
Koren Chap.6.1

Soo-Ik Chae

Spring 2010

Digital Computer Arithmetic

Part 6
High-Speed Multiplication

Koren Chap.6.2

Speeding Up Multiplication

Multiplication involves 2 basic operations

 generation of partial products

 their accumulation

2 ways to speed up

 reducing number of partial products

 accelerating accumulation

Koren Chap.6.3

Speeding Up Multiplication

3 types of high-speed multipliers:

Sequential multiplier - generates partial products
sequentially and adds each newly generated product to
previously accumulated partial product

Parallel multiplier - generates partial products in
parallel, accumulates using a fast multi-operand adder

Array multiplier - array of identical cells generating
new partial products; accumulating them simultaneously
 No separate circuits for generation and accumulation

 Reduced execution time but increased hardware complexity

Koren Chap.6.4

Reducing Number of Partial Products

Examining 2 or more bits of multiplier at a time

Requires generating A (multiplicand), 2A, 3A

Reduces number of partial products to n/2 -
each step more complex

Several algorithm which do not increase
complexity proposed - one is Booth's algorithm

Fewer partial products generated for groups of
consecutive 0’s and 1’s

Koren Chap.6.5

Booth’s Algorithm
Group of consecutive 0’s in multiplier - no new partial

product - only shift partial product right one bit
position for every 0

Group of m consecutive 1's in multiplier - less than m
partial products generated

...01…110... = ...10...000... - ...00...010...

Using SD (signed-digit) notation =...100...010...

Example:

 ...011110... = ...100000... - ...000010... =
...100010... (decimal notation: 15=16-1)

Instead of generating all m partial products - only 2
partial products generated

First partial product added - second subtracted -
number of single-bit shift-right operations still m

-

-

Koren Chap.6.6

Booth’s Algorithm - Rules

Recoding multiplier xn-1 xn- 2...x1 x0 in SD code

Recoded multiplier yn-1 yn-2 ... y1 y0

xi,xi-1 of multiplier examined to generate yi

Previous bit - xi-1 - only reference bit

i=0 - reference bit x-1=0

Simple recoding - yi = xi-1 - xi

No special order - bits can be recoded in parallel

Example: Multiplier 0011110011(0) recoded as
0100010101 - 4 instead of 6 add/subtracts

--

Koren Chap.6.7

Sign Bit

Two's complement - sign bit xn-1 must be used

Deciding on add or subtract operation - no shift
required - only prepares for next step

Verify only for negative values of X (xn-1=1)

2 cases

Case (1) - A subtracted - necessary correction

Case (2) - without sign bit - scan over a string of
1's and perform an addition for position n-1

 When xn-1=1 considered - required addition not done

 Equivalent to subtracting A2 - correction term
n-1

Koren Chap.6.8

Recoding sign bit for two’s complement

xn-1

1

1

xn-2

0

1

yn

1

1

yn-1

1

0

recoding

xn-1

1

1

xn-2

0

1

meaning

yn

0

0

yn-1

1

0

-1을 +1로 해석한 것 보상 필요 yn위치의 1을 무시

Koren Chap.6.9

Example

Koren Chap.6.10

Booth’s Algorithm - Properties

Multiplication starts from least significant bit

If started from most significant bit - longer
adder/subtractor to allow for carry propagation

No need to generate recoded SD multiplier
(requiring 2 bits per digit)
 Bits of original multiplier scanned - control signals for

adder/subtractor generated

Booth's algorithm can handle two's complement
multipliers
 If unsigned numbers multiplied - 0 added to left of

multiplier (xn=0) to ensure correctness

Koren Chap.6.11

Drawbacks to Booth's Algorithm
Variable number of add/subtract operations and

of shift operations between two consecutive
add/subtract operations
 Inconvenient when designing a synchronous multiplier

Algorithm inefficient with isolated 1's

Example:

001010101(0) recoded as 011111111, requiring
8 instead of 4 operations

Situation can be improved by examining 3 bits of
X at a time rather than 2

- -- -

Koren Chap.6.12

Radix-4 Modified Booth Algorithm

Bits xi and xi-1 recoded into yi and yi-1 -
xi-2 serves as reference bit

Separately - xi-2 and xi-3 recoded into yi-2 and
yi-3 - xi-4 serves as reference bit

Groups of 3 bits each overlap - rightmost being
x1 x0 (x-1), next x3 x2 (x1), and so on

Koren Chap.6.13

Radix-4 Algorithm - Rules

i=1,3,5,…

Isolated 0/1
handled
efficiently

If xi-1 is an
isolated 1, yi-1=1 - only a single operation needed

Similarly - xi-1 an isolated 0 in a string of 1's -
...10(1)… recoded as ...11... or ...01… - single
operation performed

Exercise: To find required operation - calculate
xi-1+xi-2-2xi for odd i’s and represent result as a
2-bit binary number yiyi-1 in SD

- -

Koren Chap.6.14

Radix-4 vs. Radix-2 Algorithm

01|01|01|01|(0) yields 01|01|01|01| - number of
operations remains 4 - the minimum

00|10|10|10|(0) yields 01|01|01|10|, requiring 4,
instead of 3, operations

Compared to radix-2 Booth's algorithm - less
patterns with more partial products; Smaller
increase in number of operations

Can design n-bit synchronous multiplier that
generates exactly n/2 partial products

Even n - two's complement multipliers handled
correctly; Odd n - extension of sign bit needed

Adding a 0 to left of multiplier needed if unsigned
numbers are multiplied and n odd - 2 0’s if n even

- - -

Koren Chap.6.15

Example

n/2=3 steps ; 2 multiplier bits in each step

All shift operations are 2 bit position shifts

Additional bit for storing correct sign required to
properly handle addition of 2A

Koren Chap.6.16

Radix-8 Modified Booth's Algorithm
Recoding extended to 3 bits at a time -

overlapping groups of 4 bits each

Only n/3 partial products generated - multiple
3A needed - more complex basic step

Example: recoding 010(1) yields yi yi-1 yi-2=011

Technique for simplifying generation and
accumulation of 3A exists

To find minimal number of add/subtract ops
required for a given multiplier - find minimal SD
representation of multiplier

Representation with smallest number of nonzero
digits -

Koren Chap.6.17

Obtaining Minimal Representation of X

yn-1yn-2... y0 is a minimal representation of an
SD number if yiyi-1=0 for 1 i n-1, given that
most significant bits can satisfy yn-1yn-2  1

Example:
Representation
of 7 with 3 bits
111 minimal
representation
although
yiyi-1  0

For any X -
add a 0 to its
left to satisfy
above condition

Koren Chap.6.18

Canonical Recoding

Multiplier bits examined
one at a time from right;
xi+1 - reference bit

To correctly handle a
single 0/1 in string of
1's/0’s - need information on string to right

“Carry” bit - 0 for 0's and 1 for 1's

As before, recoded multiplier can be used without
correction if represented in two's complement

Extend sign bit xn-1 - xn-1xn-1xn-2…x0

Can be expanded to two or more bits at a time

Multiples needed for 2 bits - A and 2A

Koren Chap.6.19

Disadvantages of Canonical Recoding

Bits of multiplier generated sequentially

In Booth’s algorithm - no “carry” propagation -
partial products generated in parallel and a fast
multi-operand adder used

To take full advantage of minimum number of
operations - number of add/subtracts and length
of shifts must be variable - difficult to
implement

For uniforms shifts - n/2 partial products - more
than the minimum in canonical recoding

Koren Chap.6.20

Alternate 2-bit-
at-a-time
Algorithm

Reducing number of
partial products but
still uniform shifts
of 2 bits each

xi+1 reference bit for xi xi-1 - i odd

2A,4A can be generated using shifts

4A generated when (xi+1)xi (xi-1)=(0)11 - group of
1's - not for (xi+3)(xi+2)xi+1 - 0 in rightmost position
 Not recoding - cannot express 4 in 2 bits

 Number of partial products - always n/2
 Two's complement multipliers - extend sign bit

 Unsigned numbers - 1 or 2 0’s added to left of multiplier

Koren Chap.6.21

Example

Multiplier 01101110 - partial products:

Translates to the SD number 010110010 - not
minimal - includes 2 adjacent nonzero digits

Canonical recoding yields 010010010 - minimal
representation

Koren Chap.6.22

Dealing with Least significant Bit

For the rightmost pair x1x0, if x0 = 1 -
considered continuation of string of 1's that never
really started - no subtraction took place

Example: multiplier 01110111 - partial products:

Correction: when x0=1 - set initial partial product
to -A instead of 0

4 possible cases:

Koren Chap.6.23

Example

Previous
example -

Multiplier's sign bit extended in order to decide
that no operation needed for first pair of
multiplier bits

As before - additional bit for holding correct
sign is needed, because of multiples like -2A

Koren Chap.6.24

Extending the Alternative Algorithm

The above method can be extended to three bits
or more at each step

However, here too, multiples of A like 3A or
even 6A are needed and
 Prepare in advance and store

 Perform two additions in a single step

For example, for (0)101 we need 8-2=6, and for
(1)001, -8+2=-6

Koren Chap.6.25

Implementing Large Multipliers Using
Smaller Ones

Implementing n x n bit multiplier as a single
integrated circuit - several such circuits for
implementing larger multipliers can be used

2n x 2n bit multiplier can be constructed out of 4
n x n bit multipliers based on :

AH , AL - most and least significant halves of A ;
XH , XL - same for X

Koren Chap.6.26

Aligning Partial Products

4 partial products of 2n bits
- correctly aligned before adding

Last arrangement - minimum
height of matrix - 1 level of
carry-save addition and a CPA

n least significant bits - already
bits of final product - no further
addition needed

2n center bits - added by 2n-bit CSA
with outputs connected to a CPA

n most significant bits connected to same CPA,
since center bits may generate carry into most
significant bits - 3n-bit CPA needed

Koren Chap.6.27

Decomposing a Large Multiplier into
Smaller Ones - Extension

Basic multiplier - n x m bits - n  m

Multipliers larger than 2n x 2m can be implemented

Example: 4n x 4n bit multiplier - implemented using
n x n bit multipliers
 4n x 4n bit multiplier requires 4 2n x 2n bit multipliers

 2n x 2n bit multiplier requires 4 n x n bit multipliers

 Total of 16 n x n bit multipliers

 16 partial products - aligned
before being added

Similarly - for any kn x kn
bit multiplier with integer k

Koren Chap.6.28

Adding Partial Products

After aligning 16 products
- 7 bits in one column need
to be added

Method 1: (7,3) counters -
generating 3 operands added by
(3,2) counters - generating 2
operands added by a CPA

Method 2: Combining 2 sets
of counters into a set
of (7;2) compressors

Selecting more
economical multi-operand adder - discussed next

Koren Chap.6.29

Soo-Ik Chae

Spring 2009

Digital Computer Arithmetic

Part 6b
High-Speed Multiplication - II

Koren Chap.6.30

Accumulating the Partial Products

After generating partial products either directly
or using smaller multipliers

Accumulate these to obtain final product
 A fast multi-operand adder

Should take advantage of particular form of
partial products - reduce hardware complexity

They have fewer bits than final product, and
must be aligned before added

Expect many columns that include fewer bits than
total number of partial products - requiring
simpler counters

Koren Chap.6.31

Example - Six Partial Products

Generated when multiplying
unsigned 6-bit operands using
one-bit-at-a-time algorithm

6 operands can be added
using 3-level carry-save tree

Number of (3,2) counters can
be substantially reduced by
taking advantage of the fact
that all columns but 1
contain fewer than 6 bits

Deciding how many counters needed -
redraw matrix of bits to be added:

Koren Chap.6.32

Reduce Complexity - Use (2,2) Counters (HAs)

Number of levels still 3, but fewer counters

Koren Chap.6.33

Further reduction in number of counters
Reduce # of bits to closest element of 3,4,6,9,13,19,…

15 (3,2) and 5 (2,2) vs. 16 (3,2) and 9 (2,2) counters

Koren Chap.6.34

Modified Matrix for Negative Numbers

Sign bits must be properly extended

In row 1: 11 instead of 6 bits, and so on

Increases complexity of multi-operand adder

If two's complement obtained through one's
complement - matrix increased even further

Koren Chap.6.35

Reduce Complexity Increase

Two's complement number
s s s s s s z4 z3 z2 z1 z0

with value

Replaced by
0 0 0 0 0 (-s) z4 z3 z2 z1 z0

since

Koren Chap.6.36

New Bit Matrix

To get -s in column 5 - complement original s to
(1-s) and add 1
 Carry of 1 into column 6 serves as the extra 1 needed

for sign bit of second partial product

New matrix has
fewer bits but
higher maximum
height (7 instead
of 6)

Koren Chap.6.37

Eliminating Extra 1 in Column 5

Place two sign bits s1 and s2 in same column

 (1-s1)+(1-s2) = 2 -s1 -s2

2 is carry out to next column

Achieved by first extending sign bit s1

Koren Chap.6.38

Using One’s Complement and Carry
Add extra carries to matrix

Full circles - complements of corresponding bits are
taken whenever si=1

Extra s6 in column 5 increases maximum column
height to 7

If last partial product is
always positive (i.e.,
multiplier is positive) -
s6 can be eliminated

Koren Chap.6.39

Example

Recoded multiplier using canonical recoding

Koren Chap.6.40

Smaller Matrix for the Example

Koren Chap.6.41

Using One’s Complement and Carry

Koren Chap.6.42

Use Modified Radix-4
Booth Algorithm

Koren Chap.6.43

Example 2: Using radix-4 modified Booth's

Same recoded multiplier 010101

Koren Chap.6.44

Alternative Techniques for Partial
Product Accumulation

Reducing number of levels in tree - speeding up
accumulation

Achieving more regular design

Tree structures usually have irregular interconnects
 Irregularity complicates implementation- area-inefficient

layouts

Number of tree levels can be lowered by using
reduction rate higher than 3:2

Achieve 2:1 reduction rate by using SD adders
 SD adder also generates sum in constant time

 Number of levels in SD adder tree is smaller

 Tree produces a single result rather than two for CSA tree

Koren Chap.6.45

Final Result of SD Tree
In most cases, conversion to two's complement

needed

Conversion done by forming two sequences:

First - Z - created by replacing each negative
digit of SD number by 0

Second - Z - replaces each negative digit with its
absolute value, and each positive digit by 0

Difference Z - Z - found by adding two's
complement of Z to Z using a CPA

Final stage of a CPA needed as in CSA tree

+
+

+

-
-

-

Koren Chap.6.46

SD Adder Tree vs. CSA Tree
SD - no need for a sign bit extension when negative

partial products - no separate sign bit

Design of SD adder more complex - more gates and
larger chip area - each signed digit requires two
ordinary bits (or multiple-valued logic)

Comparison between the two must be made for
specific technology

Example:
 32x32 Multiplier based on radix-4 modified Booth's

algorithm - 16 partial products

 CSA tree with 6 levels, SD adder tree with 4 levels

 Sophisticated logic design techniques and layout schemes
result in less area-consuming implementations

Koren Chap.6.47

(4;2) Compressors

Same reduction rate of 2:1
achieved without SD
representations by using
(4;2) compressors

Designed so that cout is not
a function of cin to avoid a
ripple-carry effect

(4;2) compressor may be implemented as a
multi-level circuit with a smaller overall delay
compared to implementation based on 2 (3,2)
counters

Koren Chap.6.48

Example Implementation

Delay of 3 exclusive-or gates to output S vs.
delay of 4 exclusive-or gates

25% lower delay

Koren Chap.6.49

Other Multi-Level Implementations
of a (4;2) Compressor

All implementations must satisfy

cout should not depend on cin to avoid horizontal
rippling of carries

Truth table : (a,b,c,d,e,f - Boolean variables)

Previous implementation - a=b=c=1, d=e=f=0

Koren Chap.6.50

Comparing Delay of Trees

Koren Chap.6.51

Other Implementations
Other counters and compressors can be used: e.g.,

(7,3) counters

Other techniques suggested to modify CSA trees
which use (3,2) counters to achieve a more regular
and less area-consuming layout

Such modified tree structures may require a
somewhat larger number of CSA levels with a larger
overall delay

Two such techniques are:
 Balanced delay trees

 Overturned-stairs trees

Koren Chap.6.52

Bit-Slices
for Three
Techniques

W
a
ll
a
ce

O
ve

r-
tu

rn
e
d

B
a
la
nc

e
d

* 18 operands
* radix-4
modified Booth

* Triangles -
multiplexers
* Rectangles -
(3,2) counters

* 15 outgoing
& incoming
carries aligned
* adjacent bit-
slices abut

7FA

Koren Chap.6.53

Comparing the Three Trees

Incoming carries routed so that all inputs to a
counter are valid before or at necessary time

Only for balanced tree - all 15 incoming carries
generated exactly when required - all paths balanced

In other 2 - there are counters for which not all
incoming carries are generated simultaneously
 For example, bottom counter in overturned-stairs - incoming

carries with delays of 4FA and 5FA

Number of wiring tracks between adjacent bit-slices
(affect layout area)
 Wallace tree requires 6; overturned-stairs 3; balanced tree

2 tracks

Tradeoff between size and speed
 Wallace : lowest delay but highest number of wiring tracks

 Balanced: smallest number of wiring tracks but highest delay

Koren Chap.6.54

Complete Structure of Wallace Tree

Balanced and overturned-stairs have regular
structure - can be designed in a systematic way

Koren Chap.6.55

Complete Structure of Over-turned Tree

Building blocks indicated with dotted lines

Koren Chap.6.56

Complete Structure of Balanced Tree

Building blocks
indicated with dotted
lines

Koren Chap.6.57

Layout of CSA Tree

Wires connecting carry-save adders should have
roughly same length for balanced paths

CSA tree for 27 operands constructed of (4;2)
compressors

Koren Chap.6.58

Layout of CSA Tree

Bottom compressor (#13) is
located in middle so that
compressors #11 and #12
are roughly at same distance
from it

Compressor #11 has equal
length wires from #8 and #9

Koren Chap.6.59

Fused Multiply-Add Unit
Performs A x B followed by adding C

 A x B + C done as single and indivisible operation

Multiply only: set C=0; add (subtract) only: set B=1
 Can reduce overall execution time of chained multiply and then

add/subtract operations

Example: Evaluation of a polynomial anx +an-1x +…+a0

through [(anx+an-1)x+an-2]x + …
Independent multiply and add operations can not be

performed in parallel

Another advantage for floating-point operations -
rounding performed only once for A x B+C rather then
twice for multiply and add
 Rounding introduces computation errors - reducing number of

roundings reduces overall error

n n-1

Koren Chap.6.60

Implementating Fused
Multiply-Add Unit

A,B,C - significands;
EA,EB,EC - exponents
of operands

CSA tree generates
partial products and
performs carry-
save accumulation to
produce 2 results
which are added with
properly aligned C

Adder gets 3 operands -
first reduces to 2 ((3,2) counters), then
performs carry-propagate addition

Post-normalization and rounding executed next

Koren Chap.6.61

Two Techniques to reduce Execution Time

First: leading zero anticipator circuit uses
propagate and generate signals produced by
adder to predict type of shift needed in post-
normalization step

It operates in parallel to addition so that the
delay of normalization step is shorter

Second (more important): alignment of significand
C in EA+EB-EC done in parallel to multiplication

Normally, align significand of smaller operand
(smaller exponent)

Implying: if AxB smaller than C, have to shift
product after generation - additional delay

Koren Chap.6.62

Instead - Always align C

Even if larger than AxB - allow shift to be
performed in parallel to multiplication

Must allow C to shift either to right (traditional)
or left

Direction - EA+EB-EC is positive or negative

If C shifted to left - must increase total number
of bits in adder

Koren Chap.6.63

Example

Long IEEE
operands -
possible range of
C relative to AxB:

 53  EA+EB-EC  -53

If EA+EB-EC  54, bits of C shifted further to
right will be replaced by a sticky bit, and if
EA+EB-EC  -54, all bits of AxB replaced by
sticky bit

Overall penalty - 50% increase in width of
adder - increasing execution time

Top 53 bits of adder need only be capable of
incrementing if a carry propagates from lower
106 bits

Koren Chap.6.64

Additional Computation Paths

Path from Round to
multiplexer on right
used for
(XxY+Z)+AxB

Path from Normalize
to multiplexer on left
used for (X x Y+Z) x
B +C

Rounding step for (X
x Y+Z) is performed
at same time as
multiplication by B, by
adding partial product
Incr.x B to CSA tree

Koren Chap.6.65

Soo-Ik Chae

Spring 2009

Digital Computer Arithmetic

Part 6c
High-Speed Multiplication - III

Koren Chap.6.66

Array Multipliers

The two basic operations - generation and
summation of partial products - can be merged,
avoiding overhead and speeding up multiplication

Iterative array multipliers (or array multipliers)
consist of identical cells, each forming a new
partial product and adding it to previously
accumulated partial product

Gain in speed obtained at expense of extra
hardware

Can be implemented so as to support a high
rate of pipelining

Koren Chap.6.67

Illustration - 5 x 5 Multiplication

Straightforward implementation -

Add first 2 partial products
(a4x0, a3x0,…,a0 x0 and a4x1, a3x1,…,a0x1)
in row 1 after proper alignment

The results of row 1 are then added to
a4x2, a3x2,…,a0x2 in row 2, and so on

Koren Chap.6.68

5 x 5 Array Multiplier for
Unsigned Numbers

 Basic cell - FA accepting
one bit of new partial
product aixj

+ one bit of previously
accumulated partial
product
+ carry-in bit

No horizontal carry propagation in first 4 rows - carry-save type
addition - accumulated partial product consists of intermediate
sum and carry bits

 Last row is a ripple-carry adder - can be replaced by a fast
2-operand adder (e.g., carry-look-ahead adder)

Koren Chap.6.69

Array Multiplier for Two’s
Complement Numbers

Product bits like a4x0 and
a0x4 have negative weight

Should be subtracted
instead of added

Koren Chap.6.70

Type I and II Cells

Type I cells: 3 positive inputs - ordinary FAs

Type II cells: 1 negative and 2 positive inputs

Sum of 3 inputs of type II cell can vary from -1 to 2
 c output has weight +2

 s output has weight -1

Arithmetic operation of type II cell -

s and c outputs given by

II

Koren Chap.6.71

Type I’ and II’ Cells

Type II' cells: 2 negative inputs and 1 positive

Sum of inputs varies from -2 to 1
 c output has weight -2

 s output has weight +1

Type I' cell: all negative inputs -
has negatively weighted c and s outputs

Counts number of -1's at its inputs - represents
this number through c and s outputs

Same logic operation as type I cell - same gate
implementation

Similarly - types II and II' have the same gate
implementation

II’

Koren Chap.6.72

Booth’s Algorithm Array Multiplier
For two's complement operands

n rows of basic cells - each row capable of adding
or subtracting a properly aligned multiplicand to
previously accumulated partial product
 Cells in row i perform an add, subtract or transfer-only

operation, depending on xi and reference bit

 4-bit operands

 Controlled add/
subtract/shift
(CASS)

Koren Chap.6.73

Controlled add/subtract/shift - CASS
H and D: control signals indicating type of operation

H=0: no arithmetic operation done

H=1: arithmetic operation performed - new Pout

 Type of arithmetic operation indicated by D signal

 D=0: multiplicand bit, a, added to Pin with cin as incoming
carry - generating Pout and cout as outgoing carry

 D=1: multiplicand bit, a, subtracted from Pin with incoming
borrow and outgoing borrow

Pout=Pin(a H)(cin H)
cout=(PinD)(a+cin) + a cin

Alternative: combination of
multiplexer (0, +a and -a) and FA

H and D generated by CTRL -
based on xi and reference
bit x{i-1}

Koren Chap.6.74

Booth’s Algorithm Array Multiplier - details
 First row - most significant bit of multiplier

 Resulting partial product need be shifted left before
adding/subtracting next multiple of multiplicand

 A new cell with input Pin=0 is added Number of bits in
partial product
increases by one
each row - expand
multiplicand before
adding/subtracting it

 Accomplished by
replicating sign bit
of multiplicand

Koren Chap.6.75

Properties and Delay

Cannot take advantage of strings of 0's or 1's -
cannot eliminate or skip rows

Only advantage: ability to multiply negative numbers
in two's complement with no need for correction

Operation in row i need not be delayed until all upper
(i-1) rows have completed their operation

P0, generated after one CASS delay (plus delay of
CTRL), P1 generated after two CASS delays, and
P{2n-2}, generated after (2n-1) CASS delays

Similarly can implement higher-radix multiplication
requiring less rows

Building block: multiplexer-adder circuit that selects
correct multiple of multiplicand A and adds it to
previously accumulated partial product

Koren Chap.6.76

Pipelining

Important characteristic of array multipliers - allow
pipelining

Execution of separate multiplications overlaps

The long delay of carry-propagating addition must be
minimized

Achieved by replacing CPA with several additional
rows - allow carry propagation of only one position
between consecutive rows

To support pipelining, all cells must include latches -
each row handles a separate multiplier-multiplicand
pair

Registers needed to propagate multiplier bits to their
destination, and propagate completed product bits

Koren Chap.6.77

Pipelined Array
Multiplier

Koren Chap.6.78

Optimality of Multiplier Implementations
Bounds on performance of algorithms for

multiplication

Theoretical bounds for multiplication similar to those
for addition

Adopting the idealized model using (f,r) gates:

Execution time of a multiply circuit for two operands
with n bits satisfies

Tmult   log f 2n 

If residue number system is employed:

Tmult   log f 2m 

m - number of digits needed to represent largest
modulus in residue number system

Koren Chap.6.79

Optimal Implementations

Need to compare performance (execution time)
and implementation costs (e.g., regularity of
design, total area, etc.)

Objective function like A T can be used

A - area and T - execution time

A more general objective function: A T
  can be either smaller or larger than 1



Koren Chap.6.80

Basic Array Multiplier

Very regular structure - can be implemented as a
rectangular-shaped array - no waste of chip area

n least significant bits of final product are produced
on right side of rectangle; n most significant bits are
outputs of bottom row of rectangle

Highly regular and simple layout but has two
drawbacks:
 Requires a very large area, proportional to n², since it

contains about n² FAs and AND gates

 Long execution time T of about 2 n FA (FA - delay of FA)

More precisely, T consists of (n-1)FA for first (n-1)
rows and (n-1)FA for CPA (ripple-carry adder)

AT is proportional to n³

Koren Chap.6.81

Pipelined & Booth Array Multipliers
Required area increases even further (CPA replaced)

Latency of a single multiply operation increases

However, pipeline period ( pipeline rate) shorter

Booth based array multiplier offers no advantage
 A - order of n² and T - linear in n

Radix-4 Booth can potentially be better - only n/2
rows - could reduce T and A by factor of two

However, actual delay & area higher - recoding logic
and, more importantly, partial product selectors, add
complexity & interconnections - longer delay per row

Also, since relative shift between adjacent rows is two
bits, must allow carry to propagate horizontally
 Can be achieved locally or in last row - then carry propagation

through 2n-1 bits (instead of n-1)

Exact reduction depends on design and technology

Koren Chap.6.82

Radix-8 Booth & CSA Tree

Similar problems with radix-8 Booth's array
multiplier
 In addition, 3A should be precalculated

 Reduction in delay and area may be less than expected 1/3

 Still, may be cost-effective in certain technologies and
design styles

Partial products can be accumulated using a cascade
or a tree structure with shorter execution time

But CSA tree structures have irregular interconnects
- no area-efficient layout with a rectangular shape

Moreover - overall width 2n usually required -
multiplier area of order 2n log k

AT may increase as 2n log² k

Koren Chap.6.83

Delay of Balanced Delay Tree

Balanced delay tree - more regular structure
 Increments in number of operands - 3,3,5,7,9...

 Sum of series - order of k=j (j - number of elements
in series, k - number of operands)

Number of levels - determines overall delay -
linear in j=  k

Compare to log k - number of levels in complete
binary tree

Proof: exercise

Above expressions - theoretical, limited practical
significance

Detailed analysis of alternative designs is
necessary for specific technology

2

