. When boundary conditions change dramatically
so that the current operation point becomes invalid, and if
a new non-critical operation point can be found as valid,
the system can be switched to the new point without solv-
ing the optimization problem online. Of course, if a new
non-critical operation point does not exist, we can use the
heuristic algorithms in Section 3.2 to find operation points
on the hyper-surface.

We now use a simple model for power consumption by
the processor and change the objective function to include
this power consumption. The resulting objective function
stops being monotone and non-critical operation points can
be found.

If we assume a constant clock rate and fixed voltage
scheduling scheme, the processor power for N independent
tasks can be modeled as

P(T1, T2, ..., TN ) = U + V

N∑
i=1

1
Ti

(20)

where the coefficients U and V are positive real numbers
that can be determined experimentally. Suppose U and V
are known, we may formulate an optimization problem

Minimize Sa + βP
under the following constraints:

0 ≤
∑
i

Qi/Ti ≤ a

Qi ≤ Ti ≤ τi (21)

where β > 0 is a scaling factor.

A candidate noncritical operation point exists where
∇(Sa + βP) = 0. This implies that ∂i‖Si‖∞ = βV

T 2
i

.

Therefore, the period Ti can be solved as Ti =
√

βV
∂i‖Si‖∞ .

The term
√
∂i‖Si‖∞ can replaced by the components of

the averaged gradient, i.e.,
√
∂̄i‖Si‖∞ for fast computation

of operation points.

4. Transient performance

Our online feedback scheduling algorithms are capable
of changing the operation points. Such changes may take
a certain amount of time to happen in a processor. During
this period, and in the worst case, computing of the control
commands may fail. This failure in a short period of time
will have effects on the physical system. After the proces-
sor shifts to a new schedule, the physical system typically
needs significant time to settle to the new “steady state”.
This period of time, between the event that a scheduler starts
shifting its operation point and the physical system reaches
a new steady state, is called the transient time. The first
portion of the transient time is the response time for the
scheduler, and the second portion of the transient time is the
response time for the physical system. System performance
during the transient time needs to be analyzed to guarantee
safety and performance.

In the application of controlling inverted pendulums, the
response time of the scheduler can be measured by how
many control periods are missed. During this period, the
control effort stops being a function of the state variable θ
which is the first component of vector xk. To simplify our
discussion, we suppose that the control effort vanishes. The
physical dynamics of one pendulum without control is then

xk+1 = eATxk (22)

Suppose that m periods of the control commands are miss-
ing. Then at the end of the period, the system state is

xk+m = emATxk (23)

Because one eigenvalue of matrix A has positive real parts,
the corresponding eigenvalue of matrix emAT lies out of
the unit circle in the complex plane. Then we will have
|θk+m| > |θk| and the eigenvalues of emAT determines how
fast θ grows. In the worst case, the maximum |θk| is given
by ‖S(ω, T )‖∞E where E is the maximum noise strength.
Hence the maximum error caused by missing m periods of
control commands is given by

|θk+m| = ρ(emAT )‖S(ω, T )‖∞E (24)

where the ρ(emAT ) is the maximum magnitude of the
eigenvalues of emAT .
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After the scheduler successfully sets up the new oper-
ation point and the control commands recovered, the pen-
dulum will be controlled to the new “steady state” where
|θk| ≤ ‖S(ω, T̂ )‖∞E where T̂ is the new control period.
The time it takes for this to happen can be estimated by
studying the closed-loop dynamics. To simplify the analy-
sis, let us first assume that the effect caused by time delay
and sampling can be omitted. Then the closed-loop dynam-
ics is

xj+1 = (e(A−BK)T̂ )xj (25)

where K is the control gain. We then have
|θj+n| = ρ(e(A−BK)nT̂ )|θj |. Starting from
|θj | = ρ(emAT )‖S(ω, T )‖∞E, the time it takes to
have |θj+n| = ‖S(ω, T̂ )‖∞E must be

nT̂ =
1

ρ(A−BK)

(
ρ(A)mT − log(

‖S(ω, T̂ )‖∞
‖S(ω, T )‖∞

)

)
(26)

Therefore, for each pendulum, the transient time T ′i can
be computed as

T ′i = miTi + niT̂i

=
(
ρ(A−BK) + ρ(A)

ρ(A−BK)
mT

− 1
ρ(A−BK)

log(
‖S(ω, T̂ )‖∞
‖S(ω, T )‖∞

)

)
i

(27)

where the index i indicates the ith pendulum and niT̂i is
given by (26) with index i. Therefore, for the entire N
pendulum system, the minimum interval T between tran-
sitions of operation points must satisfy T > maxi T ′i for
i = 1, 2, ..., N . This allows the system to “absorb” the tran-
sients caused by switching operation points.

5. Simulation results

The simulations of controlling three pendulums are set
up using Truetime and the control systems toolbox of MAT-
LAB. We assume all pendulums have mass m = 0.5kg
with friction coefficient γ = 0.6. The pendulums differ
from each other by their length selected as [l1, l2, l3] =
[0.2, 0.35, 0.5].

Following the design procedure described in Section 2,
we select control gains for the three pendulums as K1 = 5,
K2 = 7, and K3 = 9. Therefore, the maximum al-
lowed time delays are τ1 = 0.0986s, τ2 = 0.0614s, and
τ3 = 0.0454s. Since a longer pendulum has lower natural
frequency, the control gain has to be higher to suppress low
frequency noise, resulting in a shorter allowable delay.

We first compare the online and the offline scheduling
algorithms originated from equation (17). The offline algo-
rithm requires solving (17), and the online algorithm only

Figure 7. The step response for pendulum 1.
Solid line (green) is produced by online algo-
rithm; dotted line (red) is produced by off-line
algorithm.

needs an estimate of the averaged gradient. We select the
utilization factor to be a = 0.6 and choose the comput-
ing time for the controllers to be identically Q = 0.004s.
Then the online algorithm produces an operation point
[T1, T2, T3] = [0.0489, 0.0232, 0.0116]s with the cost func-
tion Sa = 8.25, but the offline algorithm produces an oper-
ation point [0.0303, 0.0208, 0.0154] with the cost function
Sa = 7.76. It is easy to verify that both operation points are
very close to the Liu-Layland hyper-surface. From com-
paring the operation points we observe that the online algo-
rithm produces longer period for the shorter pendulums than
the offline algorithm. Figure 7 illustrates the step response
for pendulum 1. We see that the offline algorithm (dotted
line) delivers better performance. The step responses for the
other two pendulums are almost indistinguishable between
the two algorithms. These results illustrate the optimality of
the offline algorithm. The schedulability is demonstrated in
Figure 8.

We now illustrate a procedure to co-design the control
gain K and the operation point. Keeping a = 0.6, when
Q doubles to 0.008. The offline algorithm shifts the op-
eration point to [0.0607, 0.0396, 0.0293] with cost Sa =
14.27. But the online algorithm shifted the operation point
to [0.0978, 0.0465, 0.0231] with high cost Sa = 35.75.
This high cost indicates that the system is about to loose
stability. We can also see pendulum 1 has delay that is
close to the allowable maximum delay. Simulation on True-
time confirms this observation by showing that pendulum
1 starts oscillation. In this situation, the control gain for
K1 must be decreased. Decreasing the gain K1 by half
to 2.5 will increase the allowable time delay to 0.1908.
Then the online algorithm produces a new operation point
at [0.1176, 0.0453, 0.0225] with Sa = 13.75. Simulation
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Figure 8. Schedule for control tasks.

shows that the system regains stability.

6. Conclusions

This paper develops theoretical results in designing
scheduling algorithms for control applications of CPS to
achieve balances among robustness, schedulability and
power consumption. Our algorithms minimizes the H∞
norm of SISO system subject to constraints posted by
schedulability to produce operation points on the Liu-
Layland hypersurface. We explore the existence of non-
critical operation points that are robust to variations in CPU
time. Approximations of these operation points can be
found by heuristic algorithms that are implemented as on-
line scheduling algorithms. Shifting of operation points
typically causes performance degradation over the transient
time. Such transient time limits the frequency to shift oper-
ation points by the online scheduling algorithm.
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