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Outline
* Energy Methods for Coupled Electromechanical
Systems
* Exact Modelling: Differential Equations
* Ritz-Galerkin Approximate Modelling

* Finite Elements Approximate Modelling
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Problem Statement: Electroelastic
Continuum

* General electroelastic body:
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* Actuation Problem: Find Structure Response to :
Applied Voltage or Charge |

* Sensing Problem: Find Electrode Charge or
Voltage resulting form Structural Motion

*  Will consider first a general framework for
determining the equations of motion. |

e Allow arbitrary piezoelectric electroding as well as

poling directions which vary within the
piezoelectric.
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Generalized Hamilton's Principle

Generalized Hamilton's Principle for coupled
electromechanical systems

Ref. Tiersten's (Electrical Enthalpy) or Crandal

Jtz[a(T—U+We ~W,,)+dW]dt=0

1

Electrical Problem: Neglect W,
Magnetic Problem: Neglect W,

Energy Terms are:

Kinetic Energy: 0T = I%psﬁTSﬂdv+ I%ppﬁTSﬁdv
v

v,

r

Strain Energy: o6U= J% 8S'T dv+ j% 8S™T dv
v, v

F

Electrical Enegy: 6W, = j%SETD dv
v

Magntic Energy: W, = j%SBTH dv
v

S = Strain Vector, T = Stress Vector, etc.
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Work Terms

* The work terms for point and distributed forces

and ag:plied external charges (ignoring magnetic
terms):

SW = ﬁau(x,.)-f(x,.)
i=1

+_'5u-f5 ds
+" ou-£° dov

ng
—2.99;4,

j=1

* Note that we have considered ¢ and u as the
variable fields. There are four other possible
variational principles using different choices.
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Constitutive Relations

 The structural constitutive relations have no
coupling between the electrical and mechanical

terms.
D.r € 0 'E?
T; = 0 c S’
e The piezoelectric constitutive relations couple the
electrical and mechanical terms.
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e Use this form because pof choice of independent
fields.
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Arbitrary Poling Directions

The piezoelectric material ﬁm)perties are defined
relative to the material local poling direction and
must be rotated into the global coordinate frame.
S’=Rs(x,p)S and E'=R (x,p)E
T =R;(x,p)T
R; is a matrix of direction cosines (orthonormal),
R, is the engineering strain rotation matrix and R;

is the engineering stress rotation matrix given
from tensor relations.

K;; R Ry,
if R; =[ y 121‘ then R, = Ry A
Ry Ry 2R,y Ry,

Given these rotations the piezoelectric properties
can be written:

{D}: Rie’R: © RieR; [E]
T| [-R;'e,R; R7¢ER | S

Usefull in 3-D electroelasticity applications.
Rotation matrices can be functions of position.
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Strain Displacement Relations

e The strain and electrical fields are derived from

the displacement and potential with differential
operators.

S = L,u(x) and L,o(x) = =V - 9(x)

®* The mechanical differential operator can be
standard or chosen for the particular problem.
For the general 3-d case:
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Further Examples of Operators

* Sometimes onl{ the displacements at a
representative location (eg, centerline) are
chosen to characerize structural motion.

e For a Bernoulli Euler Beam:
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For example, for Classical Laminated Plates:
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Options for Modelling

e Spatiallly Continuous Description

e Spatial Discrete Representations: Approximate
Solution Techniques:

Rayleigh-Ritz - deformation shape assumed
throughout domain.

Finite Elements - deformation shape assumed within a
finite element.
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Rayleigh Ritz Modelling: Assumed
Mechanical and Electrical Modes

* The displacement and potential mode shapes can
be expressed in terms of generalized coordinates:

o
u(x, t) = L.(x)r(t) = [y, (x) - y @] :

| T, (1) ]

o CE)
o(x,t) = ¥, (x)v(t) = [y, (x) = w, )]

| N CU)

* The displacement mode shapes must obey the
éeometric boundary conditions. The potential
istributions must be consistent with the voltage
boundary conditions and equipotential at
conductors.
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Piezoelectric Finite FElements

* FE Analysis is a speicial form of the Rayleigh-Ritz
Analysis

* For Finite Element applications, use nodal
mechanical displacements and nodal values of
the electric potential (volts) as the generalized
coordinates.

NOTE: pick up new nodal dof - volt (or potential, ¢)

¢ Use standard interpolation functions as the
assumed mechanical and electrical shapes.

2-D example ' A YN

Assuming linear interpolation

4
gl (1-§:8) 1+ m) [Ui Vi ‘Pi]

which can be easily represented in standard form

[t vE Y e M= %1

B, a
Vi U3}
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X, t) =y, (x
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Combining Shape with Differential
Operators

¢ Combining the shapes with the differential
operators gives:

S(xf = N.6r® N.& = LY,
E(xf) = N,6u® N, =L¥x)
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Coupled Equations of Motion

e Taking the variation of Hamilton's Principle
gives two coupled equations of motion.

(M, + M, )r +(K¢+ K ) r — 6v = B¢ f Actuator Equation

or + (Cs+C,) v =B, q Sensor Equation

e The mass and stiffness terms or the structure and
piezoelectric:

i — T
MS:P_J:r&vp Vi Psp Ve dv Ks,p‘va par e

* The electromechanical coupling matrix, ®, and
capacitance, Cp, are functions of the  piezoelectric
material properties and the assumed mode shapes.

T T ¥
Cop=| Ny E;p N,dv © =J. N; egpN, dv
Tw ""_p

Ya'p

* The forcing terms due to applied external force or

charge.
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/ Actlve Dampling Werkshep
PiezoStructural Theory

where:

F = Applied Forces at Structural DOFs

(Q = Applied Charges on Active Elements (Sensors & Actuators)
U = Displacements of Structural Model DOFs

[ V = Electric Potentials (Voltages) on Active Elements

K,,= Elastic Stiffness Matrix,
Active Elements Shorted (V=0)

K., = Diagonal Matrix of Sensor Element Capacitances,
Blocked Structure (U=0) '

K., = Piezoelectric Load Matrix, i.e. Forces due to Unit Actuator
Voltages, Blocked Structure (U=0)

-KT, = Piezoelectric Charge Matrix, i.e. Charge Migration on

Sensors Generated by Displacements,
Active Elements Shorted (V=0)




Aetlve Damping Werkshep
Thermal Analogy

/

To implement PiezoStructural Analysis in a standard Finite
Element code, employ a simple Thermal Analogy.

Equate the piezoelectric strain generated by an electric field
@ applied to a PZT wafer of thickness t;, to the thermal strain
generated by an equivalent temperature change, AT.

td= U/ﬂf

&1 k-

Piezoelectric Strain: gf~=d31P = d31-¥
P
Thermal Strain: ghemst — oy AT
.

Equivalent CTE:

Equivalent Temperature:

To Actute in Bending Employ the Correct PZT Inertia and

Applya T
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Active Dampling Weorksheop
/ Actuation

+ To Actuate Apply Temperatures to the Actuator Elements

and Recover Blocked Thermal Reaction Loads from the
Finite Element Model

« The Resultant Matrix gives Piezoelectric Loads on the
Model due to Applied Actuator Voltages V.

{FpiEZO} — [Kuv] {Vactuatnr }




Aectlve Darapling Werkshop
/ Sensing

To generate the sensing matrix

+ To Sense Apply Temperatures to the Sensor Elements and
Recover Blocked Thermal Reaction Forces.

« Transpose the Resultant Matrix, and Premultiply by the

Inverse of the Capacitance to Convert Sensed Charge to
Sensed Voltage.

« Obtain Sensed Voltage in Terms of Structural
Displacements.

I Y.= K., K. U '




