
Koren Chap.4.1

Soo-Ik Chae

Spring 2010

Digital Computer Arithmetic

Part 4
Binary Floating-point Numbers

Koren Chap.4.2

Preliminaries - Representation

Floating-point numbers - provide a dynamic range
of representable real numbers without having to
scale the operands

Representation - similar to scientific notation

Two parts - significand (or mantissa) M and
exponent (or characteristic) E

The floating-point number F represented by the
pair (M,E) has the value -

 F=M ( - base of exponent)

Base - common to all numbers in a given system
- implied - not included in the representation of
a floating point number

E

Koren Chap.4.3

Preliminaries - Precision

n bits partitioned into two parts - significand M
and exponent E

n bits - 2 different values

Range between smallest and largest representable
values increases  distance between any two
consecutive values increases
 Floating-point numbers sparser than fixed-point

numbers - lower precision

Real number between two consecutive floating-
point numbers is mapped onto one of the two
 A larger distance between two consecutive numbers

results in a lower precision of representation

n

Koren Chap.4.4

Formats

Significand M and exponent E - signed quantities

Exponent - usually a signed integer

Significand - usually one of two:

 pure fraction, or  a number in the range [1, 2) (for =2)

Representing negative values - can be different

Until 1980 - no standard - every computer system
had its own representation method
 transporting programs/data between two different

computers was very difficult

IEEE standard 754 is now used in most floating-
point arithmetic units - details later

Few computer systems use formats differing in
partitioning of the n bits, representation of each
part, or value of the base 

Koren Chap.4.5

Significand Field
Common case - signed-magnitude fraction

Floating-point format - sign bit S, e bits of exponent
E, m bits of unsigned fraction M (m+e+1=n)

Value of (S,E,M) :
((-1) =1 ; (-1) =-1)

Maximal value - Mmax = 1-ulp
ulp -Unit in the last position - weight of the least-

significant bit of the fractional significand

Usually - not always - ulp=2
-m

10

Koren Chap.4.6

The Base 
 is restricted to 2 (k=1,2,…) - simplifies

decreasing significand and increasing exponent
(and vice versa) at the same time

Whenever an arithmetic operation results in a
significand larger than Mmax = 1-ulp, it is
necessary that significand is reduced and
exponent increased: value remains unchanged

Smallest increase in E is 1

M/ - a simple arithmetic shift right operation
if  is an integral power of radix

If =r=2 - shifting significand to the right by a
single position must be compensated by adding 1
to exponent

k

Koren Chap.4.7

Example

Result of an arithmetic operation - 01.10100  2
- significand larger than Mmax

Significand reduced by shifting it one position to
the right, exponent increased by 1

New result - 0.11010  2

If =2 - changing exponent by 1 is equivalent to
shifting significand by k positions

Consequently - only k-position shifts are allowed

If =4=2
01.10100  4 = 0.01101  4

100

101

011010

2

k

Koren Chap.4.8

Normalized Form

Floating point representation not unique -
0.11010  2 = 0.01101  2

With E=111 - significand=0.00110 - loss of a
significant digit

Preferred representation - one with no leading
zeros - maximum number of significant digits -
normalized form

Simplifies comparing floating-point numbers -
a larger exponent indicates a larger number;
significands compared only for equal exponents

For =2 - significand normalized if there is a
nonzero bit in the first k positions

Example: Normalized form of 0.00000110  16
is 0.01100000  16

k

101

101

100

110

Koren Chap.4.9

Range of Normalized Fractions

Range of significand is smaller than [0,1-ulp]
Smallest and largest allowable values are

Mmin = 1/ ; Mmax = 1-ulp

Range of normalized fractions does not include
the value zero - a special representation is
needed

A possible representation for zero - M=0 and
any exponent E

E=0 is preferred - representation of zero in
floating-point is identical to representation in
fixed-point
 Execution of a test for zero instruction simplified

Koren Chap.4.10

Representation of Exponents

Most common representation - biased exponent

E= E + bias (bias - constant; E - the true value
of the exponent represented in two's complement)

Exponent field - e bits ; range:

Bias usually selected as magnitude of most negative
exponent 2

Exponent represented in the excess 2 method

Advantages:
 When comparing two exponents (for add/subtract operations) -

sign bits ignored; comparison like unsigned numbers

 Floating-points with S,E,M format are compared like binary
integers in signed-magnitude representation

 Smallest representable number has the exponent 0

true

e-1

e-1

true

Koren Chap.4.11

Example: Excess 64

e=7

Range of exponents in two's complement
representation is -64  E  63

1000000 and 0111111 represent -64 and 63

When adding bias 64, the true values -64 and 63
are represented by 0000000 and 1111111

This is called: excess 64 representation

Excess 2 representation can be obtained by
 Inverting sign bit of two's complement representation, or

 Letting the values 0 and 1 of the sign bit indicate
negative and positive numbers, respectively

true

e-1

Koren Chap.4.12

Range of Normalized Floating-Point Numbers
Identical subranges for positive (F) and negative (F)

numbers:

 (Emin, Emax - smallest,largest exponent)

An exponent larger than Emax / smaller than Emin must
result in an exponent overflow/underflow indication

Significand normalized - overflow reflected in exponent

Ways of indicating overflow:
 Using a special representation of infinity as result

 stopping computation and interrupting processor

 setting result to largest representable number

Indicating underflow:
 Representation of zero is used for result and an underflow flag

is raised - computation can proceed, if appropriate, without
interruption

+ -

Koren Chap.4.13

Range of Floating Point Numbers

Zero is not included in the range of either F or F
+ -

Koren Chap.4.14

Example - IBM 370

 Short floating-point format - 32 bits ; =16

 Emin, Emax represented by 0000000, 1111111 - value of -
64, +63

 Significand - six hexadecimal digits

Normalized significand satisfies -

 Consequently,

Koren Chap.4.15

Numerical Example - IBM 370
(S,E,M)=(C1200000)16 in the short IBM format -

first byte is (11000001)2
 Sign bit is S=1 - number is negative

 Exponent is 4116 and, bias is 6410=4016, E =(41-40)16=1

 M=0.216, hence

Resolution of representation - distance between two
consecutive significands -

 Short format has approximately 7 significant decimal digits

For higher precision use the long floating-point format

Range roughly the same, but resolution:

 17 instead of 7 significant decimal digits

true

Koren Chap.4.16

Floating-Point Formats of Three Machines

Koren Chap.4.17

Hidden Bit

A scheme to increase the number of bits in
significand to increase precision

For a base of 2 the normalized significand will
always have a leading 1 - can be eliminated,
allowing inclusion of an extra bit

The resolution becomes ulp=2 instead of 2

The value of a floating-point number (S,f,E) in
short DEC format is

f - the pattern of 23 bits in significand field

-24 -23

Koren Chap.4.18

Hidden Bit - representation of zero

A zero significand field (f=0) represents the
fraction 0.102=1/2

If f=0 and E=0 - with a hidden bit, this may
represent the value 0.1 2 = 2

The floating-point number f=E=0 also represents 0
- a representation without a hidden bit

To avoid double meaning - E=0 reserved for
representing zero – so, smallest exponent for
nonzero numbers is E=1

Smallest positive number in the DEC/VAX system -

 Largest positive number -

-1290-128

Koren Chap.4.19

Floating-Point Operations

Execution depends on format used for operands

Assumption: Significands are normalized
fractions in signed-magnitude representation ;
exponents are biased

Given two numbers

 ;

Calculate result of a basic arithmetic operation
yielding

Multiplication and division are simpler to follow
than addition and subtraction

Koren Chap.4.20

Floating-Point Multiplication

Significands of two operands multiplied like fixed-
point numbers - exponents are added - can be
done in parallel

Sign S3 positive if signs S1 and S2 are equal -
negative if not

When adding two exponents
E1 =E1 + bias and E2 =E2 + bias :
bias must be subtracted once

For bias=2 (100...0 in binary) - subtracting
bias is equivalent to adding bias - accomplished by
complementing sign bit

If resulting exponent E3 is larger than Emax /
smaller than Emin - overflow/underflow indication
must be generated

e-1

trueTrue

Koren Chap.4.21

Multiplication - postnormalization

Multiplying significands M1 and M2 - M3 must be
normalized

1/  M1,M2 < 1 -
product satisfies 1/  M1M2 < 1

Significand M3 may need to be shifted one
position to the left

Achieved by performing one base-  left shift
operation - k base-2 shifts for =2 -
and reducing the exponent by 1

This is called the postnormalization step

After this step - exponent may be smaller than
Emin - exponent underflow indication must be
generated

2

k

Koren Chap.4.22

Floating-Point Division

Significands divided - exponents subtracted - bias
added to difference E1-E2

If resulting exponent out of range - overflow or
underflow indication must be generated

Resultant significand satisfies 1/  M1/M2 < 

A single base- shift right of significand +
increase of 1 in exponent may be needed in
postnormalization step - may lead to an overflow

If divisor=0 - indication of division by zero
generated - quotient set to 

If both divisor and dividend=0 - result undefined
- in the IEEE 754 standard represented by NaN
- not a number - also representing uninitialized
variables and the result of 0  

Koren Chap.4.23

Remainder in Floating-Point Division
Fixed-point remainder - R=X-QD (X, Q, D -

dividend, quotient, divisor) - |R|  |D| - generated
by division algorithm (restoring or nonrestoring)

Flp division - algorithm generates quotient but not
remainder - F1 REM F2 = F1-F2Int(F1/F2)
(Int(F1/F2) - quotient F1/F2 converted to integer)

Conversion to integer - either truncation (removing
fractional part) or rounding-to-nearest

The IEEE standard uses the round-to-nearest-even
mode - |F1 REM F2|  |F2| /2

Int(F1/F2) as large as  - high complexity

Floating-point remainder calculated separately - only
when required - for example, in argument reduction
for periodic functions like sine and cosine

Emax-Emin

Koren Chap.4.24

Floating-Point Remainder - Cont.

Brute-force - continue direct division algorithm
for E1-E2 steps

Problem - E1-E2 can be much greater than number
of steps needed to generate m bits of quotient's
significand - may take an arbitrary number of
clock cycles

Solution - calculate remainder in software

Alternative - Define a REM-step operation -
X REM F2 - performs a limited number of divide
steps (e.g., limited to number of divide steps
required in a regular divide operation)

Initial X=F1, then X=remainder of previous
REM-step operation

REM-step repeated until remainder  F2/2

Koren Chap.4.25

Addition and Subtraction

Exponents of both operands must be equal before
adding or subtracting significands

When E1=E2 -  can be factored out and
significands M1 and M2 can be added

Significands aligned by shifting the significand of
the smaller operand |E1-E2| base- positions to
the right, increasing its exponent, until exponents
are equal

E1E2 -

Exponent of larger number not decreased - this
will result in a significand larger than 1 - a
larger significand adder required

E1

Koren Chap.4.26

Addition/Subtraction - postnormalization

Addition - resultant significand M (sum of two
aligned significands) is in range 1/  M < 2

If M>1 - a postnormalization step - shifting
significand to the right to yield M3 and increasing
exponent by one - is required (an exponent
overflow may occur)

Subtraction - Resultant significand M is in range
0  |M|<1 - postnormalization step - shifting
significand to left and decreasing exponent - is
required if M<1/ (an exponent underflow may
occur)

In extreme cases, the postnormalization step may
require a shift left operation over all bits in
significand, yielding a zero result

Koren Chap.4.27

Example

F1=(0.100000)16  16 ; F2=(0.FFFFFF)16  16

Short IBM format ; calculate F1-F2

Significand of smaller number (F2) is shifted to
the right - least-significant digit lost

Shift is time consuming - result is wrong

3 2

Koren Chap.4.28

Example - Cont.

Correct result (with “unlimited" number of
significand digits)

Error (also called loss of significance) is

0.1  16 - 0.1  16 = 0.F  16

Solution to problem - guard digits - additional
digits to the right of the significand to hold
shifted-out digits

In example - a single (hexadecimal) guard digit is
sufficient

-2 -3-3

Koren Chap.4.29

Steps in Addition/Subtraction of
Floating-Point Numbers

Step 1: Calculate difference d of the two
exponents - d=|E1 - E2|

Step 2: Shift significand of smaller number by d
base- positions to the right

Step 3: Add aligned significands and set exponent
of result to exponent of larger operand

Step 4: Normalize resultant significand and adjust
exponent if necessary

Step 5: Round resultant significand and adjust
exponent if necessary

Koren Chap.4.30

Circuitry for Addition/Subtraction

Koren Chap.4.31

Shifters
1st shifter - right (alignment) shifts only ; 2nd shifter

- right or left (postnormalization) shifts ; both
perform large shifts (# of significand digits)

Combinatorial shifter - generate all possible shifted
patterns - only one at output according to control bits
 Such shifters capable of circular shifts (rotates) - known as

barrel shifters

 Shift registers require a large and variable number of clock
cycles, thus combinatorial shifters commonly used

If implemented as a single level array - each input bit
is directly connected to m (or more) output lines -
conceptually simple design

For m=53 (number of significand bits in IEEE double-
precision format) - large number of connections (and
large electrical load) - bad solution

Koren Chap.4.32

Two levels Barrel Shifters
 first level shifts bits by 0, 1, 2 or 3 bit positions

 second level shift bits by multiples of 4 (0,4,8,...,52)

 shifts between 0 and 53 can be performed

Radix-4 shifter

16 bits

 1st level - each bit has 4 destinations ; 2nd level - each bit
has 14 destinations - unbalanced

Radix-8 shifter - 1st level shifts 0 to 7 bit positions ;
2nd level shifts by multiples of 8 (0,8,16,24,...,48)
 1st level - each bit has 8 destinations ; 2nd level - each bit

has 7 destinations

Koren Chap.4.33

Choice of Floating-Point Representation

IEEE standard 754 commonly used - important to
understand implications of a particular format

Given n - total number of bits - determine
 m - length of significand field

 e - length of exponent field (m+e+1=n)

  - value of exponent base

Representation error - error made when using a
finite-length floating-point format to represent a
high-precision real number

x - a real number ; Fl(x) - its machine representation

Goal when selecting format - small representation
error

Error can be measured in several ways

Koren Chap.4.34

Measuring Representation Error

Every real number x has two consecutive
representations F1 and F2 satisfying F1  x  F2

Fl(x) can be set to either F1 or F2

Fl(x)-x - absolute representation error

(x)=(Fl(x)-x)/x - relative representation error

If F1=M then F2=(M+ulp)

Maximum absolute error = half distance between F1
and F2 = ulp - increases as exponent increases

E E

E

Koren Chap.4.35

Measure of Representation Accuracy

MRRE - maximum relative representation error -
upper bound of (x)

MRRE increases with exponent base  - decreases
with ulp (or number of significand bits m)

Good measure if operands uniformly distributed

In practice - larger significands less likely to occur

First digit of a decimal floating-point operand will
most likely be a 1; 2 is the second most likely

Operands follow the density function

Koren Chap.4.36

Different Accuracy Measure

ARRE - average relative representation error

Absolute error varies between 0 and 1/2 ulp

Average absolute error is 1/4 ulp

Relative error is 1/4 ulp/M

E

E

Koren Chap.4.37

Range of Representation

The range of the positive floating-point numbers
-  - must be considered when selecting a
floating-point format

For a large range - increase  and/or number of
exponent bits e

Increasing  increases representation error

Increasing e decreases m and increases ulp -
higher representation error

Trade-off between range and representation
error

Emax

Koren Chap.4.38

Range - Accuracy Trade-off

If several floating-point representations have same
range - select smallest MRRE or ARRE

If several representations have same MRRE (or
ARRE) - select the largest range

Example: 32-bit word - m+e=31 - all three
representations have about the same range

Using MRRE as measure - =16 inferior to other two

Using ARRE as measure - =4 is best

=2 + hidden bit reduces MRRE and ARRE by a
factor of 2 - the smallest representation error

Koren Chap.4.39

Execution Time of Floating-Point Operations

One more consideration when selecting a format

Two time-consuming steps - aligning of significands
before add/subtract operations ; postnormalization in
any floating-point operation

Observation - larger  - higher probability of equal
exponents in add/subtract operations - no alignment ;
lower probability that a postnormalization step needed

No postnormalization in
59.4% of cases for =2;
82.4% for =16

This is of limited practical significance when a barrel
shifter is used

Koren Chap.4.40

The IEEE Floating-Point Standard

Four formats for floating-point numbers

First two:
 basic single-precision 32-bit format and

 double-precision 64-bit format

Other two - extended formats for intermediate
results

Single extended format - at least 44 bits

Double extended format - at least 80 bits

Higher precision and range than corresponding
32- and 64-bit formats

Koren Chap.4.41

Single-Precision Format

Most important objective - precision of representation

Base 2 allows a hidden bit - similar to DEC format

Exponent field of length 8 bits for a reasonable range

256 combinations of 8 bits in exponent field
 E=0 reserved for zero (with fraction f=0) and

denormalized numbers (with fraction f  0)

 E=255 reserved for  (with fraction f=0) and
NaN (with fraction f  0)

For 1 < E < 254 -

Koren Chap.4.42

IEEE vs. DEC
Exponent bias - 127 instead of 2 = 2 =128

Larger maximum value of true exponent - 254-127=127
instead of 254-128=126 - larger range

Similar effect - significand of 1.f instead of 0.1f -

Largest and smallest positive numbers -

instead of

Exponent bias and significand range selected to allow
reciprocal of all normalized numbers (in particular,
F min) to be represented without overflow - not true
in DEC format

+

e-1 7

Koren Chap.4.43

Special Values in IEEE Format

 - represented by f=0, E=255, S=0,1 - must

obey all mathematical conventions: F+=, F/=0
Denormalized numbers - represented by E=0 -

values smaller than smallest normalized number -
lowering probability of exponent underflow

F=(-1) · 0.f·2

Or - F=(-1) · 0.f · 2 - same bias as
normalized numbers

1-127

-126S

S

Koren Chap.4.44

Denormalized Numbers

No hidden bit - significands not normalized

Exponent - -126 selected instead of 0-127=-127
- smallest normalized number is F min= 12

Smallest representable number is 2  2 =
2 instead of 2 - gradual (or graceful)
underflow

Does not eliminate underflow - but reduces gap
between smallest representable number and zero;
2 = distance between any two consecutive
denormalized numbers = distance between two
consecutive normalized numbers with smallest
exponent 1-127=-126

+ -126

-126-149

-126-23

-149

Koren Chap.4.45

Denormals & Extended formats
Denormalized numbers not included in all designs

of arithmetic units that follow the IEEE standard
 Their handling is different requiring a more complex

design and longer execution time

 Even designs that implement them allow programmers to
avoid their use if faster execution is desired

The single-extended format for intermediate
results within evaluation of complex functions like
transcendental and powers

Extends exponent from 8 to 11 bits and
significand from 23+1 to 32 or more bits (no
hidden bit)
 Total length is at least 1+11+32=44 bits

Koren Chap.4.46

NaN (E=255)

f0 - large number of values
 Two kinds - signaling (or trapping), and quiet (nontrapping) -

differentiated by most significant bits of fraction -
remaining bits contain system-dependent information

 Example of a signaling NaN - uninitialized variable

 It sets Invalid operation exception flag when arithmetic
operation on this NaN is attempted ; Quiet NaN - does not

 Turns into quiet NaN when used as operand if Invalid
operation trap is disabled (avoid setting Invalid Op flag later)

 Quiet NaN produced when invalid operation (0  ) attempted
- this operation had already set the Invalid Op flag once.
Fraction field may contain a pointer to offending code line

 Quiet NaN, as operand will produce quiet NaN result and not
set exception. For example, NaN+5=NaN. If both operands
quiet NaNs, result is the NaN with smallest significand

Koren Chap.4.47

Double-Precision Format

Main consideration - range; exponent field - 11 bits

E=0,2047 reserved for same purposes as in
single-precision format

For 1  E  2046 -

Double extended format - exponent field - 15 bits,
significand field - 64 or more bits (no hidden bit),
total number of bits - at least 1+15+64=80

Koren Chap.4.48

Round-off Schemes

Accuracy of results in floating-point arithmetic is
limited even if intermediate results are accurate

Number of computed digits may exceed total
number of digits allowed by format - extra digits
must be disposed of before storing

Example - multiplying two significands of length m
- product of length 2m - must be rounded off to
m digits

Considerations when selecting a round-off scheme -

Accuracy of results (numerical considerations)

Cost of implementation and speed (machine
considerations)

Koren Chap.4.49

Requirements for Rounding

x,y - real numbers; Fl - set of machine
representations in a given floating-point format;
Fl(x) - machine representation of x

Conditions for rounding:
 Fl(x)  Fl(y) for x  y

 If x  Fl - Fl(x)=x

 If F1, F2 consecutive in Fl and F1  x  F2, then either
Fl(x)=F1 or Fl(x)=F2

d - number of extra digits kept in arithmetic unit
(in addition to m significand digits) before rounding

Assumption - radix point between m most
significant digits (of significand) and d extra digits

Example - Rounding 2.9910 into an integer

Koren Chap.4.50

Truncation (Chopping)

d extra digits removed - no change in m
remaining digits - rounding towards zero

For F1  x  F2 - Trunc(x) results in F1
(Trunc(2.99)=2)

Fast method - no extra hardware

Poor numerical performance - Error up to ulp

Trunc(x) lies
entirely below
ideal dotted
line (infinite
precision)

Koren Chap.4.51

Rounding Bias

Rounding bias - measures tendency of a round-
off scheme towards errors of a particular sign

Ideally - scheme is unbiased or has a small bias

Truncation has a negative bias

Definition - Error=Trunc(x)-x ; for a given d -
bias is average error for a set of 2 consecutive
numbers with a uniform distribution

Example - Truncation, d=2

X is any significand of
length m

Sum of errors for all
2 =4 consecutive
numbers=-3/2

Bias=average error=-3/8

d

d

Koren Chap.4.52

Round to Nearest Scheme

F1  x  F2 - Round(x)=nearest to x out of
F1,F2 - used in many arithmetic units

Obtained by adding 0.12 (half a ulp) to x and
retaining the integer (chopping fraction)

Example - x=2.99 - adding 0.5 and chopping off
fractional part of 3.49 results in 3

Maximum error -
x=2.50 -
2.50+0.50=3.00 -
result=3, error=0.5

A single extra digit
(d=1) is sufficient

Koren Chap.4.53

Bias of Round to Nearest

Round(x) - nearly symmetric around ideal line -
better than truncation

Slight positive bias - due to round up of X.10

d=2 :

Sum of errors=1/2, bias=1/8, smaller than
truncation

Same sum of errors obtained for d>2 -
bias=1/2  2-d

Koren Chap.4.54

Round to Nearest
Even

In case of a tie (X.10),
choose out of F1 and F2
the even one (with
least-significant bit 0)

Alternately rounding up and down - unbiased

Round-to-Nearest-Odd - select the one with
least-significant bit 1

d=2 :

Sum of
errors=0

Bias=0

Mandatory in IEEE floating-point standard

Koren Chap.4.55

ROM Rounding

Disadvantage of round-to-nearest schemes -
require a complete add operation - carry
propagation across entire significand

Suggestion - use a ROM (read-only memory)
with look-up table for rounded results

Example - a ROM with
l address lines - inputs
are l-1 (out of m) least
significant bits of
significand and most
significant bit out
of d extra bits

Koren Chap.4.56

ROM Rounding - Examples

ROM has 2 rows of l-1 bit each - correct
rounding in most cases

When all l-1 low-order bits of significand are
1's - ROM returns all 1's (truncating instead of
rounding) avoiding full addition

Example - l=8 - fast lookup - 255 out of 256
cases are
properly
rounded

Example: l=3

l

Koren Chap.4.57

Bias of ROM Rounding

Example -
l=3 ; d=1

Sum of
errors=1

Bias=1/8

In general - bias=1/2[(1/2) -(1/2)]

When l is large enough - ROM rounding converges
to round-to-nearest - bias converges to 1/2(1/2)

If the round-to-nearest-even modification is
adopted - bias of modified ROM rounding converges
to zero

d l-1

d

Koren Chap.4.58

Rounding and Interval Arithmetic

Four rounding modes in IEEE standard
 Round-to-nearest-even (default)

 Round toward zero (truncate)

 Round toward   Round toward -
Last 2 - useful for Interval Arithmetic

 Real number a represented by lower and upper bounds a1 and a2

 Arithmetic operations operate on intervals

 Calculated interval provides estimate on accuracy of computation

 Lower bound rounded toward -, upper - toward 

Koren Chap.4.59

Guard Digits for Multiply/Divide
Multiplication has a double-length result - not all

extra digits needed for proper rounding

Similar situation - adding or subtracting two numbers
with different exponents

How many extra digits are needed for rounding and
for postnormalization with leading zeros ?

Division of signed-magnitude fractions - no extra
digits - shift right operation may be required

Multiplying two normalized fractions - at most one
shift left needed if =2 (k positions if  =2)  one
guard digit (radix ) is sufficient for postnormalization

A second guard digit is needed for round-to-nearest -
total of two - G (guard) and R (round)

Exercise - Same for range [1,2) (IEEE standard)

k

Koren Chap.4.60

Guard, Round and Sticky digits

Round-to-nearest-even - indicator whether all
additional digits generated in multiply are zero -
detect a tie

Indicator is a single bit - logical OR of all
additional bits - sticky bit

Three bits - G, R, S (sticky) - sufficient even for
round-to-nearest-even

Computing S when multiplying does not require
generating all least significant bits of product

Number of trailing zeros in product equals sum of
numbers of zeros in multiplier and multiplicand

Other techniques for computing sticky bit exist

Koren Chap.4.61

Guard digits for Add/Subtract
Add/subtract more complicated - especially when final

operation (after examining sign bits) is subtract

Assumption - normalized signed-magnitude fractions

Subtract - for postnormalization all shifted-out digits of
subtrahend may need to participate in subtraction
 Number of required guard digits = number in significand field -

double size of significand adder/subtractor

If subtrahend shifted more than 1 position to right
(pre- alignment) - difference has at most 1 leading zero

At most one shifted-out digit required for
postnormalization

Koren Chap.4.62

Subtract - Example 1

Calculating A-B

Significands of A and B are 12 bits long, base=2,
EA-EB=2 - requiring a 2-bit shift of subtrahend B
in pre-alignment step

Same result obtained even if only one guard bit
participates in subtraction generating necessary
borrow

Koren Chap.4.63

Subtract - Example 2
Different if most significant shifted-out bit is 0

Same two significands - EA-EB=6  B's significand
shifted 6 positions

 If only one guard bit - 4 least significant bits of result after
postnormalization would be 1000 instead of 0111

 Long sequence of borrows - seems that all additional digits in
B needed to generate a borrow

Possible conclusion : in the worst case - number of
digits doubled

Statement : Enough to distinguish between two cases:
 (1) All additional bits (not including the guard bit) are 0

 (2) at least one of the additional bits is 1

Koren Chap.4.64

Proof of Statement

 All extra digits in A are zeros (not preshifted)

 Resulting three least significant bits in A-B (011 in example 2)
are independent of exact position of 1's in extra digits of B

 We only need to know whether a 1 was shifted out or not -
sticky bit can be used - if 1 is shifted into it during alignment
it will be 1 - otherwise 0 - logical OR of all extra bits of B

 Sticky bit participates in subtraction and generates necessary
borrow

 Using G and S -

 G and S sufficient for postnormalization

 In round-to-nearest - an additional accurate bit needed -
sticky bit not enough - G,R,S required

Koren Chap.4.65

Example 3 (EA-EB=6)

Correct result Using only G and S

Round bit after postnormalization - 0, sticky bit
cannot be used for rounding

Using G, R, S

Correct R=0 available for use in round-to-nearest

For round-to-nearest-even: sticky bit needed to
detect a tie available - serves two purposes

Koren Chap.4.66

Example 4 - No Postnormalization

Rounding requires a round bit and a sticky bit

For round-to-nearest-even
 original G can be an R bit

 original R and S ORed to generate a new sticky bit S

EA-EB=6

Koren Chap.4.67

Adding ulp in rounding

If R=0 no rounding required - sticky bit indicates
whether final result is exact/inexact (S=0/1)

If R=1 operation in round-to-nearest-even depends
on S and least-significant bit (L) of result

If S=1 rounding must be performed by adding ulp

If S=0 - tie case, only if L=1 rounding necessary

Summary - round-to-nearest-even requires adding ulp
to significand if RS + RSL = R(S + L) =1

Adding ulp may be needed for directed roundings

Example: in round toward +, ulp must be added if
result is positive and either R or S equals 1

Similarly - in round toward -  when result negative
and R+S=1

-

Koren Chap.4.68

IEEE Format Rounding Rules

a

Koren Chap.4.69

Adding ulp in rounding

Adding ulp after significands were added
increases execution time of add/subtract

Can be avoided - all three guard bits are known
before significands added

Adding 1 to L can be done at the same time that
significands are added

Exact position of L is not known yet, since a
postnormalization may be required

However, it has only two possible positions and
two adders can be used in parallel

Can also be achieved using one adder

Koren Chap.4.70

Soo-Ik Chae

Spring 2009

Digital Computer Arithmetic

Part 4-C
Floating-Point Arithmetic - III

Koren Chap.4.71

Floating-Point Adders

Addition - large number of steps executed
sequentially - some can be executed in parallel

Koren Chap.4.72

Effective Addition/Subtraction

Distinguish between effective addition and effective
subtraction
 Depends on sign bits of operands and instruction executed

Effective addition:
 (1) Calculate exponent difference to determine alignment shift

 (2) Shift significand of smaller operand, add aligned
significands

The result can overflow by at most one bit position
 Long postnormalization shift not needed

 Single bit overflow can be detected and, if found, a 1-bit
normalization is performed using a multiplexor

Koren Chap.4.73

Eliminate Increment in Rounding

Significand adder designed to produce two
simultaneous results - sum and sum+1
 Called compound adder; can be implemented in various ways

(e.g., carry-look-ahead or conditional sum)

Round-to-nearest-even - use rounding bits to
determine which of the two should be selected

These two are sufficient even if a single bit overflow
occurs
 In case of overflow, 1 is added in R position (instead of LSB

position), and since R=1 if rounding needed, a carry will
propagate to LSB to generate correct sum+1

Directed roundings - R not necessarily 1 -
sum+2 may be needed

Koren Chap.4.74

Effective Subtraction

Massive cancellation of most significant bits may
occur - resulting in lengthy postnormalization

Happens only when exponents of operands are close
(difference  1) - pre-alignment can be eliminated

Two separate procedures -

 (1) exponents are close (difference  1) - only a
postnormalization shift may be needed

 (2) exponents are far (difference>1) - only a
pre-alignment shift may be needed

Koren Chap.4.75

CLOSE Case
Exponent difference predicted based on two least

significant bits of operands - allows subtraction of
significands to start as soon as possible

If 0 - subtract executed with no alignment

If 1 - significand of smaller operand is shifted
once to the right (using a multiplexor) and then
subtracted from other significand

In parallel - true exponent difference calculated

If > 1 - procedure aborted and FAR procedure
followed

If  1 - CLOSE procedure continued

In parallel with subtraction - number of leading zeros
predicted to determine number of shift positions in
postnormalization

Koren Chap.4.76

CLOSE Case - Normalization and Rounding

Next - normalization of significand and corresponding
exponent adjustment

Last - rounding - precomputing sum, sum+1 - selecting
the one which is properly rounded - negation of result
may be necessary

Result of subtraction usually positive - negation not
required

Only when exponents equal - result of significand
subtraction may be negative (in two's complement) -
requiring a negation step

No pre-alignment - no guard bits - no rounding (exact
result)

Negation and rounding steps - mutually exclusive

Koren Chap.4.77

FAR Case

First - exponent difference calculated

Next - significand of smaller operand shifted to
right for alignment

Shifted-out bits used to set sticky bit

Smaller significand subtracted from larger -
result either normalized or requiring a single-bit-
position left-shift (using a multiplexor)

Last step - rounding

Koren Chap.4.78

Leading Zeros Prediction Circuit

Predict position of leading non-zero bit in result
of subtract before subtraction is completed

Allowing to execute postnormalization shift
immediately following subtraction

Examine bits of operands (of subtract) in a
serial fashion, starting with most significant bits
to determine position of first 1

This serial operation can be accelerated using a
parallel scheme similar to carry-look-ahead

Koren Chap.4.79

Alternative Prediction of Leading 1
Generate in parallel intermediate bits ei - ei=1 if

 (1) ai = bi and

 (2) ai-1 and bi-1 allow propagation of expected carry (at least
one is 1)

 Subtract executed by forming one's complement of subtrahend
and forcing carry into least significant position - carry expected

ei = (ai  bi) (ai-1 + bi-1) -
ei=1 if carry allowed to propagate to position i
 If forced carry propagates to position i - i-th bit of correct

result will also be 1

 If not - correct result will have a 1 in position i-1 instead

 Position of leading 1 - either same as ei or one to the right

Count number of leading zeros in ei - provide count to
barrel shifter for postnormalization - at most one bit
correction shift (left) needed

Koren Chap.4.80

Exceptions in IEEE Standard

Five types : overflow, underflow, division-by-zero,
invalid operation, inexact result

First three - found in almost all floating-point
systems ; last two - peculiar to IEEE standard

When an exception occurs - status flag set (remains
set until cleared) - specified result generated
 Example - a correctly signed  for division-by-zero

Separate trap-enable bit for each exception

If bit is on when corresponding exception occurs -
user trap handler is called

Sufficient information must be provided by floating-
point unit to trap handler to allow taking action
 Example - exact identification of exception causing operation

Koren Chap.4.81

Overflow - Trap Disabled

Overflow exception flag set whenever exponent of
result exceeds largest value allowed

Example - single-precision - overflow occurs if E>254

Final result determined by sign of intermediate
(overflowed) result and rounding mode:

 Round-to-nearest-even -  with sign of intermediate
result

 Round toward 0 - largest representable number with sign of
intermediate result

 Round toward - - largest representable number with a plus
sign if intermediate result positive; otherwise -

 Round toward  - largest representable number with a minus
sign if intermediate result negative; otherwise +

Koren Chap.4.82

Overflow - Trap Enabled

Trap handler receives intermediate result
divided by 2 and rounded

a = 192 / 1536 for single / double-precision
format

Chosen in order to translate the overflowed
result as nearly as possible to middle of
exponent range so that it can be used in
subsequent operations with less risk of causing
further exceptions

a

Koren Chap.4.83

Example
Multiplying 2 (with E=254 in single-precision)

by 2 - overflowed product has E=254+254-127
=381 after being adjusted by 127

Result overflows - E>254

If product scaled (multiplied) by 2 -
E=381-192=189 - “true” value of 189-127=62

Smaller risk of causing further exceptions

Relatively small operands can result in overflow

Multiply 2 (E=191 in single-precision) by 2
(E=192)

Overflowed product - E=191+192-127=256

Exponent adjusted by 192 - E=256-192=64 -
“true” value of 64-127=-63

127

-192

64

127

65

Koren Chap.4.84

Underflow - Trap Enabled

Underflow exception flag is set whenever the
result is a nonzero number between -2
and 2

Emin=-126 in single-precision format; 1022 in
double-precision format

Intermediate result delivered to underflow
trap handler is the infinitely precise result
multiplied by 2 and rounded

a=192 in single precision format; 1536 in
double-precision format

Emin
Emin

a

Koren Chap.4.85

Underflow - Trap Disabled

Denormalized numbers allowed

Underflow exception flag set only when an
extraordinary loss of accuracy occurs while
representing intermediate result (with a nonzero
value between 2) as a denormalized number

Such a loss of accuracy occurs when either
guard bit or sticky bit is nonzero- indicating an
inexact result

In an arithmetic unit where denormalized
numbers are not implemented - delivered result
is either zero or 2

Emin

Emin

Koren Chap.4.86

Underflow - Trap Disabled - Example

Denormalized numbers implemented

Multiply 2 by 2
 Result - E=(127-65)+(127-65)-127=-3 < 1

 Cannot be represent as a normalized number

 Result 2 represented as the denormalized number
0.0001 2 - f=.0001 ; E=0

No underflow exception flag is set

If second operand is (1+ulp) 2
 Correct product is (1+ulp) 2

 Converted to a denormalized number - f=.0001 ; E=0

 Now sticky bit = 1

Inexact result - underflow exception flag is set

-65-65

-130

-65

-130

-126

Koren Chap.4.87

Invalid Operation

Flag is set if an operand is invalid for operation
to be performed

Result - when invalid operation trap is disabled -
quiet NaN

Examples of invalid operations :

 Multiplying 0 by 

 Dividing 0 by 0 or  by 

 Adding + and -

 Finding the square root of a negative operand

 Calculating the remainder x REM y where y=0 or x=

 Any operation on a signaling NaN

Koren Chap.4.88

Division by Zero & Inexact Result

Divide-by-zero exception flag is set whenever
divisor is zero and dividend is a finite nonzero
number

When corresponding trap is disabled - result is
a correctly signed 

Inexact Result flag is set if rounded result is not
exact or if it overflows without an overflow trap

A rounded result is exact only when both guard
bit and sticky bit are zero - no precision was lost
when rounding

Allows performing integer calculations in a
floating-point unit

Koren Chap.4.89

Accumulation of Round-off Errors

Rounding in floating-point operations - even with
best rounding schemes - results in errors that
tend to accumulate as number of operations
increases

 - relative round-off error in a floating-point
operation

  - any floating-point arithmetic operation
+,-,,

Fl(x  y) - rounded or truncated result of x 
y

Koren Chap.4.90

Upper Bounds of Relative Errors

Truncation -

Absolute error - maximum is least-significant
digit of significand.

Relative error - worst case when normalized
result is smallest

Round-to-nearest -

Absolute error - maximum is half of ulp

Relative error -

Koren Chap.4.91

Distribution of Relative Truncation Error

Density function of relative truncation error -

Relative truncation errors -
 uniformly distributed in [0, 2]

 reciprocally in [2 , 2]

Average relative error -

-m

-m+1 -m

Koren Chap.4.92

Distribution of Relative Rounding Error

Density function of relative rounding error -

Relative rounding errors -
 uniformly distributed in

[-2 , 2]

 reciprocally elsewhere

 symmetric

Average relative
error = 0

Analytical expressions are in very good
agreement with empirical results

-m-1 -m-1

Koren Chap.4.93

Accumulation of Errors - Addition
Adding two intermediate results A1, A2

 correct values - A1 , A2

 relative errors 1, 2

Assumption - no new error introduced in addition -
relative error of sum

Relative error of sum - weighted average of relative
errors of operands

If both operands positive - error in sum dominated by
error in larger operand

c c

Koren Chap.4.94

Accumulation of Errors - Subtraction

Subtracting two intermediate results A1, A2 -

more severe error accumulation

Relative error -

 If A1, A2 are close positive numbers - accumulated relative
error can increase significantly

 If 1, 2 have opposite signs - inaccuracy can be large

Accumulation of errors for a long sequence of
floating-point operations depends on the specific
application - difficult to analyze - can be simulated

In most cases - accumulated relative error in
truncation is higher than in round-to-nearest

