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What is a Brain On A Chip
ELECTRODE ARRAY
MultiChannelSystems, Reutlingen Germany

RECORDED / STIMULATED 
ACIVITY

Plexon Inc. Dallas TX

NEURONS
GROWN ON AN 

ARRAY
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Time 1.5 sec

Raster of Signals from Different 
Electrodes / Neurons

Analyze/Display 
Activity
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 Assist in Neuroscience Investigations

 Easy chemical access, stimulation, recording

 Disease Models – Stroke, Epilepsy, Stem Cell / Regeneration

 Pharmaceutical Testing, Development

 Circuits:   Cortex to Thalamus and Back

 Neural Network Models

 Learning and Memory

 Study the Question: Does Form Influence Function

Grand Challenge: 
Constructing Increasingly Realistic 

In Vitro Neural Circuitry
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Can We Build a Brain on a Chip?
Elements of Design

 The Chip     Analysis

 Nature’s Designs  Design by Stimulation

 Lithography  Media / Cell Type

 3D Scaffolding & Lithography

 3D Fluidics Optical Recording / Stim

(not today)

An Engineer’s Approach: You Don’t Understand it Until You Build It.
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Earliest: Thomas 1972, Pine 1980, Gross 1979

Thomas, Springer, Loeb, Berwald-
Netter, Okun. A miniature 
microelectrreode array to monitor the 
activity of  cultured cells. Exp. Cell Res. 
74(`1)61-66, 1972

First Array. Cardiac Cells. 
Single etched line.

Pine, Recording action 
potentials from cultured 
neurons with extracellular 
microcircuit electrodes. 

First Cultured Neurons

Chip Part of  Brain on Chip Has a Long History

Gross: First  Modern 
MicroElectrode Array

1979 Ganglia
1982 Culture
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Toward Disposable Devices

Boppart, Wheeler, Wallace, 
IEEE Trans. Biomed. Eng. 

39, 37-42, 1992.
Multichannel 

Systems, 2005

Perforated/
flexible arrays

Murr, Ziegler, Benfenati, Blau, 
Replica-molded polymer 
microelectrode arrays 
(polyMEAs), MEA2008

PDMS Array 
with 

Conductive 
Polymer 

Electrodes

Nam, Y., Musick, K., and 
Wheeler, B.C. Biomedical 
Microdevices., 2006

Disposable 
PDMS 

Insulator
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 Brain Slices
 Cultured Neurons 

 most often taken from embryonic or neonatal rats
 hippocampal, cortical, dorsal root ganglion, spinal
 weeks before electrically active -- hard experiments 

 Isolated Retina
 Cardiac Myocytes

Designing Brains on Chips: 
Using Nature’s Designs
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Brain Slice on Chip: Many Examples: here are three

Novak & 
Wheeler, 1986

Our Contribution: Brain Slices on MEAs 

Gholmieh et al., Journal of 
Neuroscience Methods 
152 (2006) 116–129

Berger Lab: Trisynaptic 
Pathway Modeling and 
Functional Replacement

Egert, et al. Exp Brain 
Res (2002) 142:268–274

Egert: mapping cerebellar activity
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Cultured Neurons on a Chip

Gross 
U. North Texas

Steve Potter, Ga Tech

Y. Jimbo, NTT, 
U Tokyo
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Designing Brains on Chips

By Surface Lithography / Chemistry / 
Topography

Works Quite Well
Highly Structured Networks Can be Created

Ready to Be Exploited Further
Used for Many Cell Types
Assaying of Chemical Cues
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Length.: 80 µm
Node Diam.: 15 µm
Width.: 5 µm
Relief: 20 µm

PDMS Stamp

Design by Lithography Micro Contact Printing

Wheeler, B.C., Corey, J.M., Brewer, G.J., & 
Branch, D.W (1999), “Microcontact printing for 
precise control of nerve cell growth in culture,” 
J. Biomech. Eng., 121, 73-782863-2870

Branch, D.W., Corey, J.M., 
Weyhenmeyer, J. A., Brewer, G. J., & 
Wheeler, B.C. (Jan 1998) “Micro-stamp 
patterns of biomolecules for high-
resolution neuronal networks,” Med. & 
Biol. Comp. & Eng., 36, 135-141

Fluorescence 
Image of  

Stamped Protein
Aligned Double 

Stamping

Neurons on Pattern
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Design by Lithography

•Microcontact Printing
•Photoresist Patterning
•Microfluidic Deposition
•Laser Ablation
•Microchannels
•Covalently linked or 
physisorb

•Metals: platinum, indium tin oxide, 
titanium nitride, gold
•Insulators: silicon nitride, silicon 
dioxide, glass, polyimide, PDMS
•Permissive: polylysine, laminin, …
•Nonpermissive: PEG, chondroitin 
sulfate, …

Substrate

Insulator with Non-
Permissive Coating

metal

Metal electrode

neuron

Permissive Material
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55 days, 10 um wide lines100 days, Khatami, Illinois 

Lithographic Results Can Be Exceptional

10       2        7        6         9          1       9        1

5         6         9        5       10        11  

# of  cell bodies within 
50 um of  each 

electrode 

10       2        7        6         9          1       9        1

5         6         9        5       10        11  

# of  cell bodies within 
50 um of  each 

electrode 
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Günther Zeck and Peter 
Fromherz PNAS 2001 98: 
10457-10462. 

Pine, CalTech

Design by Surface 
Topography or Physical 

Confinement

Guidance by Surface Channels
S. Britland, C. Perridge, M. Denyer, H. Morgan, A.S.G. 
Curtis, C.D.W. Wilkinson, Experimental Biology 
Online , 1:2 , ISSN 1430-3418, 1996. 

Neurons in PDMS 
microchannels

F. Morin et al. / 
Biosensors and 

Bioelectronics 21
(2006) 1093-1100
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Circuit Design: Logic Gates

Diodes

A

B

Delay Line

AND Gate

A

B
1

2

3

1 2
Feinerman, Rotem, 
Moses, Reliable Neuronal 
Logic Devices …
Nature Physics Dec 08
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Design: Organizational Concepts

What is the unit of construction?
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Design Choice: 
Single Oriented Cell Bodies and Axons

(Circuit designer’s approach?)

Stenger, Hickman, 
Pancrazio. NRL.

Stenger DA et al. J Neurosci 
Methods 1998 Aug 
1;82(2):167-73

Corey, et al., 
1991. Illinois

14 days, 3 um wide lines

Nam. Illinois 
(now at KAIST)

NeuroCages. 
Pine Lab 
Caltech
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Design Choice: Narrow or Wide Bundles?

55 days, 10 um wide lines

10       2        7        6         9          1       9        1

5         6         9        5       10        11  

# of  cell bodies within 50 um of  each electrode 

100 days, Khatami, Illinois 
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Design Choice: Clusters and Spokes
(connectionist approach?)

21 DIV (3 week)

R Sorkin, T Gabay, P Blinder, D Baranes, E Ben-Jacob
and Y Hanein, Compact self-wiring in cultured neural
Networks, J. Neural Eng. 3 (2006) 95–101

C Wyart, C Ybert, L Bourdieu, C Herr, C Prinz, and D 
Chatenay.  Constrained synaptic connectivity in 
functional mammalian neuronal networks grown on 
patterned surfaces. Journal of Neuroscience Methods 117, 
123-131(2002)

Khatami, Illinois
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What Might A Brain on A Chip Say?
What Can We Learn?
What Can It Learn?

First … the complexity of the signals
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100 msec window

1 sec window

Amplitude ~ 100 uV pk-pk; 
Noise ~ 10 uV pk-pk

60 channels
1  second windows

Single and Multichannel Activity

detection threshold

N
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ns

 1
-9

2

Time 1.5 sec

Raster of Signals from Different 
Electrodes / Neurons

Spike Sorting System
Plexon,Inc
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Brains on Chips Can Report
Drug Exposure and Dose

Guenter Gross
U. North Texas 

http://www.cnns.org/

Total Burst Rate 
Changes When 
Drug is Applied 

Before

Drug 1

Drug 2O. Schroeder, A. Gramowski, K Juegelt, C Teichmann, D 
Weiss, Spike train data analysis of substance-specific 

network activity: Application to functional screening in 
preclinical drug development, MEA Conf. 2008.

Time
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Stimulation / Correlation Reveals Connections

41

44

2.5 ms after 
stimulus

Stim: #44    
Record: #41

7 ms after 
stimulus

Stim: #41    
Record: #44

2.5 ms lag

7 ms lead

0

Correlation of 
Spontaneous Activity

41

2.50 m
s

7 m
s

41

42

43

44

45

46

47

48

6 2

4

3

2

8 
1
0 

Connection 
Diagram

Lag in msec
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Cells Can Learn

SIG4SIG3

STM

Correlogram
Before Stimulation

Correlogram 
After Stimulation
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Relationships are 
Complex

Jimbo, Tateno, Robinson, 
Simultaneous induction of 

pathway-specific potentiation …, 
Biophys J. 76, 670, 1999.

depressed Recorded neuron

St
im

ul
at

in
g 

el
ec

tro
de

potentiated

Matrix of Changed 
Stimulus to Recording 

Functions

Change in Connectivity
Pre to Post

Learning Stimulus
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Ruaro, Bonifazi, Torre, 
Toward the Neurocomputer ...
TBME, 52, 3, 371, Mar 2005

Some Patterns Are Simpler

Dense Neuronal Culture on Electrode 
Array. 
Arrows: Stimulated electrodes. 

Right: electrical (action potential) 
responses

Neurons “Learn” to 
distinguish L from 

L
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Rare

Frequent

Stimuli

Rare
Frequent

One Memory Paradigm
Remembers recent history

• if rare -- large output
• if frequent -- small output

Switches state if frequency changes

Eytan, Brenner, Marom, 
Selective daptation in 
networks of cortical neurons 
J. Nsci. 23(28) 9349, 2003.
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Activity Can be Influenced by Connectivity

Spontaneous Activity was 
recorded and analyzed on a 

weekly basis

8 Connect

4 Connect

Earlier Development of  activity 
on more connected network

Khatami, Thesis, Illinois
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Even in Simple Patterns, Connectivity 
Determines Activity

A

B C D

E
n = 10

n = 6 n = 5

n = 1

n = 3

The more inputs, the more activity 

Khatami, Thesis, Illinois
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MicroTunnels Offer Unique 
Opportunities
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Jeon Lab (UC Irvine – now 
SNU)

MicroTunnel for Axonal Separation

Taylor, AM et al. A microfluidic culture platform 
for CNS axonal injury, regeneration and 
transport. Nature Methods,  2005. 2(8): p. 599-
605.

Campenot, PNAS 74, 4516-4519, 1977

Axon extension along a scratch Axonal mRNA

Microfabricated
barrier

Whole-cell mRNA

Scharnweber PhD 
Thesis (Illinois)

History: Campenot 
Chamber
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Electrodes inside 
Tunnels

Dworak, B. and Wheeler, B., Lab on a Chip, 2009

Tunnel Resistance: 16 Mohm

Large Amplitude Signals msec

uV
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Well A

Well C

Unidirectional Connections by Sequential Plating

Unidirectional 
Growth

Unidirectional AP Propagation MultiCompartment Bursting

Tunnel Electodes
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3-D Neural Networks in Culture
 More natural  -- More surfaces for cells
 Model

 Head injury – mechanical 
 Inserting electrodes
 Spinal Cord Regrowth

 Very Difficult to:
 Keep cells alive
 Image the cells
 Record and Stimulate

 Needs Vasculature
 No cell in brain is more than 100 um from capillary



35

Design: Bio-Fluidics to Help Maintain
3-D Neural Cultures

Laplaca (GaTech) Perfusion of 3D Neural Cultures Enhances Survival
Cullen DK, Vukasinovic J, Glezer A, 
Laplaca MC Microfluidic engineered 
high cell density three-dimensional 
neural cultures  J Neural Eng. 2007 
Jun;4(2):159-72. Epub 2007 Apr 4. 

Greater Perfusion (fluid flow)

G
re

at
er

 S
ur
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Luo Y, Shoichet MS A photolabile 
hydrogel for guided three-
dimensional cell growth and 
migration Nat Mater. 2004 Apr; 
3(4):249-53. Epub 2004 Mar 21.

Laser Modification for Neural 
Tracks within Gels

Ravi V. Bellamkonda, Peripheral nerve regeneration: An 
opinion on channels. scaffolds and anisotropy Biomaterials 
27 (2006) 3515–3518

Neurons follow Fiber

Creating Structure in 3D
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3D Fluidics/Electrodes for 3D Culture

Rowe, et al. Lab on a Chip. 2007.

Fluid 
Ports

Electrode
Leads

Silicon Layer

PDMS Layer

Musick, et al. Lab on a Chip. 2009.

Signals from Electrodes on 
Top Layer

Middle 
Layer

Bottom 
Layer

Cells growing in chip
Could use – Utah or 
Michigan probes or 
microwires; drug delivery 
puffer would be nice



New Recording and Stimulating Technology 
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Multi-site optical excitation using ChR2 and micro-LED array, Nir Grossman, Vincent Poher, Matthew 
S Grubb, Gordon T Kennedy, Konstantin Nikolic, Brian McGovern, Rolando Berlinguer Palmini, 
Zheng Gong, Emmanuel M Drakakis, Mark A A Neil, Martin D Dawson, Juan Burrone and Patrick 
Degenaar. J. Neural Eng. 7 (2010) 016004, doi:10.1088/1741-2560/7/1/016004

Optogenetics and Optical Stimulation



In-cell recordings by extracellular microelectrodes, 
AviadHai, Joseph Shappir&Micha E Spira, Nature 
Methods, 7/3, 2010, 200-203, doi:10.1038/nmeth.1420

In Cell Recording Technology
(Spira Group) Electro-chemical and biological properties of  carbon nanotube

based multi-electrode arrays TamirGabay, Moti Ben-David, 
ItshakKalifa, Raya Sorkin, Ze’ev R Abrams, Eshel Ben-Jacob and 
Yael Hanein Nanotechnology 18 (2007) 035201

Carbon 
Nanotube
Electrode

(Hanein)

Improving Electrode Neuron Coupling

* J. Kim, G. Kang, Yoonkey. 
Nam, Yangkyu. Chio, 
Nanotechnology, 2010

‘Flake’ nanostructure electrode 
for neuron coupling  (Nam)
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Massively Integrated FET Arrays

Fromherz Group: A 128*128 
CMOS Biosensor Array … IEEE 
J. Solid State Ckts. 38(12) 2003. 

A. Hierlemann, ETH
http://www.bsse.ethz.ch
/bel/research/BioElectro
nics

11,016 electrodes
7 um diam, 18 um pitch
Stimulation & recording
Noise level 5 – 6 uVrms

Berdondini,Imfeld et al.

4096 Element 
Electrode Array

Remarkably Large 
Amplitude Signals 
Implies Excellent 
Coupling to FETs

More Movies than 
Spike Trains
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Thanks to … Greg Brewer’s Lab (Southern Illinois Med School)
At Florida:
KuckuVarghese, LiangbinPan (postdocs) 
SankarAlagapan, Eric Franca (grad students) 
Former Students at Illinois:
YoonkeyNam (Asst Prof, KAIST)

Brad Dworak (postdoc)
David Khatami (MD/PhD) 
Rudi Scharnweber (MD/PhD)
Kate Musick(Postdoc, Purdue)
Joe Corey (MD/PhD; Asst Prof U Mich) 
Darren Branch (Sr. Scientist, Sandia) 
Jim Novak (Sr. Mgr., Sandia)
John Chang (MD/PhD; Residency Stanford)

Funding – US, Illinois and Florida Taxpayers 
NIH: R01 NS052233. NSF: EIA 0130828
NIH: R01 EB000786 subcontract from Georgia Tech (BRP)
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