Digital Computer Arithmetic

Part 6
High-Speed Multiplication

Soo-Ik Chae
Spring 2010

Koren Chap.6.1

Speeding Up Multiplication
¢ Multiplication involves 2 basic operations

* generation of partial products

* their accumulation

¢ 2 ways to speed up

* reducing number of partial products

* accelerating accumulation

Koren Chap.6.2

Speeding Up Multiplication

¢ 3 types of high-speed multipliers:

¢ Sequential multiplier - generates partial products
sequentially and adds each newly generated product to
previously accumulated partial product

¢ Parallel multiplier - generates partial products in
parallel, accumulates using a fast multi-operand adder

¢ Array multiplier - array of identical cells generating
new partial products. accumulating them simultaneously

* No separate circuits for generation and accumulation
* Reduced execution time but increased hardware complexity

Koren Chap.6.3

Reducing Number of Partial Products

¢ Examining 2 or more bits of multiplier at a time
¢ Requires generating A (multiplicand), 2A, 3A

¢ Reduces number of partial products to n/2 -
each step more complex

¢ Several algorithm which do not increase
complexity proposed - one is Booth's algorithm

¢ Fewer partial products generated for groups of
consecutive O's and 1's

Koren Chap.6.4

Booth's Algorithm

¢ Group of consecutive O's in multiplier - no new partial
product - only shift partial product right one bit
position for every O

¢ Group of m consecutive 1's in multiplier - less than m
partial products generated

¢...01.110... = ...10...000... - ...00...010...
#Using SD (signed-digit) notation =...100...010...
¢ Example:

¢ ...011110... = ...100000... - ...000010... =

...100010... (decimal notation: 15=16-1)

¢ Instead of generating all m partial products - only 2
partial products generated

¢ First partial product added - second subtracted -
number of single-bit shift-right operations still m

Koren Chap.6.5

Booth's Algorithm - Rules

x; | T;—1 || Operation Comments Yi
0 0 shift only string of zeros 0
1 1 shift only string of ones 0
1 0 subtract and shift | beginning of a string of ones | 1
0 1 add and shift end of a string of ones 1

¢ Recoding multiplier Xn-1 Xn- 2...X1 Xo in SD code
¢ Recoded multiplier yn-1 yn-2 ... y1 Yo

¢ Xi, Xi-1 of multiplier examined to generate Yyi

¢ Previous bit - Xi-1 - only reference bit

¢i=0 - reference bit x-1=0

¢ Simple recoding - Yyi = Xi-1 - Xi

¢ No special order - bits can be recoded in parallel

¢ Example: Multiplier 0011110011(0) recoded as
0100010101 - 4 instead of 6 add/subtracts

Koren Chap.6.6

=
S
L

=
7
()
=
7
—

Sign Bit O 1 5

2) | 1 1

O

¢ Two's complement - sign bit Xn-1 must be used

¢ Deciding on add or subtract operation - no shift
required - only prepares for next step

¢ Verify only for negative values of X (Xn-1=1)

¢ 2 cases - .oz

A-X=A-X-A-z,1-2" where X=) ;2
j=0

¢ Case (1) - A subtracted - necessary correction

¢ Case (2) - without sign bit - scan over a string of
1's and perform an addition for position n-1

+* When Xn-1=1 considered - required addition not done
* Equivalent to subtracting a2l correction term

Koren Chap.6.7

Recoding sign bit for two's complement

)(n-l

)(n-2

)(n-l

meaning

Xn-2

recoding

Yn

)/n-l

|
o
+

v

ol
1=
ro

N

0z
M
kO

Yo?l X2l 12 FA

Yn

B/n-l

Koren Chap.6.8

Example

A 1 0 1 1 —9
X x 1 1 0 1 —3
Y 0 1 1 1 recoded multiplier
Add —A 0 1 0 1
Shift 0 0 1 0 1
Add A + 1 0 1 1

1 1 0 1 1
Shift 1 1 1 0 1
Add-A + 0 1 0 1

0O 0 1 1 1
Shift O 0 0 1 1 1

Koren Chap.6.9

Booth's Algorithm - Properties

¢ Multiplication starts from least significant bit

¢ If started from most significant bit - longer
adder/subtractor to allow for carry propagation

¢ No need to generate recoded SD multiplier
(requiring 2 bits per digit)

* Bits of original multiplier scanned - control signals for
adder/subtractor generated

¢ Booth's algorithm can handle two's complement
multipliers

* If unsigned numbers multiplied - O added to left of
multiplier (Xn=0) to ensure correctness

Koren Chap.6.10

Drawbacks to Booth's Algorithm

¢ Variable number of add/subtract operations and
of shift operations between two consecutive
add/subtract operations

* Inconvenient when designing a synchronous multiplier
¢ Algorithm inefficient with isolated 1's
¢ Example:

¢001010101(0) recoded as 011111111, requiring
8 instead of 4 operations

¢ Situation can be improved by examining 3 bits of
X at a time rather than 2

Koren Chap.6.11

Radix-4 Modified Booth Algorithm

¢ Bits Xi and Xi-1 recoded into yi and yi-1 -
Xi-2 serves as reference bit

¢ Separately - Xi-2 and Xi-3 recoded into Yi-2 and
Yi-3 - Xi-4 serves as reference bit

¢ Groups of 3 bits each overlap - rightmost being
x1 X0 (x-1), next x3 x2 (x1), and so on

o o o I L6 L5 L4 I3 i) L1 Zo (w—l)

Y7 Ye Ys Ya Y3 Y2 Y1 Yo

Koren Chap.6.12

Radix-4 Algorithm - Rules

T; Ti—1 | Ti—o Y; Yi—1 | operation | comments
0 0 0 0 0 +0 string of zeros
0 1 0 0 1 +A a single 1
._ 1 0 0 1 0 —2A beginning of 1’s
¢i=1,3,5,.. 1 1 0 0 1 —A beginning of 1’s
¢ Isolated O/1| 0 o 1 o 1 +A | endof I's
handled 0 1 1 1 0 +2A end of 1’s
efficienﬂy 1 0 1 0 1 —A a single 0
1 1 1 0 0 +0 string of 1’s

¢ If Xi-1 is an
isolated 1, yi-1=1 - only a single operation needed

¢ Similarly - Xi-1 an isolated O in a str'mg of 1's -

.10(1)... recoded as ...11.. ..01.. - single
oper'a'rion performed
¢ Exercise: To find required operation - calculate

Xi-1+Xi-2-2Xi for odd i's and represent result as a
2-bit binary number yiyi-1 in SD

Koren Chap.6.13

Radix-4 vs. Radix-2 Algorithm

¢01|01]|01|01](0) yields 01|01]|01|01]| - number of
operations remains 4 - the minimum

¢00|10|10|10](0) yields 01|01]01|10|, requiring 4,
instead of 3, operations

¢ Compared to radix-2 Booth's algorithm - less
patterns with more partial products; Smaller
increase in number of operations

¢ Can design n-bit synchronous multiplier that
generates exactly n/2 partial products

¢ Even n - two's complement multipliers handled
correctly; Odd n - extension of sign bit needed

¢ Adding a O to left of multiplier needed if unsigned
numbers are multiplied and n odd - 2 O's if n even

Koren Chap.6.14

Example

A 01 00 01 17
X X 11 01 11 -9
Y 01 10 01 recoded multiplier
—-A 424 -—-A operation
Add —A + 10 11 11
2-bit Shift 1 11 10 11 11
Add 2A + 0 10 00 10
01 11 01 11
2-bit Shift 00 01 11 01 11
Add —A + 10 11 11
11 01 10 01 11 — 153

®n/2=3 steps ;

2 multiplier bits in each step

¢ All shift operations are 2 bit position shifts

¢ Additional bit for storing correct sign required to
properly handle addition of 2A

Koren Chap.6.15

Radix-8 Modified Booth's Algorithm

¢ Recoding extended to 3 bits at a time -
overlapping groups of 4 bits each

¢ Only n/3 partial products generated - multiple
3A needed - more complex basic step

¢ Example: recoding 010(1) yields yi yi-1 yi-2=011

¢ Technique for simplifying generation and
accumulation of +3A exists

¢ To find minimal number of add/subtract ops
required for a given multiplier - find minimal SD
representation of multiplier

¢ Representation with smallest number of nonzero
digits - . 1
min Yo |y

Koren Chap.6.16

Obtaining Minimal Representation of X

® yn-1yn-2... Yo is a minimal representation of an
SD number if yiyi-1=0 for 1< i< n-1, given that
most significant bits can satisfy yn-1-yn-2# 1

¢ Example:
Representation
of 7 with 3 bits
111 minimal
representation
although

yi-yi-12 0
¢ For any X -
add a O to its

left to satisfy
above condition

Tiv1 T; ¢ | ¥i ci+1 | Comments

0 0 0] 0 0 string of 0’s

0 1 0|1 0 a single 1

1 0 0] 0 0 string of 0’s

1 1 0|1 1 | beginning of 1’s
0 0 111 0 end of 1’s

0 1 110 1 string of 1’s

1 0 1|1 1 a single 0

1 1 110 1 string of 1’s

Koren Chap.6.17

Tiv1 X, ¢ |y ¢+1 | Comments

Canonical Recoding | 0 0 0[]0 0 [stringof0s
0 1 0|1 0 | asinglel

1 0 0[]0 0 |stringof0’s

¢ Mul‘riplier' bits examined 1 1 011 1 | beginning of 1’s

one at a time from right;| 0 0 1|1 0 |endofls

Xi+1 - reference bit 0 1 10 1 |stringofl’s
1 0 1|1 1 | asingle 0

¢ To correctly handle a 11 100 1 |stringof I's

single 0/1 in string of
1's/0's - need information on string to right

¢ "Carry” bit - O for O's and 1 for 1's

¢ As before, recoded multiplier can be used without
correction if represented in two's complement

¢ Extend sign bit Xn-1 - Xn-1Xn-1Xn-2...Xo

¢ Can be expanded to two or more bits at a time
¢ Multiples needed for 2 bits - +A and +2A

Koren Chap.6.18

Disadvantages of Canonical Recoding

¢ Bits of multiplier generated sequentially

¢ In Booth's algorithm - no “carry” propagation -
partial products generated in parallel and a fast
multi-operand adder used

¢ To take full advantage of minimum number of
operations - number of add/subtracts and length
of shifts must be variable - difficult to
implement

¢ For uniforms shifts - n/2 partial products - more
than the minimum in canonical recoding

Koren Chap.6.19

Alternate 2-bit-
at-a-time
Algorithm

¢ Reducing number of
partial products but
still uniform shifts
of 2 bits each

riv1 | ©; x;—1 | Operation | Comments

0 0 0 +0 string of 0’s

0 0 1 +2A end of 1’s

0 1 0 +2A a single 1

0 1 1 +4A end of 1’s

1 0 0 —4A beginning of 1’s
1 0 1 —2A a single 0

1 1 0 —2A beginning of 1’s
1 1 1 +0 string of 1’s

¢ Xi+1 reference bit for Xi Xi-1 - i odd
¢ +2A,+4A can be generated using shifts
¢ 4A generated when (Xi-1)xi (Xi-1)=(0)11 - group of
1's - not for (Xi-3)(Xi-2)Xi-1 - O in rightmost position
* Not recoding - cannot express 4 in 2 bits

* Number of partial products - always n/2
* Two's complement multipliers - extend sign bit
* Unsigned numbers - 1 or 2 O's added to left of multiplier

Koren Chap.6.20

Example
¢ Multiplier 01101110 - partial products:

(0) 01 10 11 10
124 —24 444 24

¢ Translates to the SD number 010110010 - not
minimal - includes 2 adjacent nonzero digits

¢ Canonical recoding yields 010010010 - minimal
representation

Koren Chap.6.21

Dealing with Least significant Bit

¢ For the rightmost pair Xi1Xo, if Xo=1 -
considered continuation of string of 1's that never
really started - no subtraction took place

¢ Example: multiplier 01110111 - partial products:
01 11 01 11

+2A +0 —-2A +0
instead of +2A +0 24 -—-A

¢ Correction: when Xo=1 - set initial partial product
to -A instead of O

. . To | 1 xp Operation
¢4 possible cases: 00 11 124 — 4A—4
01 1| +44 — A=3A
1 {0 1 |-24 - A=-34
1 (1 1 0 — A=-A

Example A 01 00 01 17
X x (1) 11 01 11 -9
0 —-24 0 Operation
Initial —A 10 11 11
Add 0 + 00 00 00
¢ Previous 10 11 11
example - 2-bit Shift 1 11 10 11 11
Add 24 + 1 01 11 10
1 01 10 01 11
2-bit Shift 11 01 10 01 11
Add 0 + 00 00 00
11 01 10 01 11 —153

¢ Multiplier's sign bit extended in order to decide
that no operation needed for first pair of

multiplier bits

¢ As before - additional bit for holding correct

sign is needed, because of multiples like -2A

Koren Chap.6.23

Extending the Alternative Algorithm

¢ The above method can be extended to three bits
or more at each step

¢ However, here too, multiples of A like 3A or
even 6A are needed and
* Prepare in advance and store
* Perform two additions in a single step

¢ For example, for (0)101 we need 8-2=6, and for
(1)001, -8+2=-6

Koren Chap.6.24

Implementing Large Multipliers Using
Smaller Ones

¢ Implementing n x n bit multiplier as a single
integrated circuit - several such circuits for
implementing larger multipliers can be used

¢ 2n x 2n bit multiplier can be constructed out of 4
n x n bit multipliers based on :

A X = (AH-Qn—I—AL)-(XH-Qn—I—XL)

= Ay -Xg-22"+(Ag- X1

AL-XH)-2n

AL-XL

¢ A1, AL - most and least significant halves of A ;

XH , XL - same for X

Koren Chap.6.25

Aligning Partial Products A | A

¢ 4 partial products of 2n bits

- correctly aligned before adding o
¢ Last arrangement - minimum i X
height of matrix - 1 level of Ap % Xy
carry-save addition and a CPA T X X
4 n least significant bits - already yo——
bits of final product - no further
addition needed A x Xy || Ar x Xp
¢ 2n center bits - added by 2n-bit CSA 2= * "¢

with outputs connected to a CPA

¢ n most significant bits connected to same CPA,
since center bits may generate carry into most

significant bits - 3n-bit CPA needed

Koren Chap.6.26

Decomposing a Large Multiplier into
Smaller Ones - Extension

¢ Basic multiplier - n x m bits - n # m
¢ Multipliers larger than 2n x 2m can be implemented

¢ Example: 4n x 4n bit multiplier - implemented using
n x n bit multipliers

* 4n x 4n bit multiplier requires 4 2n x 2n bit multipliers
* 2n x 2n bit multiplier requires 4 n x n bit multipliers
* Total of 16 n x n bit multipliers

* 16 partial products - aligned
before being added

¢ Similarly - for any kn x kn
bit multiplier with integer k

Koren Chap.6.27

Adding Partial Products

¢ After aligning 16 products
- 7 bits in one column need
to be added —

¢ Method 1: (7,3) counters - L
generating 3 operands added by | ¢ (52
(3.2) counters - generating 2 — |,

operands added by a CPA | o
¢ Method 2: Combining 2 sets || — T [t mi

y ¥ Carry C2¢ from (i — 2)

of counters into a set s 5.2
of (7:2) compressors, .] I

¢ Selecting more Carry O2+% 10 (5-+1) AN
economical multi-operand adder - discussed next

Koren Chap.6.28

Digital Computer Arithmetic

Part 6b
High-Speed Multiplication - II

Soo-Ik Chae
Spring 2009

Koren Chap.6.29

Accumulating the Partial Products

¢ After generating partial products either directly
or using smaller multipliers

¢ Accumulate these to obtain final product
* A fast multi-operand adder

¢ Should take advantage of particular form of
partial products - reduce hardware complexity

¢ They have fewer bits than final product, and
must be aligned before added

¢ Expect many columns that include fewer bits than
total number of partial products - requiring
simpler counters

Koren Chap.6.30

Example - Six Partial Products

10 9 8 7 6 5 4 3 2 1 0

¢ Generated when multiplying

unsigned 6-bit operands using © 0 0o 0o o o
one-bit-at-a-time algorithm © o 0o o o o
¢ 6 operands can be added R
using 3-level carry-save tree °© °0 0 0 o0
o o o o o o
0O O O O o o

’Number Of (3,2) counters can 10 9 8 7 6 5 4 3 2 1 0
be substantially reduced by
taking advantage of the fact
that all columns but 1
contain fewer than 6 bits .

¢ Deciding how many counters needed - , , ,
redraw matrix of bits to be added: o

o o o 0o o o o o o o o
o 0 o 0o o o o o o

o O O o o o o

Koren Chap.6.31

Reduce Complexn‘y Use (2, 2) Coum‘er's (HAs)

10 9

&)}
<

(0) (o) (0) o o
l 1 '"
ik
(2,2) IR
counter < |° & counter
&/
(a) Level 1 carry-save addition. (c) Level 2 carry-save addition.
10 9 8 7 6 5 4 3 2 1 O 11 10 9 0
o (0o o(o o)(0o o)(0o o o o o o
(o o)(c o) (0o o) (o o) o ...
(o o)(o o o
o
(b) Results of level 1. (d) Level 3 carry-save addition.

¢ Number of levels still 3, but fewer counters
Koren Chap.6.32

Further reduction in number of counters

¢ Reduce # of bits to closest element of 3,4,6,9,13,19, ...
¢15 (3,2) and 5 (2,2) vs. 16 (3,2) and 9 (2,2) counters

10 9 8 7 6

o o o o (o

© © O
o 0)
o

S

(a) Level 1 carry-save addition.

(b) Results of level 1.

5

o) (o o) o

o

4

o
o)

o

3

o

o

o

o

10 9 8 7 6 5 4 3 2 1 0

o o o o o o o o o o o
o o O O
o

(c) Level 2 carry-save addition.

10 9 8 7 6 b5 4 3 2 1 O
0 o o0 o
o

(d) Level 3 carry-save addition.

Modified Matrix for Negative Numbers

¢ Sign bits must be properly extended
¢Inrow 1: 11 instead of 6 bits, and so on
¢ Increases complexity of multi-operand adder

¢ If two's complement obtained through one's
complement - matrix increased even further

10 9 8 v 6 5 4 3 2 1 0

Koren Chap.6.34

Reduce Complexity Increase

¢ Two's complement number

S SS S S S 2423222120
with value

-2V 4.2945.2%45.2"+5-2045. 25—|—z4 : 24—|—z3 - 23—|—2:2 : 22—|—z1 - 21—|—z0

¢ Replaced by
0] O 00 O(S) Z4 23 22 Z1 20

¢ since
—5-210 4 5. (27 4 2% 427 4 20 + 2°)
= =250+ 2 (559 =3) = — 23y

Koren Chap.6.35

New Bit Matrix

¢ To get -s in column 5 - complement original s to

(1-s) and add 1

* Carry of 1 into column 6 serves as the extra 1 needed

for sign bit of second partial product

10 9 &8 7

¢ New matrix has
fewer bits but

higher maximum
height (7 instead 53
of 6) _
S4 O
Ss; o o

6

5
1
S1

o

o

2 1 0
o o o©o
o o

Koren Chap.6.36

Eliminating Extra 1 in Column 5
¢ Place two sign bits s: and sz in same column
¢ (1-s1)+(1-s2) = 2 -s1 -s2
¢ 2 is carry out to next column

¢ Achieved by first extending sign bit s:
100 9 8 7 6 5 4 3 2 1 0

Koren Chap.6.37

Using One’s Complement and Carry

¢ Add extra carries to matrix

¢ Full circles - complements of corresponding bits are
taken whenever si=1

¢ Extra Se6 in column 5 increases maximum column

height to 7 10 9 8 7 6 5 4 3 2 1 0
]] _1 S1 ©¢ e e e e

¢ If last partial product is _
always positive (i.e., 52 ¢ 0 s 0 s A

mUITlpller is pOSi"'iVC) - S3 e e e e e S9
Se6 can be eliminated S o o o o o S3

S; e e e e e Sy

Koren Chap.6.38

Example

¢ Recoded multiplier using canonical recoding

Recoded multiplier

22
11

—— O I
o — O

— O

< <

o 0 0 0 0 0 0 0 0 0

0O 0 0 0 0

0 0 O

0
|

0

0 0 1

|

Koren Chap.6.39

Smaller Matrix for the Example

10

O 0 0 0 O

1

Koren Chap.6.40

Using One’s Complement and Carry

10

Koren Chap.6.41

10

Use Modified Radix-4
Booth Algorithm

S1 S1 S1 o

6 5 4

o

o o o

o o o
Scheme (b)

10 9 8 7 6 5
1
150
15000

S3 o o o o o

2 1 0
© o o
o

o

o

o

Scheme (c¢)

Example 2: Using radix-4 modified Booth's

9

¢ Same recoded multiplier 010101

8

7

6

5

4

3

2

1

0

O 1 1 0 1 O 0
17 0 0 1 O 1 O

1 1 0 1 0

0 0 1 1 I 0 0 1 O
7 6 5 4 3 2 1 0
0 1.1 0 1 0 0 1
0O 0 1 0 0 1 1
0 1 1 0 1

0

1 1. 1 1 O 0 1 O

vieri \'"uP.U.'I'J

Alternative Techniques for Partial
Product Accumulation

¢ Reducing number of levels in tree - speeding up
accumulation

¢ Achieving more regular design

¢ Tree structures usually have irregular interconnects

* Irregularity complicates implementation- area-inefficient
layouts

¢ Number of tree levels can be lowered by using
reduction rate higher than 3:2

¢ Achieve 2:1 reduction rate by using SD adders
* SD adder also generates sum in constant time
* Number of levels in SD adder tree is smaller
* Tree produces a single result rather than two for CSA tree

Koren Chap.6.44

Final Result of SD Tree

¢ In most cases, conversion to two's complement
needed

¢ Conversion done by forming two sequences:

¢First - Z* - created by replacing each negative
digit of SD number by O

¢ Second - Z - replaces each negative digit with its
absolute value, and each positive digit by O

¢ Difference Z* - Z~ - found by adding two's
complement of Z~ to Z™ using a CPA

¢ Final stage of a CPA needed as in CSA tree

Koren Chap.6.45

SD Adder Tree vs. CSA Tree

¢ SD - no need for a sign bit extension when negative
partial products - no separate sign bit

¢ Design of SD adder more complex - more gates and
larger chip area - each signed digit requires two
ordinary bits (or multiple-valued logic)

¢ Comparison between the two must be made for
specific technology

¢ Example:

* 32x32 Multiplier based on radix-4 modified Booth's
algorithm - 16 partial products

* CSA tree with 6 levels, SD adder tree with 4 levels

* Sophisticated logic design techniques and layout schemes
result in less area-consuming implementations

Koren Chap.6.46

(4:2) Compressors . ml xgl Ml

¢ Same reduction rate of 2:1 (3,2)
achieved without SD Cout -« |
representations by using —1 J, [Cin

(4:2) compressors

¢ Designed so that Cout is not "_, l

a function of Cin to avoid a
ripple-carry effect C

¢ (4:2) compressor may be implemented as a
multi-level circuit with a smaller overall delay
compared to implementation based on 2 (3,2)
counters

nn

Koren Chap.6.47

Example Implementation

¢ Delay of 3 exclusive-or gates to output S vs.
delay of 4 exclusive-or gates

*25% lower delay

1| To I3 35’4'
y Vv y l

S D

1 Q’ng :1331 .’1341 v ' ﬁ h

| | OMua: e D
(3’2) Cout _|_I Cin
Cout 4 | l Cin <_l + + *
Y O Mz L e— b

'
— e

Koren Chap.6.48

Other Multi-Level Implementations
of a (4:2) Compressor

¢ All implementations must satisfy
Tr1 + o + T3 + T4 + Cin :S—I—Q(C—l—cout)

¢ Cout should not depend on Cin to avoid horizontal
rippling of carries

¢ Truth table : (a,b,c,d,e,f - Boolean variables)

X1 Ty XT3 T4 | Cout C S 1 L2 T3 L4 | Cout C S
0O 0O 0 0 0 0 eoll 1T 0 0 0 0 ¢n G
o 0 0 1 0 Cin GCin 1 0 0 1 d d ¢in
0 0 1 0 0 Cin Cin 1 0 1 0 e e Cin
0 0 1 1 a a Cin 1 0 1 1 1 Cin Cin
0O 1 0 0| 0 ¢n @nlll 1 0 0] 7 f cin
o 1 0 1 b b Cin 1 1 0 1 1 ¢n GCn
0 1 1 0 c C Cin 1 1 1 0 1 Cin Cin
o 1 1 1 1 ¢n Gnll1l 1 1 1 1 1 ¢
¢ Previous implementation - a=b=c=1, d=e=f=0

Koren Chap.6.49

Comparing Delay of Trees

Number of || Number of levels || Number of levels | Equivalent
operands using (3,2) using (4;2) delay
3 1 1 1.5
4 2 1 1.5
5—-06 3 2 3
7-8 4 2 3
9 4 3 4.5
10 — 13 5 3 4.5
14 — 16 6 3 4.5
17 — 19 6 4 6
20 — 28 7 4 6
29 — 32 8 4 6
33 — 42 8 5} 7.5

Koren Chap.6.50

Other Implementations

¢ Other counters and compressors can be used: e.g.,
(7,3) counters

¢ Other techniques suggested to modify CSA trees
which use (3,2) counters to achieve a more reqular
and less area-consuming layout

¢ Such modified tree structures may require a
somewhat larger number of CSA levels with a larger
overall delay

¢ Two such techniques are:

* Balanced delay trees
* Overturned-stairs trees

Koren Chap.6.51

Bit-Slices i E‘

for Three L] J | E——
Techniques %
— | . 7 7 7
* 18 operands '
* radix-4 —~
modified Booth -
N N/ N/ N/
* Triangles - = b
multiplexers £ Q
* Rectangles - g =
(3,2) counters 6 — @
4]
* 15 outgoing 7 v v
& incoming

carries aligned
* adjacent bit-
slices abut

Comparing the Three Trees

¢ Incoming carries routed so that all inputs to a
counter are valid before or at necessary time

¢ Only for balanced tree - all 15 incoming carries
generated exactly when required - all paths balanced

¢ In other 2 - there are counters for which not all
incoming carries are generated simultaneously

* For example, bottom counter in overturned-stairs - incoming
carries with delays of 4AFA and 5AFA

¢ Number of wiring tracks between adjacent bit-slices
(affect layout area)

* Wallace tree requires 6. overturned-stairs 3; balanced tree
2 tracks

¢ Tradeoff between size and speed
* Wallace : lowest delay but highest number of wiring tracks
* Balanced: smallest number of wiring tracks but highest delay

Koren Chap.6.53

Complete Structure of Wallace Tree

I CSA | I CSA | | CSA | | CSA I CSA I CSA |

T /7 &0 = T /= & 0 =
csa | | csa | CSA csA |
T, T =

L csa csA |
q_l:| |—<+,_
CSA | csa |
T 1 T
T ——
csA |
|—<+,_
D

(a) Wallace tree.

v v

¢ Balanced and overturned-stairs have regular
structure - can be designed in a systematic way

Koren Chap.6.54

Complete Structure of Over-turned Tree

| csa | | CsA | [[csa | [[csa | csa | 1
e e S
e Lesa | [Lcsa | IyCSA | 'IyCSA [: 2
ST Th S

| csa | | csa | CSA|3

R e s SRR

| CsA |- [csa | 4

— | . e —

(b) Overturned-stairs tree. | _csa |

¢ Building blocks indicated with dotted lines

Koren Chap.6.55

Complete S'rr'uctur'e of Balanced Tr'ee

¢ Building blocks
indicated with dotted
lines

(c) Balanced tree.

Koren Chap.6.56

Layout of CSA Tree

¢ Wires connecting carry-save adders should have
roughly same length for balanced paths

¢ CSA tree for 27 operands constructed of (4:2)
compressors

i (42) #1 i i (4;2) #2 ii (42) #3 i i (4:2) #4 ii (42) #5 i i (4;:2) #o ii (4;:2) #7 |

i (42) #8 |

4__
4:2) #9 (4 2) #10

(=3
| 4;2) #11 | (4;2) #12

<4

4_|_

| (4:2) #13 |

Vo

Koren Chap.6.57

Layout of CSA Tree

¢ Bottom compressor (#13) is
located in middle so that
compressors #11 and #12
are roughly at same distance
from it

¢ Compressor #11 has equal
length wires from #8 and #9

i 4;2) #1 i i 42 #2 ii 42 #3 i 42 #4 i i 42 #5 ii 42 #6 ii (42) #7

Toe) T o] T

42 #8 42 #9 (4:2) #10

T 1 T T E
4;2 #11 | 4;2 #12

T | & =

4;2) #13

b

Fused Multiply-Add Unit
¢ Performs A x B followed by adding C

* A x B + C done as single and indivisible operation
¢ Multiply only: set C=0. add (subtract) only: set B=1
* Can reduce overall execution time of chained multiply and then
add/subtract operations
¢ Example: Evaluation of a polynomial anx"+an-1x""1+_ +ao
through [(anx+an-1)x+an-2]x + ...

¢ Independent multiply and add operations can not be
performed in parallel

¢ Another advantage for floating-point operations -
rounding performed only once for A x B+C rather then
twice for multiply and add

* Rounding introduces computation errors - reducing number of
roundings reduces overall error

Koren Chap.6.59

Implementating Fused . & ¢
MLIH'IP'Y—Add Unit | —— \ F+ Ep — Ec :

Muz Mux

Y
L- Alignment Shifter

¢ A,B,C - significands: '
Ea,Eg,Ec - exponents P
of operands ‘ J’ "
¢ CSA tree generates Latch Latch Latch
partial products and
Pef'for'ms Car'r'Y' Adder = Leadin; zZero A'nticz'pator

save accumulation to
produce 2 results
which are added with

pr‘operly Cll igned C Round

¢ Adder gets 3 operands - :
first reduces to 2 ((3,2) counters), then
performs carry-propagate addition

¢ Post-normalization and rounding executed next
Koren Chap.6.60

Normalize

Two Techniques to reduce Execution Time

¢ First: leading zero anticipator circuit uses
propagate and generate signals produced by
adder to predict type of shift needed in post-
normalization step

¢ It operates in parallel to addition so that the
delay of normalization step is shorter

¢ Second (more important): alignment of significand
C in Ea+EB-Ec done in parallel to multiplication

¢ Normally, align significand of smaller operand
(smaller exponent)

¢ Implying: if AxB smaller than C, have to shift
product after generation - additional delay

Koren Chap.6.61

Instead - Always align C

¢ Even if larger than AxB - allow shift to be
performed in parallel to multiplication

¢ Must allow C to shift either to right (traditional)
or left

¢ Direction - Ea+EB-Ec is positive or negative

¢ If C shifted to left - must increase total number
of bits in adder

Koren Chap.6.62

Example product A x B

53 53
¢ Long IEEE range of addend C
operands - 53 53 53
i ~ " - . ~ _J
D eltive T Ang: T

¢ 53 > Ea+EB-Ec > -53

¢ If EA+EB-Ec > 54, bits of C shifted further to
right will be replaced by a sticky bit, and if
Ea+EB-Ec < -54, all bits of AxB replaced by
sticky bit

¢ Overall penalty - 50% increase in width of
adder - increasing execution time

¢ Top 53 bits of adder need only be capable of

incrementing if a carry propagates from lower
106 bits

Koren Chap.6.63

Additional Computation Paths

¢ Path from Round to
multiplexer on right
used for

(XxY+Z)+AxB

¢ Path from Normalize
to multiplexer on left

used for (X x Y+Z) x
B +C

¢ Rounding step for (X
x Y+Z) is performed
at same time as
multiplication by B, by
adding partial product
Incr.x B to CSA tree

A B
!)
Muz
CSA Tree
Ax B+Incr.xB
! !

Eia+Ep— Ec

\—»- Alignment Shifter

c
b

Mux

A

Latch

Latch

Latch

¥

Adder

Normalize

A A Y

Leading Zero Anticipaton

A 4
Round

Koren Chap.6.64

Digital Computer Arithmetic

Part 6c¢
High-Speed Multiplication - IIT

Soo-Ik Chae
Spring 2009

Koren Chap.6.65

Array Multipliers

¢ The two basic operations - generation and
summation of partial products - can be merged,
avoiding overhead and speeding up multiplication

¢ Iterative array multipliers (or array multipliers)
consist of identical cells, each forming a new
partial product and adding it to previously
accumulated partial product

* Gain in speed obtained at expense of extra
hardware

* Can be implemented so as to support a high
rate of pipelining

Koren Chap.6.66

Illustration - 5 x 5 Multiplication

aq as as ai ao
X X4 &3 T2 X1 Lo
a4 - L0 as - I as - X ail - Lo apg - o
aqg - 1 as - I as - I ail - I ap I
a4 * T2 as * Irs as - I» ai - Iro apg - ra
a4 *+ I3 as + I3 a2 - I3 a1 - I3 ap - I3
g * T4 as - L4 az 4 ai - 4 aop - 4

Pg Pg P Pg Pxy P P3 P2 P Py

¢ Straightforward implementation -

* Add first 2 partial products
(a4Xo, Q@sXo,...,@0 Xo and G@4X1, Q3X1,...,G0X1)

in row 1 after proper alignment

* The results of row 1 are then added to

a4X2, Q3Xz,...,4Ao0X2

in row 2, and so on

Koren Chap.6.67

a4 asxo asTo a1 xTo aoro

5 x 5 Array Multiplier for T R
® A 4 Y Y Y
Unsigned Numbers P A i A e ol
. . a4y asxr] a2x1 alry agry
¢ Basic cell - FA accepting
one bit of new partial Y Y y Y
product aix; a4 rzes) B pyy B e) M e
+ one bit of previously
accumulated partial Y Y Y Y
t— — — —
pr‘oduc'r a4x3 asxs a3 ai1xs aors
+ carry-in bit
Y Y Y Y
«— «— «— «—
a4T4 a3xT4 a4 a1T4 apT4
Y A 4 Y Y
< < . 4— 0
l Y Y Y \ \ Y \4 Y \4
Py Py Pr Pe Ps Py P3 P2 P1 Po

¢ No horizontal carry propagation in first 4 rows - carry-save type
addition - accumulated partial product consists of intermediate
sum and carry bits

¢ Last row is a ripple-carry adder - can be replaced by a fast
2-operand adder (e.g., carry-look-ahead adder)

Koren Chap.6.68

Array Multiplier for Two's
Complement Numbers

¢ Product bits like a4Xo and wime asme awze aime aomo

aoxXs have negative weight : : ° °
(@) Y A 4 Y
¢ Should be subtracted T KEA r2w Y BN 2x Y I e IR e
instead of added | | | |
a4 11 ‘a?xg 11 ‘05?332 1 ‘G,T.GBQ 1 ‘CLFCC2
Q Q Q Y
4T3 11 71?:83 11 ‘:L?a:‘g 11 TLT.T?. I agrs
(@] (@] (@] (@]
asxs L Praea | 1L Praea | 11 Poaea | 11 P
Y A 4 Y Y
I7p I'p——Iirp——iI77’' p—0o
J) Y Y Y Y Y Y Y Y Y
Pg Pg Pt Pg Ps Pa P3 P2 Pq Po

Koren Chap.6.69

Type I and IT Cells

¢ Type I cells: 3 positive inputs - ordinary FAs
¢ Type II cells: 1 negative and 2 positive inputs
¢ Sum of 3 inputs of type II cell can vary from -1 to 2

* ¢ output has weight +2
* s output has weight -1 J l j

¢ Arithmetic operation of type II cell - |

T + Yy — 2z = 2¢c — s \l

¢ s and c outputs given by

S
(x 4+ & —) + @

2 = (% 4+ & —) woq ;3 ¢ =

Koren Chap.6.70

Type I' and IT' Cells

¢ Type IT' cells: 2 negative inputs and 1 positive

¢ Sum of inputs varies from -2 to 1
* ¢ output has weight -2 ‘ ‘

* s output has weight +1 - .
¢ Type I' cell: all negative inputs - l l
has negatively weighted c and s outputs

¢ Counts number of -1's at its inputs - represents
this number through c and s outputs

¢ Same logic operation as type I cell - same gate
implementation

¢ Similarly - types IT and IT' have the same gate
implementation

Koren Chap.6.71

o

0

Booth's Algorithm Array Multiplier
¢ For two's complement operands

¢ n rows of basic cells - each row capable of adding
or subtracting a properly aligned multiplicand to
previously accumulated partial product

* Cells in row i perform an add, subtract or transfer-only
operation, depending on xi and reference bit

l

Pg

l

Py

0

|

{CASS

1

[CASS

¢ 4-bit operands

¢ Controlled add/
subtract/shift
(CASS)

l

Pg

as l as l aq l ag l
CTRIpF—®CASSF—®CASSF—®CASSF—®CASS
—>t - «—— —} ——
\ 4 \ 4 \ 4 \ 4
CTRILF—™CASSF—MCASSF—®CASSF—»CASS
—pt - —— «———1} -~
4 l l' l
CTRILF——MCASSF—MCASSF—MCASSF—¥CASS
—>T - -~ —1} ——
\ 4 l l' l
CTRIF——CASSF—PCASSF—®CASSF—»1CASS
—>r - «—— —} «———

l

(CASS

[CASS

l

P3

{CASS

l

Pa

CASS

il

1

Pq

l

Po n Chap.6.72

Controlled add/subtract/shift - CASS

¢ H and D: control signals indicating type of operation
¢ H=0: no arithmetic operation done

¢ H=1: arithmetic operation performed - new Pout
* Type of arithmetic operation indicated by D signal

* D=0: multiplicand bit, a, added to Pin with cin as incoming
carry - generating Pout and cout as outgoing carry

* D=1: multiplicand bit, a, subtracted from Pin with incoming
borrow and outgoing borrow

¢ Pout=Pin®(a H)®(cin H) \
f—

Pin

Y

cout=(Pin®D)(a+cin) + a cin

¢ Alternative: combination of | 11 | -
multiplexer (O, +a and -a) and FA =il

¢ H and D generated by CTRL - ™ || T
based on xi and reference M l_ — \\
bit x{i-1}

Pout
Controlled add/subtract/shift (CASS) cell

et R 2

Booth's Algorithm Array Multiplier - details

¢ First row - most significant bit of multiplier

¢ Resulting partial product need be shifted left before
adding/subtracting next multiple of multiplicand

¢ A new cell with input Pin=0 is added

¢ Number of bits in
partial product
increases by one
each row - expand

e _.' o7 R —lc A ss—ac A ssf—alcass—alcAss o mulfiplicand befor'e
: L o adding/subtracting it
. . 4 . 4 4 l ¢ ACCOmpliShed by
xr | S E— 2 E— E— B o
T O RU——MCASS—WCASS|—HCASSI—MCASS|—HCASS| replicating sign bit
- -— < l———| b——— ——— ° 3
l l l l " of multiplicand
i | !
CT R }—»CASS—MCASS—»CASS—CASS—HCASSF—3CASS
—>T . o S— —] o S— o o — f— 0
ot Nk N NG NN
CT R }—»CASS—CASSF—CASSF—3C A SSF—3C A SS—HCASS—CASS
0o -] -~ ——| SR «—| — -~ «— O
Pg Ps Py P3 Po P Pg 'en Chap.6.74

Properties and Delay

¢ Cannot take advantage of strings of O's or 1's -
cannot eliminate or skip rows

¢ Only advantage: ability to multiply negative numbers
in two's complement with no need for correction

¢ Operation in row i need not be delayed until all upper
(i-1) rows have completed their operation

¢ PO, generated after one CASS delay (plus delay of
CTRL), P1 generated after two CASS delays, and
P{2n-2}, generated after (2n-1) CASS delays

¢ Similarly can implement higher-radix multiplication
requiring less rows

¢ Building block: multiplexer-adder circuit that selects
correct multiple of multiplicand A and adds it to
previously accumulated partial product

Koren Chap.6.75

Pipelining
¢ Important characteristic of array multipliers - allow
pipelining
¢ Execution of separate multiplications overlaps
¢ The long delay of carry-propagating addition must be
minimized
¢ Achieved by replacing CPA with several additional

rows - allow carry propagation of only one position
between consecutive rows

¢ To support pipelining, all cells must include latches -
each row handles a separate multiplier-multiplicand
pair

¢ Registers needed to propagate multiplier bits to their
destination, and propagate completed product bits

Koren Chap.6.76

 ——] E o E =«
s ——] T EE =
g " aef ae o i ~ ot {}
B i e
T A L)
= 1 M 0 ==«
N - T gy B - BN oy B
N - B B
BN i
-y
| .
WI w = —h — N
S d)
c & j o s &
<.2 P T3
v.2 : 2
Q 4+ = g=
nlu = — — 3 g .mu“
3= T e w3
R) E .
Qa < o S
=
k

Optimality of Multiplier Implementations

¢ Bounds on performance of algorithms for
multiplication

¢ Theoretical bounds for multiplication similar to those
for addition

¢ Adopting the idealized model using (f,r) gates:

¢ Execution time of a multiply circuit for two operands
with n bits satisfies

¢ Trmult > [log f 2n |
¢ If residue number system is employed:
¢ Tmult > [log f 2m |

¢m - number of digits needed to represent largest
modulus in residue number system

Koren Chap.6.78

Optimal Implementations

¢ Need to compare performance (execution time)
and implementation costs (e.g., regularity of
design, total area, etc.)

¢ Objective function like A T can be used
¢A - area and T - execution time

¢ A more general objective function: A T¢
* o can be either smaller or larger than 1

Koren Chap.6.79

Basic Array Multiplier

¢ Very regular structure - can be implemented as a
rectangular-shaped array - no waste of chip area

¢ n least significant bits of final product are produced
on right side of rectangle: n most significant bits are
outputs of bottom row of rectangle

¢ Highly regular and simple layout but has two
drawbacks:

* Requires a very Iar'ge area, proportional to n?, since it
contains about n* FAs and AND gates

* Long execution time T of about 2 n AFa (AFa - delay of FA)

¢ More precisely, T consists of (n-1)AFA for first (n-1)
rows and (n-1)AFA for CPA (ripple-carry adder)

¢ AT is proportional to n?

Koren Chap.6.80

Pipelined & Booth Array Multipliers
¢ Required area increases even further (CPA replaced)
¢ Latency of a single multiply operation increases
¢ However, pipeline period (= pipeline rate) shorter
¢ Booth based array multiplier offers no advantage
* A - order of n> and T - linear in n

¢ Radix-4 Booth can potentially be better - only n/2
rows - could reduce T and A by factor of two

¢ However, actual delay & area higher - recoding logic
and, more importantly, partial product selectors, add
complexity & interconnections - longer delay per row

¢ Also, since relative shift between adjacent rows is two
bits, must allow carry to propagate horizontally

* Can be achieved locally or in last row - then carry propagation
through 2n-1 bits (instead of n-1)

¢ Exact reduction depends on design and technology
Koren Chap.6.81

Radix-8 Booth & CSA Tree

¢ Similar problems with radix-8 Booth's array
multiplier

* In addition, 3A should be precalculated
* Reduction in delay and area may be less than expected 1/3

* Still, may be cost-effective in certain technologies and
design styles

¢ Partial products can be accumulated using a cascade
or a tree structure with shorter execution time

¢ But CSA tree structures have irregular interconnects
- no area-efficient layout with a rectangular shape

¢ Moreover - overall width 2n usually required -
multiplier area of order 2n log k

¢ AT may increase as 2n log? k

Koren Chap.6.82

Delay of Balanced Delay Tree

¢ Balanced delay tree - more regular structure
* Increments in number of operands - 3,3,5,7,9...

* Sum of series - order of k=j° (j - number of elements
in series, k - number of operands)

¢ Number of levels - determines overall delay -
linear in j= 'k

¢ Compare to log k - number of levels in complete
binary tree

¢ Proof: exercise

¢ Above expressions - theoretical, limited practical
significance

¢ Detailed analysis of alternative designs is
necessary for specific technology

Koren Chap.6.83

