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INTRODUCTION

Compasite material systems are now the primary materials for helicopter rotor
systemn opplicotions. Bearingless rotor designs proposed for the LHX helicopter are an
exarrple. In oddition to reduced weight and increcsed fatigue life, these materials provide
designs with fewer parts which means incresased service life end improved maintainability.
Alsa, in terms of monufocturing, it is possible to cchieve more general ceradynamic shaopes
including flepwise variation in planform, =ection and thickness.

The cereelostic envirgnment in which rotor blades operate consists of inertial,
cerodynamic ond elastic loadings. Becouse of the directicnal nature of the composite
materials, it is possible to construct rotor blades with different ply orientaticns and hybrid
combinaticns of materials exhibiting coupling between varicus elastic medes of deformction.
For example, plies with fiber arientations placed cppropriately in the uvoper and lower
portions of the bicde can produce elastic coupling between fwist end flapwise bending or
between twist and exiension. This provides a potential for improving the perfermence of a
blede through elastic tailering of the primary icad-bearing siructure.

A working definition of elastic tailoring is the use of structural concept, fiber
orientation, ply stocking sequence and a blend of matericls to achieve specific performanics
goals. In the design process, materials cnd dimensions are szlected to yield specific elastic
respense characteristics which permit the geals to be ochieved. Common choices for goals
for the cpplication of elastic tailoring cre the creation of favorable deformations, often for
the purpose of preventing or confrolling cercelastic phenomena or vibrotion, end damoge
folerance.

Current design prectice for composite rotor hlades is to treat them similar to metal
designs. The onily distinguishing feature is that the effective extensional modulus is not
related to the sheor modulus. This approcch, therefore, does not permit description of
general compecsite layups and cannot be appliad if unusual plv layups are introduced in order
ta create fgvercble elastic coupling for enhanced performence.

A composite roter blade structural model and corresponding theory are presanted
herein which ae created to cccurately, but simply, chorocierize response. Simplicity is
cchieved by considering a primary structural box or single closed-cell sper, the primary load
beoring element, as a thin walled beam mede of an abitrory composite layup., The full
potential is imcluded to cccount for the influences of elastic tailoring. In cddition, two
ronclassical influences - - - transverse shear deformation and torsion-related warping - -are
included in the theory os these effects are far more proncunced for lamincted composite
materials than for menolithic metallic materials,

EARLIER WORIK

Any cceptable theoretical medel must cccount for the cnisctropic chargeter of
compesite materials. In oddition, in order to be of use in dasign, it should be simple and
relicble so that a clear rhysical picture of the ocguze-=ffect relctionship between
c:nfigur:f.licn od respense is obtcined.  An early medel of this type has been usad by
‘Weisshaor for the study of caroelastic tailoring of lifting surfoces. He uses an engineering
beam theory that incorserates a plate-like behavioral mede! to reoresent the structiure. The
tersional stiffrness, therefers, is underestimated as fhe enhonced stiftrness of closed call
canstruction is not reoresented.

]
1~ describe ond compare
Tudies. Tweo of them are

1]
5

&

In recent weork cn vibration tciloring, Weisshecor cnd Fe
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plate-like and the third is o closed cell model. The latter is of the type develeped by
Mensfield and Sobey”.

The picneering work aof Mansfield and Sobeyj is of particular interest becouse it is
intended for rotor blade cpelicatiens. The madel reprasents the load bearing structure or spar
as o closed cell eylindrical tube with its thin wall constructed of composite plies. Thisis a
Beotho-Sredt type of thin wall structural theory that is commenly used for ceroncutical
structures. The authars have a very clear idea of the potenticl of elastic tailoring for rotar
blades and discuss pitch-flap (torsion-bendirg) and pitch-stretch (torsion-extension) =lastic
coupling in some detail. The influence of cctucl aeredynamic forces is not considered so the
discussicn is conceptual, i

The type of structurcl model utilized in Reference 3 is cppropriate for preiiminary
design studies. However, the theoretical development is unusual, sometimes hard te follow as
ed hoc assumptions are strategically introduced and ircensistent regarding some details. A
clear, straightforward ond consistent theory does mot emerge. Two special coses are
cnalyzed - - - {|) bending end twisting by constant moments and (2) bending and twisting by
fransverse shear forces on cantilever beams. Tha latter case is used to datermine the shear
center for the secticn. In the first case, the shear flow is taken fo be constant wound the
section of the tube. This assumption, of course, does nof apply to the second case ond,
clthough rot specifically stated, it must be meodified in that instance. In spite of these
troublesome points aid some apperent sign errors and omissions in the equations of the text,
this is on extramely imporipnt work ond zerves as a foundation for the present study. It has
bean extended by Mansfield” to two-cell consiruction.

An important conclusion emerging from Reference 3 is that the effact of initial
pretwist en lengitudinal tension is small and can be disccunted in preliminary design.

Other European researchers in References 5 and § present numerical models based
upen finite elernent idsalizations for compesite roter blades. Large scaie simuiation is
utilized in place of irsight. These methods are more appropriate for the cnalysis of
configuratiens that have been designed by other, simpler methods. Such cpprocches wili not
be considered here.

Hong and 1:3"4:.‘4':.!1'-::1:Ir have conducted a pioneering study of the influence of ply layups on
the cercelastic stability of o compesite rotor blade in hover. The siructural heort of the
blade is taken a closed c=li rectanguler box. Stability is studied as the ply layups of the
sides of the box are varied. The analysis is based upen the nonlinear kinematics of Hodgas
ond Dowell™, Unfertunately, the configurations studied do not resemble practical
configurations that can be easily monufacturad by the usual means. The cnalytical rasults do
illustrote, however, that ply orientation effects are extiremely importcnt cnd offer great
cromise for enhancing performence.

Very little detail on the cctual enalysis is provided by the quthors in Reference 7 or
its predecessor’, It is not clear what structural theory or approximations were cctually
made. |t apears that a thin walled theory of the Mensfield and Sabey” type was not used from
the Appendices in Reference 9. Censeguently, a realistic cppraisal of the results is difficult.

Recant thesretical researchm has contributed g rew oooreciatien for nonclassical
effec®s in structural behavier. The ronclassical influences reiesvent to rotor blodes cre those
due 1o transverse shear, bending-related warping, stretchirm-related worping and forsicn-
ralgted werping. Lominoted compesites cre in general sirong ond stiff in the plone of
larmiraticn and weak ad flexible in the tronswverse direction. Caonseguantly, fransverss shear
dafzrmation becomes much more pronounced. Bending-reigted section werping also offects
respense in a similar way, but it is due to the fact that bending strain does not sirictly
correspand to plenar deformation.  Torsicn-raiated warping crises whanever a section is
restraired ogainst out of plane deformation. The key to improving the stress predictive
copebility of a theory is to account for these effects correctly. A theery of the thin walled
claosed cali type has been daveloped by Vaolisefty and Benfield which is bassd vpen @ proven
methedalogy for coozunting for nenclassicc] effects in bending theories.
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Results presented in Reference |l indicote the grect promise of tailering to alter
benavicr and that the monclassical effects are probably small for main rotor bledes. A
modern glass-epoxy material system is gcssumed clong with typical blade dimensions based
upon those of the CH-47 main rotor blade.

STRUCTURAL MODEL AND KINEMATICS

todel, Coordinates end Overview

The veriety of the types of construction, materials end struetural concepts that have
been employed for composite rotor bledes prevent the development of a single, all-
encompassing theory. Instead, a general aoprocch will be odopted which con be tailored to
the unique features of oy particular concept, manuiacturing methodology ond cheice of
materials. Atftenticn is rastricted fo the most commonly used type of blade, one which
utilizes a single clesed c2ll thin walled spar as the primery load bearing and stiffness
nroducing element. An example oppears in Figure [, the main rotor blade of the CH-47.

The zpar is modeled as a closed ce!ll thin walled beam of the classical ceronautical
type. The wall construction is of general lamirated compesite construction which allows the
flexibility for elastic tailoring. The mode! and coordinate system are shown in Figure 2. The
coordinate directions x, vy and z have displecement compenents v, v and w associcted with
them. The circumferantial coordinate is imbedded in the middle surfoce of the wall.

The chjective is to create a theoretical model suitable for representing compesite
rotor blede designs. The level of detail or definition is envisaged os appropriate for overall
siress calysis and sizing in preliminary design, dynamic stcbility cnalysis end elastic
tailoring, The medel is beam-like with response dstermined as a function of the axis
coardinate x.

The essential structural features of the model con be etoblished on the basis of
static consideraticns cnd small displecement respense. The scope of this paper is confined to
these limitations. The fundamentals consist of the dafinition of generalized disploccements,
corrasponding generalized internal forces end the force-deformaticn equations which relate
them.

:eometrical Matters end Transverse Disp nent Co :
G trical Mattersond T verse Displacement Compenents

Leti Ty s 7. and T, be unit vectors in the cocrdinate directions. From any peint en the
bearn referefice ‘oxis, fﬁe x-axis, the centerline of closed curve cefining the be-::m cross
secticn is determined by the position vector T from the axis. It is written as

=Tyl +T, 2 0

The unit tangent vector, 1, to the cross section clased curve (CSCC) is defined as

L

Sl S Se 2
i 'vds * 'z T (2)

A unit mormal vector, n, redially directed toward the center of the cross section is
constructed from1 "nd t.

= = dz dy
f‘t:IXL-.—IaE-.-E"E- f3:|'



with this definition, the normal projection of the radius vector, .y is easily determined.

2 :—H'?:-{z%-y%—f} (%)

|+ is wseful in geometrically describing meotion due to twisting of the cross section cbout the
heam axis.

The beam undergoes stretfching, bending, twisting ond tronsverse shearing. The
displacement vector, u, is

= - - - 3
U=l u+i V+yIi_W
YT, ()

Bending ond twisting of oy cross section are properly represented by transverse displacement
components of the form

v = Vix) - z4(x) ()

w = Wik + valx) {7}
where V cnd W are tfransverse displocement components of the beam axis and ¢ (%) is the
twist cngle, which is gssumed to be a small engle, positive for counter-clockwise roration

censistent with sin Figure 2.

The Axial Displecement Compenent

The tangential compeonent of displecement, v,, is
1

R d‘f ¥ E!?.’ -~
v, aF u-VE+r‘!E+rn¢ (8)

Let ¥° (x) and v°_(x) be the transverse shecr strains of any cross saction, which are
assumed to b& uniform for each cross section; that is, due fo trensverse shear, the cross
section remains planar. Further, let v(x) be the shear strain due to twisting. In the usuai
theory of torsion of thin walled beams of isatropic matericals, the shear flow-and, hence, the
shear sirain are independent of s. Conseguently, the twisting contribution Y{x).is consistent
with this observation. Therefore, from the stress transformation law and elementary physical

cansiderations, the membrane shear strain in the beam wall, ¥ e is
a o dv _o d=z
Tes " Vuyds " Tz ds* 7 @)
From strain-displacement considerations
R . = 1 += 4 “EI]

Uxs . T,

iIf eny effzcts of taper of the cross secticn aleng the length of the beam are ignored, Squction
(8) yizids

% d , dz i
& =V —.Z‘.- W o —sr 4 {in
f.x X ds Xds A

o




Equations () - (11} result in

w0 oSE YEE

5 x x ds {Y

Define the section rotatiens, g and 3_, as

B2 :'Tx;r'v,x

x}E+Y'rn¢3x (12)

{13)

{i4)

The axial displacement compenent must be continucus arsund the circumference of

the cross sectien. Consequently,

S‘-U,Sds =0

which results in

whera

Eﬂe — é‘rn dS
= _#:ds

and

The enclosed areq of the cross section is A and ¢ is the circumferencs

coGin L it

sigrpion ek alpynT (|5}
ey rdcreul W rr ; ;..1‘-|-
-::‘:_'.'"!_’J'Ir‘:""t.-u‘_l

{17}

{ia)

e of the CSCC.

Integration of Equatien ([2) and usa of Equations {I3), {l&) and I{In] nrcaqcn tha
following resuft:

u = U{x}+yﬂzz—zﬂ}_+b'§=

where U(x) iz the extension of the axis ond ¥ is the tersion-reloted warping furction

latter is definad as

where

{12}

The

5
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is the sectorial arec swent out as s increases.

The warping function satisfies the equatien

5!'-4; - (22)

which is consistent with Equation (15).

In the classical 5t. Venant theory of torsion of bearns under end torgues, & _, the rate
of twist, is constant. Consequently, in that case, no axial strain is produced by tisting. In
the present theory, is allowed to vary arbifrerily so that nonuniform wearping effects are
cccounted for on a rational basis.

EQUATIONS OF EQUILIERIUM

Strains

The displecement field is defined by Equaticns {8), (7) end (I2) and the memkrane
shear sirain in Equation (9). If Equations (13}, (14) cnd (I8} are utilized, the membrane shear
strain may be written as

2A
g \ dz. @
¥ e s (A Z+ij}§§+ ':Ey+ M,.X) v, Pl [b,x (23)

The membrane axial strain is

. e (24) \/

Q
=u_=U_+v8 +2zR
= ¥ Zyx b e

The strain avd displacement fields are cormpletely specified by the six kirematic
voriables

U;l 1""II:II wr‘#: E},r EZ

o

These warichles will be varied in order to derive the governing equilibrivm eguaticns and
matural beundary conditions in terms of naturally defined generaiized internal forces.

Stress Besultants and Ceneralized Internal Forces

The beam reacts external forces by membrane cotion in the wall. Fer thin walled
beams, lecal shell bending and twisting moment resultants can be ignored. Conseguently, only
the membrane stress resultants N__, M__ and N__ need be considered. Furthermore, by virtue
of the beam-like geometry, the hoSp sTress resil tant M__ is guite small and will be ignored.
(This cssumption would be abandoned if the cell was presfficizad.) Thos

N_=0 {23)

The warigticn of the internal strain energy, U, is



- G ‘O 3}
§J = f{Nxxﬁ B NHG rﬁ,‘rﬁs dx {28}
o

S
where L is the beam length. The Fni[ﬂw:ng generalized internal forces crise ngiurally from
Equations (23}, {24) and (26): Lt

1y

,‘.
/ jg MN__ ds {Axial Force) gn
."l.\ GY :jf g 3§ ds {Chordwise Shear Force) (28) fJl:
! _ dz :/‘/ . !
.L"' ._,Gz _?’N it (Flapwise Shear Force} (29) [
g 24, [ ) |
TN Nogds — (Direct Torque) (30) ¢
i.l M)f =j§ o Z (F lopwise Bending Moment) (an
I M, j{’- ¥ {Chordwise Bending Moment} (32)
{ 7 : :
?w =jg N _bds (Generalized Warping Farce) (33)

The direct torque exgression (30) can be put in @ mere familiar form by dafining the
mean shear flow Nm as

!

Consequently

X 2 X3

M, = 24 N N (A

which is the obvious counterpart of Bradt's fermula Tor constant shear flow. The systematic
cooraach utilized herein ovoids the confusion regarding shear flow fthat emerges from
Reference 3.

The gereralized warping force Q| is defined naturally os o consequence of the form
of the cxial displacement component. 1171s the continuous counterpart of the warping gr‘-'"l_.'p
of forces utilized l[xr:lr::sslc-:l geronautical Ezruchi,ru! analysis o study shear log effects due to
restrained warping —. 113 units are force-({length)®.

Virtual "Nark of External Forces

In erder to fix ideas, let the =nd of fhe beam correspending to x = L be subjected to
net force ond mament resultants M, G:v a.. M MV and M_. Theend x=0 *wll be supporiad.
In odditicn, an efizctive cpplied 'rrv:-:"'-:rl fo the outer aurﬁ:\.e of the beam with compenents

G ot Tty and g .5 considered. The virtual work of the external forces, ' = is



W, = N8UL) -« Gy SVIL) - &_ dwW(L)
M, §4(L) + .*nyas},{u +M_ 488 (L)

+ Ifﬁnxi U+ Enyﬁv + cr_nzé w)ds dx (35)

From the aoplied surfoce troctions end the form of the displocament field, the
following definitions for generalized externcl loadings follaw diractly:

q, = ff i 95 {Distributed Axial Force) {(38)
q, =fc_ny ds (Distributed Chordwise Axial Farce) (37}
q, ‘j;‘r-nz ds (Distributed Flapwise Axial Force) {38)
,“": o o s
L _5{'.‘;_; g rﬁ>< T%E_U'nzy - nyz]lds a (Distributed Torgue) (39}
m,, =§l—nr\z ds (Distributed Flapwise Bending Moment) (40)
r
Loy my =-‘)1£-Enx yds (Distributed Chordwise Bending Moment) (41
; \:.' )
oy q, = g nxl'i’l ds : (Ceneralized Distributed Warping Force) (42}

All of the acbove are familiar with the excepticn of the generalized disiributed warping force
q,- Itis the external counterpart of Q.

Coverning Equations and Beundary Conditions

The governing equations of equilibrium and natural beundary conditions are derived
from the Principle of Virtual Werk, which is

= GWE (£3)

g

L

As a result of the definitions (27)-(33), the varigticn of the internal strain energy (25)
is written as

L
3 = + Ilﬁ + 5,
J = f[m éu’x @yx 8 a,fﬁ}
Q

+Q_(6B +8W )+ M_86_+M 68
GZE }"'+ er} |"|.x M:f Y

- Mz:saz ¥ le 9 ¢,m}d:< {44}

€3



With the cid of the definiticns (38) {42), the virtual work of the externcl ferces (35)

W, = NEUL) + G, SY(L) + @, SWiL)

+ Mxvﬁ L) + M}' ‘33}'_{]__] - leﬁ BZI:L}
L
al,
-i-mxﬁlb-p myaﬂy{-mz GEZ-’dx (45)

Application of the ealeulus of wvarictions ond the usual assumptions ragording
continuity result in the folloewing equaticns of equilibrium:

N’ «*a =0 {x - Force) {4&)
Gh}‘:+ qy afh O (y - Force) (47)
Qz,x +q, = 0 (z-Force) (48)

X%~ Gw,xx LB 0 {x - Torque) (49)
th -Q, + m, = 0 {v - Moment) (50)
M, - QY +m, =0 (z - Moment) (51)

The correspending beundary conditions are obtained as well. The ngtural beundary
conditions emerge at x = L by virtue of choice for opplied and resultonts at that section, The
results are =

M= [N (32)

Q@ =43 5
v i {53)

Gz = @z (54)

Moo= G'er = J'ﬁx g {35)

M = M (348}
Y ¥

¥ T - {57)
z z
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G =0 (38)

As o alterngtive to the cbove, geometric boundary conditicns moy be prescriced.
The counterparts to Equations (52) - (5B), respectively, are to prescribe U, V, W, 4,3 ,3 _ cnd
.;.1:. These alternatives in the present development correspond to the end x = 0. A

Most of these resulis cre familiar end require no explenation. Equations (49), (53) end
(38) irvolving torque cre unusual and require comment. From Equatiens (55) end (53), there is
an equivalent internal targue, IIMx} eq’ that recets the exiernal loads. It is

(Moq = M, -0 (5)

W

The first contribution is the direct, St. Venant contribution which is familier. The sacond
cantributicn is the secondary torque due to restrained or nonuniform warping. 1t is less well
krown end seldom is developed in the manner used here. The presence of q,, in equaticn {35)
is variationally consistent; it is likely tfo be zero in most applications.

Equation (38) is egquivalent to permitting the cross section at the end to be free to
warp. This is the usual "free end" condition. [f werping is restrained, ¢ must be set to zero,
cs is clear from *he form of u, Equation (19). In principle a prescribed’ value, @ , zould be

impased at an end. [t is difficult to think of such a case in practical applications.

GENERALIZED FORCE-DEFORMATION RELATIONS

Constitutive Relaticns

Up uwntil this point, the theory created is general - - - no specification to compesite
materials has besn introduced. Composite thin walled construction is charccterized by the
mermbrene stiffness matrix A which relates the stress resultants to the membrane sirains.
The constitutive relations are

o
2 X0 Al Az A B e
o " -
N = A Ap Ay o . (o)
O
N LA A Ag Ee

The conventicn for lobeling the A-stiffness coefficients is the stondard cne given in
Reference 3.

For a laminate of N plies, the stiffnesses are determined by simply odding the plare
stress stiffnesses, gij , Tor each ply. Thus

N
Ay = ; Gihy (=l 2,4 (41)

where h, is the thickness of the k-th ply. The ply stiffnesses decend upon the material
(s

i ¢ & & & A 2 A - .
systemn, material form ({abric or tepe, for exampie) and fiber orientation.

; " . NIl . . . =0
The eguaticns can be reduced with the aid of Eguation (25). The hocp strain %4 CON
be elimirated since M__ is zero. It is found to be

55
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o o o
Egs =~ (AT + Age, Ao (2

Consequently, the remaining equaticns may be written

. (29

1 ~ ol
Nxx ‘<'|f K12 Exx /
. (63)

[a]
Nxs KIE KEZ T s {Eﬂ

The K-stiffressas correzpend fo uniaxial extensien and shear. They are

2
Kiz = Ajg = ApAa/Aan (63)
Kooy = AL, - (A )2A (88)
22 = Agg = (Al Ags

For the fomiliar case of isotropic materials, the cbove reduce fo

Ky = ERKpp = 0,Kyy=Ch (87)

22

wherse E is Young's modulus, G is the shear modulus and h is the wall thickness.

The shear-extension coupling stiffness K, is responsible for elastic tailering. [t
vanishes for lecally balanced laminates for whith A . ond A,. cre zero. The use of
unbalonced angle ply layups, therefore, is the fundamental mech@f."'ism employed in tailoring
at this level of modeling. For this reason, care must be exercised in manufacture to properly
acceunt for the fendency of warping in the design of tacling.

Ceneralized Sirains

The deformation-related variables or generalized strains that are naturel fo consider
are easily identified from the strain expressions (23) and {25}, Arrayed in o vector u they are

T p

e U oyt oyl b B B ) (58)

o Tyl Tt Tawe ot

Choice of Axes

The x-axis or beam axis hos not besn concretely specified other than to reguire thaot
it be parallel to the span. [t is convenient to choose it in such a way that

§!<J[yds =

j[%‘(” zds

1
o
—
[F}
]

1~
Ao

and

{a9B)

i
o



s ; . . 3 - ;
Ihis choice cefines the tensicn axis”. This is the axis for which the coplication of a resultant

tensile :'_m:r:e will not produce oy bending. For general elestic coupling, ¢ twist moy be
produced, however.

The tension axis is the counter part of the centroidal axis for homogeneous, isotropic
beams.

It is also pessible to define the y-axis and z-axis as prircipal flexural axes which
uncouple bending cbout these orthogenal axes in the cross section. The nscessary condition is
that

]

yz K ds = 0 (70)
As for the tensicn axis, twist may cccompany bending about these axis for unbalanced angle
ply layups. :
The cbove choices for the axis systemn cre adopted.

Caneralized Faorce-Defarmation Relationshios

A generalized internal ferce vector, F, that correspends to v iz obtained from
Equations (27) - (33). I1is

3
F=0NQ Q, M M M, Q) (7

The beam stiffness matrix, C, is defined such that

Itis a 7 x 7 symmetric matrix which is constructed in a straightforward, consistent manner.

Determiraticn of the C.. elements proceeds as follows: (I} the strains from Equations
(9) end (24) are substituted in'Equations (63); (2) these results cre inserted. into Equations
{27) - (33); and (3) the stiffness alements cre identified directly. Becausa of the choice of
axes defined by Equations (69)-(70)

There are , therefere, in general, 25 independent siiffnesses to be determined.

For convenience, the equations for the stiffnesses are given in the Appendix. The
clazsical 5t. Venant theory of bending and torsicon is recovered if *-_rc'v, Y. and § oy OTE SEH to
zero in u, Equaticn (£3), and the second, third and saventh equatidhs ifnthe sydfem (72) are
ignored.

SUMMARY AND COMCLUDING BEMARKS

A complete, warigticnally consistent static theery that is walid for smell
displeccements of single closed c2ll compasite beamns of arbitrary ply loyup has bezn
develaped. Such g beam model serves as a first cpproximation to many commonly uszed rater
Slede configurations. The fundamental me:i*l,gn:'srn for elastic tcilering copears in the wall

T
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ccuphn-g_ s?:f_.ness K5, which is commenly cssociated with unbalanced ply layups. The
nonclessical influences of transverse shear strain and nonunifcrm torsion related werping are
acceunted fer in a simple, rational menner.

Initial pretwist has been ignored, partially bosed upon the desire for brevity and
pertially based upen the findings of Referance 3. Dynamics and nonlinesr geometric effects
due to lerge displacements nave likewise not been considered for brevity. All of these issues
will be considered in future work.

The foundaticn provided by the present work provides consistency and clarity, as well

as a straightforward davelopment that fecilitates understanding. The "mystery" of elastic
taiiering, hopefully, has bean diminished as well.
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Figure |. CH-47 Compesite Main Rotor Slade Sectien
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Figure 2. Closed Cell Thin Wail Beam Model
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