
Introducing a Component Technology for Safety

Critical Embedded Real-Time Systems

Kristian Sandström, Johan Fredriksson, and Mikael Åkerholm

Mälardalen Real-Time Research Centre,
Department of Computer Science and Engineering,
Mälardalen University, Box 883, Väster̊as, Sweden,

http://www.mrtc.mdh.se
kristian.sandstrom@mdh.se

Abstract. Safety critical embedded real-time systems represent a class
of systems that has attracted relatively little attention in research ad-
dressing component based software engineering. Hence, the most widely
spread component technologies are not used for resource constrained
safety critical real-time systems. They are simply to resource demand-
ing, to complex and to unpredictable. In this paper we show how to use
component based software engineering for low footprint systems with
very high demands on safe and reliable behaviour. The key concept is
to provide expressive design time models and yet resource effective run-
time models by statically resolve resource usage and timing by powerful
compile time techniques. This results in a component technology for re-
source effective and temporally verified mapping of a component model
to a commercial real-time operating system.

1 Introduction

The vehicle domain represents a class of embedded real-time systems where the
requirements on safety, reliability, resource usage, and cost leaven all through
development. Historically, the development of such systems has been done using
only low level programming languages, to guarantee full control over the system
behaviour. As the complexity and the amount of functionality implemented by
software increase, so does the cost for software development. Therefore it is
important to introduce software development paradigms that increase software
development productivity. Furthermore, since product lines are common within
the domain, issues of commonality and reuse is central for reducing cost as well
as increasing reliability.

Component based software engineering is a promising approach for efficient
software development, enabling well defined software architectures as well as
reuse. Although component technologies have been developed addressing differ-
ent demands and domains, there are few component technologies targeting the
specific demands of safety critical embedded real-time systems. Critical for the
safe and reliable operation of these systems is the real-time behaviour, where
the timeliness of computer activities is essential. To be able to guarantee these

properties it is necessary to apply real-time systems theory. Thus, a component
technology to be used within this domain has to address specification, analysis,
and implementation of real-time behaviour.

A typical real-time constraint is a deadline on a transaction of co-operating
activities. A transaction in these systems would typically sample information
about the environment, perform calculations based on that information and ac-
cordingly apply a response to the environment, all within a limited time frame.
Also important is the ability to constrain the variation in periodicity of an activ-
ity (jitter). The reason for this is that variations in periodicity of observations of
the environment and responses to the same, will affect the control performance.
Hence, a component technology for this domain should have the ability to clearly
express and efficiently realize these constraints [1],[2],[3],[4].

The work described in this paper present a component technology for safety
critical embedded real-time systems that is based on experience from our pre-
vious work with introducing state-of-the-art real-time technology in the vehicle
industry. The benefits in development have been discussed in [5] and have also
been proven by long industrial use. That real-time technology has been incor-
porated in the Rubus development suite and has been further developed [6].
Experience from the industrial application of the research reveals that a proper
component model is not enough; success requires an unbroken chain of models,
methods, and tools from early design to implementation and run-time environ-
ment.

The contribution of the work presented in this paper includes a component
technology for resource effective and temporally verified mapping of a component
model to a resource structure such as a commercial Real-Time Operating Sys-
tem (RTOS). This is made possible by introduction of a component model that
support specification of high level real-time constraints, by presenting a mapping
to a real-time model permitting use of standard real-time theory. Moreover, it
supports synthesis of run-time mechanisms for predictable execution according
to the temporal specification in the component model. Furthermore, in this work
some limitations in previous work with respect to specification and synthesis of
real-time behaviour are removed. These limitations are partially discussed in [5]
and is mainly related to jitter and execution behaviour.

Many common component technologies are not used for resource constrained
systems, nor safety critical, neither real-time systems. They are simply to re-
source demanding, to complex and unpredictable. The research community has
paid attention to the problem, and recent research has resulted in development
of more suitable technologies for these classes of systems. Philips use Koala [7],
designed for resource constrained systems, but without support for real-time
verification. Pecos [8] is a collaboration project between ABB and University
partners with focus on a component technology for field devices. The project
considers different aspects related to real-time and resource constrained sys-
tems, during composition they are using components without code introspection
possibilities that might be a problem for safety critical applications. Rubus OS
[6] is shipped with a component technology with support for prediction of real-

time behaviour, though not directly on transactions and jitter constraints and
not on sporadic activities. Stewart, Volpe, and Khosla suggest a combination
of object oriented design and port automaton theory called Port Based Objects
[9]. The port automaton theory gives prediction possibilities for control appli-
cations, although not for transactions and jitter constraints discussed in this
paper. Schmidt and Reussner propose to use transition functions to model and
predict reliability in [10]; they are not addressing real-time behaviour. Wallnau
et al. suggest to restrict the usage of component technologies, to enable predic-
tion of desired run-time attributes in [11], the work is general and not focused
on particular theories and methods like the work presented in this paper.

The outline of the rest of this paper is as follows; section 2 gives an overview of
the component technology. In section 3 the component model is described and its
transformation to a real-time model is explained in section 4. Section 5 presents
the steps for synthesis of real-time attributes and discusses run-time support.
Finally, in section 6, future work is discussed and the paper is concluded.

2 Component Technology

In this section we will give an overview of the component technology facilitating
component based software development for safety-critical embedded real-time
systems. We will hereafter refer to this component technology as the AutoComp
technology. A key concept in AutoComp is that it allows engineers to practise
Component Based Software Engineering (CBSE) without involving heavy run-
time mechanisms; it relies on powerful design and compile-time mechanisms and
simple and predictable run-time mechanisms. AutoComp is separated into three
different parts; component model, real-time model and run-time system model.
The component model is used during design time for describing an application.
The model is then transformed into a real-time model providing theories for
synthesis of the high level temporal constraints into attributes of the run-time
system model. An overview of the technology can be seen in Fig. 1. The different
steps in the figure is divided into design time, compile time, and run-time to
display at which point in time during development they are addressed or used.

During design time, developers are only concerned with the component model
and can practise CBSE fully utilizing its advantages. Moreover, high level tempo-
ral constraints in form of end-to-end deadlines and jitter are supported. Meaning
that developers are not burdened with the task of setting artificial requirements
on task level, which is essential [12], [5]. It is often natural to express timing
constraints in the application requirements as end-to-end constraints.

The compile time steps, illustrated in Fig. 1, incorporate a transition from
the component based design, to a real-time model enabling existing real-time
analysis and mapping to a RTOS. During this step the components are replaced
by real-time tasks. Main concerns in this phase are allocation of components to
tasks, assignment of task attributes, and real-time analysis. During attribute as-
signment, run-time attributes that are used by the underlying operating system
are assigned to the tasks. The attributes are determined so that the high level

constraints specified by the developer during the design step are met. Finally,
when meeting the constraints of the system, a synthesis step is executed. It is
within this step the binary representation of the system is created, often the
operating system and run-time system are also included with the application
code in a single bundle

Real-Time
Analysis

Real-time model

Synthesis

Design-
Time

Compile-
Time

Run-
Time

Target application

Component model

Model transformation

RTOS

t

Fig. 1. The AutoComp component technology

The run-time system is assumed to be a traditional RTOS with Fixed Priority
Scheduling (FPS) of tasks. Most commercial RTOS can be classified into this
category; furthermore they are simple, resource efficient and many real-time
analysis techniques exist. In some cases a layer providing run-time support for
the tasks has to be implemented in order to fully support FPS models used in
real-time theory.

3 Component Model

Vehicles present a heterogeneous environment where the interaction between the
computer system and the vehicle take different forms. Some vehicle functional-
ity requires periodic execution of software, e.g., feedback control, whereas other
functionality has a sporadic nature, e.g., alarms. Although vehicle control plays
a central role, there is also an abundance of other functionality in vehicles that
is less critical and has other characteristics, e.g., requires more flexibility. Al-
though less critical, many of these functions will still interact with other more
critical parts of the control system, consider for example diagnostics. We present
a model that in a seamless way allows the integration of different functionality,

by supporting early specification of the high level temporal constraints that a
given functionality has to meet. Moreover, the computational model is based
on a data flow style that results in simple application descriptions and system
implementations that are relatively straightforward to analyse and verify. The
data flow style is commonly used within the embedded systems domain, e.g., in
IEC 61131 used for automation [13] and in Simulink used for control modelling
[14].

The definition of the AutoComp component model is divided into com-
ponents, component interfaces, composition, the components invocation cycle,
transactions and system representation. In Fig. 2 the component model is illus-
trated using UML2, which could be a possible graphical representation during
design.

<< AutoComp>>

Power Supervison

<<provided ports>>
Desired Output Level

<<required ports>>
Air Valve
Diesel Valve

<<realisations>>

airDieselRegulation

<<AutoComp>>

Power Supervison

Desired Output level

Source

Diesel Valve

Sink

Diesel Valve

<<AutoComp>>

Valve Regulator

Regulate Output

User Power Supervision Valve Regulator

Desired Output Level

Air Valve

Diesel Valve

t = now

{t..t+20}

Component

Composition

Transaction

Sink
Source

WCET

Sink
T = 40 ms

Air Valve

Air Valve

<<control ports>>

Fig. 2. In the upper left part of the figure there is a UML 2 component diagram
for modelling of a component. The lower part of the figure is a composition diagram
showing a composition of two components. Finally the upper right part of the figure
is a sequence diagram with a timing constraint that is used to express the end-to-end
deadline for a transaction

The components are defined as glass box, meaning that a developer can see
the code of a component for introspection purposes. It does not mean that a
developer has to look into a component during normal composition, and not

that it is allowed to modify a component. The introspection possibility is a
requirement during verification of safety critical applications in order to gain
complete knowledge about components behaviour. Furthermore, the components
can only exchange data with each others through data ports. A component can
be a composite containing a complete subsystem, or a basic component with an
entry function. Composite components can be treated as any other component
during composition, but it is also possible to enter a composite and change
timing requirements and other properties. The entry function provided by non-
composite components can be compared to the entry function for a computer
program, meaning that the contained number of functions of the component can
be arbitrary.

The interfaces offered by a component can be grouped into the two classes
data and control interfaces. The data interfaces are used to specify the data flow
between components, and consist of data ports. Data ports have a specified type
and can be either provided or required. Provided ports are the ports provided
by components for input, i.e., the ports a component reads data from. Required
ports are the ports a component writes data to. A component also has a control
interface with a mandatory control sink, and an optional control source. The
control interface is used for specifying the control flow in the application, i.e.,
when or as a response to what component should be triggered. The control sink
is used for triggering the functionality inside the component, while the control
source is used for triggering other components.

During composition the developer has three main techniques to work with.
The data flow is specified through connection of provided and required data
ports. The rules are as follows; required ports must be wired to provided ports
with a compatible type. It is possible to make abstractions through definition of
composite components. Composite components can be powerful abstractions for
visualizing and understanding a complex system, as well as they provide larger
units of reuse. The control flow is specified through binding the control sinks to
period times for periodic invocation, to external events for event invocation, or
to control sources of other components for invocation upon completion of the
other components.

A components invocation cycle can be explained as in the following sentences.
Upon stimuli on the control sink, in form of an event from a timer, an external
source or another component; the component is invoked. The execution begins
with reading the provided ports. Then the component executes the contained
code. During the execution, the component can use data from the provided ports
and write to the required ports as desired, but the writes will only have local
effect. In the last phase written data become visible on the required ports, and
if the control source in the control interface is present and wired to the control
sink of another component stimulus is generated.

Transactions allow developers to define and set end-to-end timing constraints
on activities involving several components. A transaction in AutoComp can be
defined as:

A transaction Tri is defined by a tuple < C, D, Js, Jc > where:

C - represent an ordered sequence of components;
D - represent the end-to-end deadline of the transaction;
Js - represent the constraint on start jitter of the transaction;
Jc - represent the constraint on completion jitter of the transaction.

The end-to-end deadline is the latest point in time when the transaction must
be completed, relative to its activation. Jitter requirements are optional and can
be specified for transactions involving time triggered components. Start jitter is a
constraint of the periodicity of the transactions starting point, while completion
jitter is a constraint on the periodicity of a transactions completion point. Both
types of jitter are expressed as a maximum allowed deviation from the nominal
period time. A restriction, necessary for real-time analysis, is that components
directly triggered by an external event can only be part of a transaction as the
first component.

A system can be described with the UML class diagram in Fig. 3. A system
is composed of one or several components, each with a data interface, a control
interface and a realization as a subsystem or an entry function. A system also
has zero or more data couplings, describing a connected pair of required and
provided data ports. Furthermore, systems have zero or more control couplings
which describe a connected pair of control sink and source. Finally, the last
part of a system is zero or more transactions with the included components, an
end-to-end deadline and the possibility to specify jitter requirements.

System

ID

Entry Function

ID

Data Interface

Provided Ports
Required Ports

Control Interface

Sink Port
Source Port

Realisation

Transaction

Included Components
End2End Deadline
Jitter Requirements

Data Coupling

Connected Data Ports

Component

ID

Control Coupling

Connected Control Ports

System

ID

0..*0..*

0..*0..*

1..*

1

1..*

1

0..*0..*

Fig. 3. UML class diagram showing the static view of the component model

4 Model Transformation

Model transformation involves the steps necessary in order to transit from the
component model allowing an efficient and powerful design phase, to a run-
time model enabling verification of temporal constraints and usage of efficient
and deterministic execution environments. As previous stated in section 2 we
assume a FPS run-time model. The FPS model defines a system as a set of
tasks with the attributes period time, priority, offset, and WCET. Hence, it is
necessary to translate the component model with its temporal constraints in
to tasks holding these attributes. The translation is performed in two separate
steps; the first step is to make a transformation between components and task
(task allocation), the second step is to assign attributes to the tasks (attribute
assignment). To assign the FPS model attributes in such a way that the high
level temporal constraints on transactions are met is non-trivial and has been
addressed in research by e.g., [1], [3].

4.1 Task Allocation

The easiest approach for task allocation is a one to one relationship between
components and tasks, but that is not necessarily optimal. In fact the task allo-
cation step has a lot of different tradeoffs. Such tradeoffs can be found between
reliability and run time overhead; few tasks reduce run time overhead at the
cost of memory protection (usually at task level) between components. Testabil-
ity and schedulability are examples of other properties that are affected by the
allocation scheme.

In this paper we introduce a task allocation strategy that strives to reduce
the number of tasks considering schedulability and reliability. Components are
not allocated to the same task if schedulability is obviously negatively affected
and structurally unrelated components are not allocated to the same task in
order to cater for memory protection and flexibility.

The first step in the allocation process is to convert all composite components
to a flat structure of the contained basic components. Secondly the following rules
are applied:

1. All instances of components are allocated to separate tasks, Worst Case
Execution Time (WCET) is directly inherited from a component to the
corresponding task

2. The start jitter Js corresponding to a transaction with jitter requirements
is set as a requirement on the task allocated for the first component in the
ordered sequence C, while the completion jitter Jc is set to the task allocated
for the last component in the sequence

3. Tasks allocated for components with connected pairs of control sink and
sources, where the task with the source do not have any jitter requirements,
and both tasks are participating in the same and only that transaction are
merged. The resulting WCET is an addition from all integrated tasks WCET

4. Tasks allocated for time triggered components that have the same period
time, not have any jitter constraints and are in a sequence in the same and
only that transaction are merged. The resulting WCET is an addition from
all integrated tasks WCET

The situation after application of the allocation rules is a set of real-time
tasks. The high level timing requirements are still expressed in transactions, but
instead of containing an ordered set of components a transaction now contain
an ordered set of tasks. The rest of the attributes, those that cannot be mapped
directly from the component model to the real-time model are taken care of in
the following attribute assignment step. In Fig. 4, given the two transactions
Tr1 =< C, D, Js, Jc >=< A, B, C, 60,−, 25 > and Tr2 =< C, D, Js, Jc >=<

D, E, F , 40, 5,− > the task allocation step for the components in Table 1 is
shown. The resulting task set is in Table 2.

 <<AutoComp>>

A

<<AutoComp>>

B

<<AutoComp>>

C

Sink Sink

Source

Sink

<<AutoComp>>

F

Sink

Level

Level

Adjust

Adjust

<<AutoComp>>

E

Sink

Lock

Lock

Task 1 Task 2

Task 4

<<AutoComp>>

D

Sink

Task 3

Sample

Sample

Fig. 4. Task allocation example

Sink Bound To WCET

A T = 100 5
B A.Source 10
C T = 60 5
D T = 40 5
E T = 40 6
F T = 40 9

Table 1. A component set

Trigger Jitter WCET

Task 1 T = 100 15
Task 2 T = 60 25 5
Task 3 T = 40 5 5
Task 4 T = 40 15

Table 2. The resulting task set

4.2 Attribute Assignment

After the components have been assigned to tasks, the tasks must be assigned
attributes so that the high level temporal requirements on transactions are met.
Attributes that are assigned during task allocation are WCET for all tasks, a
period time for periodic tasks and a Minimum Interarrival Time (MINT) for
event triggered tasks.

The scheduling model that is used throughout this paper is FPS, where
tasks have their priorities and offsets assigned using an arbitrary task attribute
assignment methodology. Examples of existing methods that can be used for
priority assignment are Bate and Burns [1], Sandström and Norström [3] or by
combination of Yerraballi [15] or Cheng and Agrawala [16] with Dobrin, Fohler
and Puschner [17]. In this paper it is assumed that task attributes are assigned
using the algorithm proposed by Bate and Burns [1], and it is showed that the
component model described in this paper is applicable to their analysis model.
Weather the tasks are time triggered or event triggered is not considered in the
Bate and Burns analysis but is required during the mapping to the FPS model,
where periodic and event triggered (sporadic) tasks are separated. The attributes
that are relevant, considering this work, in the Bate and Burns approach are
listed below.

For tasks:

T (Period) - All periodic tasks have a period time that is assigned during the
task allocation. Sporadic tasks have a MINT that analytically can be seen
as a period time;

J (Jitter) - The jitter constraints for a task is the allowed variation of task
completion from precise periodicity. This type of jitter constraint is known
as completion jitter. Jitter constraints can be set on the first and last task
in a transaction;

R (Worst Case Response time) - The initial Worst Case Response time for
a task is the WCET for the task, i.e., the longest time for a task to finish
execution from its starting point in time.

For transactions:

T (Period) - The period of a transaction is the least common multiple of the
period times of the participating tasks of the transaction;

End-to-End deadline - Transactions have a requirement that all tasks have
finished their execution within a certain time from the transactions point of
start in time.

In Bate and Burns approach additional attributes, such as deadline and sep-
aration for tasks and jitter requirements for transactions are considered. In this
paper those attributes are disregarded since there are no such requirements in
the previously described component model. It is trivial to see that from the com-
ponent model, the period and jitter constraints match the model proposed by
Bate and Burns. The initial worst case response time R is assigned the WCET
value in the component model. For the transaction the end-to-end deadline re-
quirements match the transaction deadline of the Bate and Burns model. The
period time of the transaction is derived from the least common multiple of the
period of the tasks participating in the transaction.

The next step is naturally to assign the FPS model with run-time and anal-
ysis attributes. The new attributes priority and offsets will be derived through
existing analysis methods [1]. The new parameters for the FPS model are de-
scribed below.

P (Priority) - The priority is an attribute that indicates the importance of
the task relative to other tasks in the system. In a FPS system tasks are
scheduled according to their priority, the task with the highest priority is
always executed first. All tasks in the system are assigned a priority;

O (Offset) - The offset is an attribute that periodic tasks with jitter constraints
are assigned. The earliest start time is derived by adding the offset to the
period time.

In Table 3 it is summarized what attributes belonging to time triggered and
event triggered tasks in the FPS model.

Attribute Time triggered Event triggered

Period X
MINT X

Priority X X
Offset X (Upon Jitter Constraints)

WCET X X

Table 3. Attributes associated with time and event triggered tasks

Applying the Bate and Burns algorithm determines task attributes from the
tasks and transactions described in Table 2. The resulting run-time attributes
priority, offset period and WCET are shown in Table 4. The attributes offset
and priority are determined with the Bate and Burns analysis, whilst the period
and WCET are determined in the task allocation.

Priority Offset Period WCET

Task 1 2 0 100 15
Task 2 1 (Lowest) 35 60 5
Task 3 4 (Highest) 0 40 5
Task 4 3 0 40 15

Table 4. Assigned task attributes

Task 1

Task 2

Task 3

Task 4

50 100 150 200 Transaction Tr2

Transaction Tr1

Fig. 5. Trace of an FPS schedule

In Fig. 5 a run-time trace for an FPS system is shown and the transactions
Tr1 and Tr2 are indicated.

When the FPS model has been assigned its attributes it has to be verified.
The verification of the model is performed by applying real-time scheduling anal-
ysis to confirm that the model is schedulable with the assigned parameters. This
is necessary since attribute assignment does not necessarily guarantee schedula-
bility, but only assigns attributes considering the relation between the tasks.

4.3 Real-Time Analysis

To show that the FPS tasks will meet their stipulated timing constraints, schedu-
lability analysis must be performed. Much research has been done with respect
to analysis of different properties of FPS systems, and all those results are avail-
able for use, once a FPS model has been established. The temporal analysis of an
FPS system with offsets, sporadic tasks and synchronization has been covered
in research by e.g., Palencia et al. [18], [19] and Redell [20].

The output from the analysis is whether the system is feasible or not in the
worst case. If the analysis shows that the system is infeasible, the parts that can
not keep its requirements are either changed and reanalysed or emphasised for
the developer to make changes.

5 Synthesis

The next step after the model transformation and real-time analysis is to synthe-
sise code for the run-time system. This includes mapping the tasks to operating
system specific task entities, mapping data connections to an OS specific com-
munication, modifying the middleware, generating glue code, compiling, linking
and bundling the program code (see Fig. 6).

The synthesis is divided into two major parts. Given a task set and necessary
information about the run-time system, the synthesis generates code considering
communication, synchronization.

RTOS

void actuate(
if(level >
out += -1;
}
postCreate(

set = initi

Task Assignment

Assignment of
Run-time attributes

SynthesisSynthesis

<<component>>

D

<<component>>

A

<<component>>

B

<<component>>

C

Data port connections

Code

RTOS characteristics and
Run-Time system

Run-Time System

Executable Reliable Bundle
For Embedded Systems

RTOS

void actuate(
if(level >
out += -1;
}
postCreate(

set = initi

Task Assignment

Assignment of
Run-time attributes

SynthesisSynthesis

<<component>>

D

<<component>>

A

<<component>>

B

<<component>>

C

Data port connections

Code

RTOS characteristics and
Run-Time system

Run-Time System

Executable Reliable Bundle
For Embedded Systems

Fig. 6. The steps of synthesizing code for the run-time system

– The first part in synthesis is to resolve the communication within and be-
tween tasks. Two communicating components that are assigned to different
tasks will form an Inter Task Communication (ITC) while communication
between components assigned to the same task are realized with shared data
spaces within the task. The ITC is later mapped to operating system specific
communication directives.

– The other part in the synthesis is to resolve the control couplings, i.e., the
sink and source. If a tasks starting point is dependent on the former tasks
finishing point the tasks have to be synchronized. The synchronization is
solved through scheduling. The synthesis will generate code for scheduling
periodic tasks, handle the control flow between tasks and consider offsets.
The code generated for the periodic scheduling and offsets is dependent on
the middleware and can be realized as a configuration file or actual code in
each task. Invocations of sporadic tasks are mapped to event handlers in the
middleware or the operating system.

It is assumed that a middleware is present as shown in Fig. 7, for each plat-
form and that it provides functionality that the component model needs but the

 <<component >>

A
<<component>>

B
<<component>>

C

<<component >>

A
<<component>>

B
<<component>>

C

Middleware Middleware

Fig. 7. A component model with adjustments for different operating systems to pro-
mote platform independence

operating system does not provide. The more functionality the operating system
provides, the smaller the middleware has to be. The middleware encapsulates
core communication and concurrency services to eliminate many non-portable
aspects of developing and is hence platform specific in favour of a platform inde-
pendent component model. Typical functionality that is not provided by most
commercial RTOS is periodicity and support for offsets. The middleware also
need to support sink and source couplings since task coupled with its source
need to be able to invoke the corresponding task. The run-time system conforms
to FPS and hence the run-time task model is similar to the previously described
FPS model with some exceptions. The worst case execution time is merely an
analysis attribute and is not needed in the run-time model. The MINT is usually
a requirement on the environment rather than a task attribute, and is thus also
analytical and unnecessary. Hence the run-time task model is for periodic tasks
Period time, Priority, Offset and for sporadic tasks Priority.

6 Conclusions and Future Work

In this paper we show how to use component based software engineering for
low footprint systems with very high demands on safe and reliable behaviour.
The key concept is to provide expressive design time models and yet resource
effective run-time models by statically resolve resource usage and timing by
powerful compile time techniques.

The work presented in this paper introduces a component technology for
resource effective and temporally verified mapping of a component model to a
resource structure such as a commercial RTOS. This is made possible by intro-
duction of a component model that support specification of high level real-time
constraints, by presenting a mapping to a real-time model, permitting use of
standard real-time theory, and by synthesis of run-time mechanisms for pre-
dictable execution according to the temporal specification in the component
model.

Although the basic concept has been validated by successful industrial ap-
plication of previous work [5], it is necessary to further validate the component
technology presented here. In order to facilitate this, a prototype implementation
of the component technology is under development where the core part has been
completed. The prototype will enable evaluation of different technology realisa-
tions with respect to performance. Moreover, parts of the model transformation
need additional attention, foremost the strategies for allocation of components
to tasks. Furthermore, we will make efforts in extending the component model
making it more expressive and flexible while still keeping the ability for real-
time analysis. Interesting is also to investigate trade-offs between run-time foot
print and flexibility with respect to e.g., adding functionality post production.
Finally, the component technology will be evaluated in a larger, preferably in-
dustrial, case.

References

1. Bate, A., Burns, I.: An approach to task attribute assignment for uniprocessor
systems. In: Proceedings of the 26th Annual International Computer Software and
Applications Conference, IEEE (2002)

2. Mok, K., Tsou, D., Rooij, R.C.M.D.: The msp.rtl real-time scheduler synthesis tool.
In: In Proc. 17th IEEE Real-Time Systems Symposium, IEEE (1996) 118–128

3. Sandström, K., Norström, C.: Managing complex temporal requirements in real-
time control systems. In: In 9th IEEE Conference on Engineering of Computer-
Based Systems Sweden, IEEE (2002)

4. Würtz, J., Schild, K.: Scheduling of time-triggered real-time systems. In: In Con-
straints, Kluwer Academic Publishers. (2000) 335–357

5. Norström, C., Gustafsson, M., Sandström, K., Mäki-Turja, J., B̊ankestad, N.: Ex-
periences from introducing state-of-the-art real-time techniques in the automotive
industry. In: In Eigth IEEE International Conference and Workshop on the Engi-
neering of Compute-Based Systems Washington, US, IEEE (2001)

6. Arcticus: (Arcticus homepage: http://www.arcticus.se)
7. van Ommering, R., van der Linden, F., Kramer, J.: The koala component model

for con-sumer electronics software. In: IEEE Computer, IEEE (2000) 78–85
8. Nierstrasz, G., Arevalo, S., Ducasse, R., Wuyts, A., Black, P., Müller, C., Zeidler,

T., Genssler, R., van den Born, A.: Component model for field devices. In: Pro-
ceedings of the First International IFIP/ACM Working Conference on Component
Deployment, Germany. (2002)

9. Stewart, D.B., Volpe, R.A., Khosla, P.K.: Design of dynamically reconfigurable
real-time software using port-based objects. In: IEEE Transactions on Software
Engineering, IEEE (1997) 759–776

10. Schmidt, W.H., Reussner, R.H.: Parameterised contracts and adaptor synthesis.
In: Proc. 5th International Workshop of Component-Based Software Engineering
(CBSE5). (2002)

11. Hissam, S.A., Moreno, G.A., Stafford, J., Wallnau, K.C.: Packaging predictable
assem-bly with prediction-enabled component technology. Technical report (2001)

12. Hammer, D.K.., Chaudron, M.R.V.: Component-based software engineering for
re-source-constraint systems: What are the needs? In: 6th Workshop on Object-
Oriented Real-Time Dependable Systems, Rome, Italy. (2001)

13. IEC: International standard IEC 1131: Programmable controllers (1992)
14. Mathworks: (Mathworks homepage : http://www.mathworks.com)
15. Yerraballi, R.: Scalability in Real-Time Systems. PhD thesis, Computer Science

Department, old Dominion University (1996)
16. Cheng., S.T., K., A.A.: Allocation and scheduling of real-time periodic tasks with

relative timing constraints. In: Second International Workshop on Real-Time Com-
puting Systems and Applications (RTCSA), IEEE (1995)

17. Dobrin, R., Fohler, G., Puschner, P.: Translating off-line schedules into task at-
tributes for fixed priority scheduling. In: In Real-Time Systems Symposium Lon-
don, UK, December. (2001)

18. Palencia, J.C., Gonzalez Harbour, M.: Schedulability analysis for tasks with static
and dynamic offsets. In: Proc. of the 19th Real-Time Systems Symposium. (1998)

19. Palencia, J.C., Gonzalez Harbour, M.: Exploiting precedence relations in the
schedulabil-ity analysis of distributed real-time systems. In: Proc. of the 20th
Real-Time Systems Symposium. (1999)

20. Redell, O., Törngren, M.: Calculating exact worst case response times for static
priority scheduled tasks with offsets and jitter. In: Proc. Eighth IEEE Real-Time
and Embedded Tech-nology and Applications Symposium, IEEE (2002)

