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Speeding Up Multiplication

Multiplication involves 2 basic operations 

 generation of partial products

 their accumulation

2 ways to speed up

 reducing number of partial products 

 accelerating accumulation
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Speeding Up Multiplication

3 types of high-speed multipliers: 

Sequential multiplier - generates partial products 
sequentially and adds each newly generated product to 
previously accumulated partial product

Parallel multiplier - generates partial products in 
parallel, accumulates using a fast multi-operand adder 

Array multiplier - array of identical cells generating 
new partial products; accumulating them simultaneously
 No separate circuits for generation and accumulation 

 Reduced execution time but increased hardware complexity
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Reducing Number of Partial Products

Examining 2 or more bits of multiplier at a time

Requires generating A (multiplicand), 2A, 3A

Reduces number of partial products to n/2 -
each step more complex

Several algorithm which do not increase 
complexity proposed - one is Booth's algorithm 

Fewer partial products generated for groups of 
consecutive 0’s and 1’s
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Booth’s Algorithm
Group of consecutive 0’s in multiplier - no new partial 

product - only shift partial product right one bit 
position for every 0

Group of m consecutive 1's in multiplier - less than m
partial products generated

...01…110... = ...10...000... - ...00...010...

Using  SD (signed-digit) notation  =...100...010... 

Example: 

 ...011110... = ...100000... - ...000010... =    
...100010... (decimal notation: 15=16-1)

Instead of generating all m partial products - only 2 
partial products generated

First partial product added - second subtracted -
number of single-bit shift-right operations still m

-

-
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Booth’s Algorithm - Rules

Recoding multiplier xn-1 xn- 2...x1 x0 in SD code

Recoded multiplier yn-1 yn-2 ... y1 y0

xi,xi-1 of multiplier examined to generate yi

Previous bit - xi-1 - only reference bit

i=0 - reference bit x-1=0

Simple recoding - yi = xi-1 - xi

No special order - bits can be recoded in parallel 

Example: Multiplier 0011110011(0) recoded as  
0100010101 - 4 instead of 6 add/subtracts

--
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Sign Bit

Two's complement - sign bit xn-1 must be used 

Deciding on add or subtract operation - no shift 
required - only prepares for next step

Verify only for negative values of X (xn-1=1) 

2 cases

Case (1) - A subtracted - necessary correction 

Case (2) - without sign bit - scan over a string of 
1's and perform an addition for position n-1

 When xn-1=1 considered - required addition not done

 Equivalent to subtracting A2    - correction term
n-1
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Recoding sign bit for two’s complement
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Example
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Booth’s Algorithm - Properties

Multiplication starts from least significant bit 

If started from most significant bit - longer 
adder/subtractor to allow for carry propagation

No need to generate recoded SD multiplier 
(requiring 2 bits per digit)
 Bits of original multiplier scanned - control signals for 

adder/subtractor generated

Booth's algorithm can handle two's complement 
multipliers 
 If unsigned numbers multiplied - 0 added to left of 

multiplier (xn=0) to ensure correctness 



Koren Chap.6.11

Drawbacks to Booth's Algorithm
Variable number of add/subtract operations and  

of shift operations between two consecutive 
add/subtract operations 
 Inconvenient when designing a synchronous multiplier

Algorithm inefficient with isolated 1's

Example:

001010101(0) recoded as 011111111, requiring 
8 instead of 4 operations

Situation can be improved by examining 3 bits of 
X at a time rather than 2

- -- -
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Radix-4 Modified Booth Algorithm

Bits xi and xi-1 recoded into yi and yi-1 -
xi-2 serves as reference bit

Separately - xi-2 and xi-3 recoded into yi-2 and 
yi-3 - xi-4 serves as reference bit

Groups of 3 bits each overlap - rightmost being 
x1 x0 (x-1), next x3 x2 (x1), and so on
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Radix-4 Algorithm - Rules

i=1,3,5,…

Isolated 0/1                                        
handled                                         
efficiently 

If xi-1 is an                                      
isolated 1, yi-1=1 - only a single operation needed

Similarly - xi-1 an isolated 0 in a string of 1's -
...10(1)… recoded as ...11... or ...01… - single 
operation performed

Exercise: To find required operation - calculate 
xi-1+xi-2-2xi for odd i’s and represent result as a 
2-bit binary number yiyi-1 in SD

- -
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Radix-4 vs. Radix-2 Algorithm

01|01|01|01|(0) yields 01|01|01|01| - number of 
operations remains 4 - the minimum

00|10|10|10|(0) yields 01|01|01|10|, requiring 4, 
instead of 3, operations 

Compared to radix-2 Booth's algorithm - less 
patterns with more partial products; Smaller 
increase in number of operations  

Can design n-bit synchronous multiplier that 
generates exactly n/2 partial products

Even n - two's complement multipliers handled 
correctly; Odd n - extension of sign bit needed 

Adding a 0 to left of multiplier needed if unsigned 
numbers are multiplied and n odd - 2 0’s if n even

- - -
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Example

n/2=3 steps ; 2 multiplier bits in each step 

All shift operations are 2 bit position shifts

Additional bit for storing correct sign required to 
properly handle addition of 2A
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Radix-8 Modified Booth's Algorithm
Recoding extended to 3 bits at a time -

overlapping groups of 4 bits each

Only n/3 partial products generated - multiple 
3A needed - more complex basic step

Example: recoding 010(1) yields yi yi-1 yi-2=011

Technique for simplifying generation and 
accumulation of 3A exists

To find minimal number of add/subtract ops 
required for a given multiplier - find minimal SD
representation of multiplier

Representation with smallest number of nonzero 
digits -
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Obtaining Minimal Representation of X 

yn-1yn-2... y0 is a minimal representation of an 
SD number if yiyi-1=0 for 1 i n-1, given that 
most significant bits can satisfy yn-1yn-2  1

Example:
Representation                                         
of 7 with 3 bits                                              
111 minimal                                                  
representation                                                    
although                                               
yiyi-1  0

For any X -
add a 0 to its                                       
left to satisfy                                                 
above condition 
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Canonical Recoding

Multiplier bits examined                           
one at a time from right;                         
xi+1 - reference bit

To correctly handle a                           
single 0/1 in string of                          
1's/0’s - need information on string to right 

“Carry” bit - 0 for 0's and 1 for 1's

As before, recoded multiplier can be used without 
correction if represented in two's complement 

Extend sign bit xn-1 - xn-1xn-1xn-2…x0

Can be expanded to two or more bits at a time 

Multiples needed for 2 bits - A and 2A
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Disadvantages of Canonical Recoding

Bits of multiplier generated sequentially 

In Booth’s algorithm - no “carry” propagation -
partial products generated in parallel and a fast 
multi-operand adder used

To take full advantage of minimum number of 
operations - number of add/subtracts and length 
of shifts must be variable - difficult to 
implement

For uniforms shifts - n/2 partial products - more 
than the minimum in canonical recoding 
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Alternate 2-bit-
at-a-time 
Algorithm

Reducing number of                                                    
partial products but                                                    
still uniform shifts                                       
of 2 bits each

xi+1 reference bit for xi xi-1 - i odd 

2A,4A can be generated using shifts

4A generated when (xi+1)xi (xi-1)=(0)11 - group of 
1's - not for (xi+3)(xi+2)xi+1 - 0 in rightmost position
 Not recoding - cannot express 4 in 2 bits 

 Number of partial products - always n/2
 Two's complement multipliers - extend sign bit

 Unsigned numbers - 1 or 2 0’s added to left of multiplier
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Example

Multiplier 01101110 - partial products: 

Translates to the SD number 010110010 - not 
minimal - includes 2 adjacent nonzero digits 

Canonical recoding yields 010010010 - minimal 
representation
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Dealing with Least significant Bit

For the rightmost pair x1x0, if x0 = 1  -
considered continuation of string of 1's that never 
really started - no subtraction took place 

Example: multiplier 01110111 - partial products:

Correction: when x0=1 - set initial partial product 
to -A instead of 0 

4 possible cases: 
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Example

Previous                                          
example -

Multiplier's sign bit extended in order to decide 
that no operation needed for first pair of 
multiplier bits

As before - additional bit for holding correct 
sign is needed, because of multiples like -2A
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Extending the Alternative Algorithm

The above method can be extended to three bits 
or more at each step 

However, here too, multiples of A like 3A or 
even 6A are needed and 
 Prepare in advance and store 

 Perform two additions in a single step 

For example, for (0)101 we need 8-2=6, and for 
(1)001, -8+2=-6
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Implementing Large Multipliers Using 
Smaller Ones

Implementing n x n bit multiplier as a single 
integrated circuit - several such circuits for 
implementing larger multipliers can be used

2n x 2n bit multiplier can be constructed out of 4  
n x n bit multipliers based on :

AH , AL - most and least significant halves of A ;
XH , XL - same for X
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Aligning Partial Products

4 partial products of 2n bits                        
- correctly aligned before adding  

Last arrangement - minimum                    
height of matrix - 1 level of                               
carry-save addition and a CPA

n least significant bits - already                
bits of final product - no further                           
addition needed

2n center bits - added by 2n-bit CSA
with outputs connected to a CPA

n most significant bits connected to same CPA, 
since center bits may generate carry into most 
significant bits - 3n-bit CPA needed
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Decomposing a Large Multiplier into 
Smaller Ones - Extension

Basic multiplier - n x m bits - n  m

Multipliers larger than 2n x 2m can be implemented

Example: 4n x 4n bit multiplier - implemented using  
n x n bit multipliers
 4n x 4n bit multiplier requires 4  2n x 2n bit multipliers

 2n x 2n bit multiplier requires 4  n x n bit multipliers 

 Total of 16 n x n bit multipliers

 16 partial products - aligned                                
before being added 

Similarly - for any kn x kn
bit multiplier with integer k
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Adding Partial Products

After aligning 16 products                                           
- 7 bits in one column need                                           
to be added 

Method 1:  (7,3) counters -
generating 3 operands added by                
(3,2) counters - generating 2
operands added by a CPA

Method 2: Combining 2 sets                                         
of counters into a set                                                  
of (7;2) compressors 

Selecting more                             
economical multi-operand adder - discussed next
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Accumulating the Partial Products

After generating partial products either directly 
or using smaller multipliers

Accumulate these to obtain final product 
 A fast multi-operand adder

Should take advantage of particular form of 
partial products - reduce hardware complexity 

They have fewer bits than final product, and 
must be aligned before added

Expect many columns that include fewer bits than 
total number of partial products - requiring 
simpler counters



Koren Chap.6.31

Example - Six Partial Products

Generated when multiplying                                                                           
unsigned 6-bit operands using                       
one-bit-at-a-time algorithm

6 operands can be added                                     
using 3-level carry-save tree 

Number of (3,2) counters can                                      
be substantially reduced by                                 
taking advantage of the fact                                         
that all columns but 1                                               
contain fewer than 6 bits 

Deciding how many counters needed -
redraw matrix of bits to be added: 
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Reduce Complexity - Use (2,2) Counters (HAs)

Number of levels still 3, but fewer counters
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Further reduction in number of counters
Reduce # of bits to closest element of 3,4,6,9,13,19,…

15 (3,2) and 5 (2,2) vs. 16 (3,2) and 9 (2,2) counters
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Modified Matrix for Negative Numbers

Sign bits must be properly extended 

In row 1: 11 instead of 6 bits, and so on 

Increases complexity of multi-operand adder

If two's complement obtained through one's 
complement - matrix increased even further



Koren Chap.6.35

Reduce Complexity Increase

Two's complement number                           
s s s s s s z4 z3 z2 z1 z0

with value 

Replaced by                                                       
0 0 0 0 0 (-s) z4 z3 z2 z1 z0

since 
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New Bit Matrix

To get -s in column 5 - complement original s to 
(1-s) and add 1
 Carry of 1 into column 6 serves as the extra 1 needed 

for sign bit of second partial product 

New matrix has                                 
fewer bits but                                     
higher maximum                                 
height (7 instead                                     
of 6)
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Eliminating Extra 1 in Column 5

Place two sign bits s1 and s2 in same column

 (1-s1)+(1-s2) = 2 -s1 -s2

2 is carry out to next column 

Achieved by first extending sign bit s1
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Using One’s Complement and Carry
Add extra carries to matrix

Full circles - complements of corresponding bits are 
taken whenever si=1

Extra s6 in column 5 increases maximum column 
height to 7

If last partial product is                           
always positive (i.e.,                               
multiplier is positive) -
s6 can be eliminated
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Example

Recoded multiplier using canonical recoding 
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Smaller Matrix for the Example
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Using One’s Complement and Carry
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Use Modified Radix-4 
Booth Algorithm
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Example 2: Using radix-4 modified Booth's 

Same recoded multiplier 010101
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Alternative Techniques for Partial 
Product Accumulation

Reducing number of levels in tree - speeding up  
accumulation 

Achieving more regular design 

Tree structures usually have irregular interconnects
 Irregularity complicates implementation- area-inefficient 

layouts 

Number of tree levels can be lowered by using 
reduction rate higher than 3:2

Achieve 2:1 reduction rate by using SD adders
 SD adder also generates sum in constant time

 Number of levels in SD adder tree is smaller  

 Tree produces a single result rather than two for CSA tree
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Final Result of SD Tree
In most cases, conversion to two's complement 

needed

Conversion done by forming two sequences: 

First - Z   - created by replacing each negative 
digit of SD number by 0

Second - Z   - replaces each negative digit with its 
absolute value, and each positive digit by 0

Difference Z   - Z    - found by adding two's 
complement of Z  to Z  using a CPA

Final stage of a CPA needed as in CSA tree

+
+

+

-
-

-
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SD Adder Tree vs. CSA Tree 
SD - no need for a sign bit extension when negative 

partial products - no separate sign bit 

Design of SD adder more complex - more gates and 
larger chip area - each signed digit requires two 
ordinary bits (or multiple-valued logic)

Comparison between the two must be made for 
specific technology 

Example:
 32x32 Multiplier based on radix-4 modified Booth's 

algorithm - 16 partial products

 CSA tree with 6 levels, SD adder tree with 4 levels 

 Sophisticated logic design techniques and layout schemes 
result in less area-consuming implementations 



Koren Chap.6.47

(4;2) Compressors

Same reduction rate of 2:1
achieved without SD
representations by using                                           
(4;2) compressors

Designed so that cout is not                                         
a function of cin to avoid a                               
ripple-carry effect 

(4;2) compressor may be implemented as a 
multi-level circuit with a smaller overall delay 
compared to implementation based on 2 (3,2)
counters
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Example Implementation

Delay of 3 exclusive-or gates to output S vs. 
delay of 4 exclusive-or gates

25% lower delay
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Other Multi-Level Implementations 
of a (4;2) Compressor

All implementations must satisfy 

cout should not depend on cin to avoid horizontal 
rippling of carries

Truth table : (a,b,c,d,e,f - Boolean variables) 

Previous implementation - a=b=c=1, d=e=f=0
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Comparing Delay of Trees
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Other Implementations
Other counters and compressors can be used: e.g., 

(7,3) counters

Other techniques suggested to modify CSA trees 
which use (3,2) counters to achieve a more regular 
and less area-consuming layout 

Such modified tree structures may require a 
somewhat larger number of CSA levels with a larger 
overall delay 

Two such techniques are: 
 Balanced delay trees 

 Overturned-stairs trees
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Bit-Slices 
for Three 
Techniques
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* radix-4 
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7FA



Koren Chap.6.53

Comparing the Three Trees

Incoming carries routed so that all inputs to a 
counter are valid before or at necessary time

Only for balanced tree - all 15 incoming carries 
generated exactly when required - all paths balanced

In other 2 - there are counters for which not all 
incoming carries are generated simultaneously
 For example, bottom counter in overturned-stairs - incoming 

carries with delays of 4FA and 5FA

Number of wiring tracks between adjacent bit-slices 
(affect layout area) 
 Wallace tree requires 6; overturned-stairs 3;  balanced tree

2 tracks 

Tradeoff between size and speed
 Wallace : lowest delay but highest number of wiring tracks 

 Balanced: smallest number of wiring tracks but highest delay
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Complete Structure of Wallace Tree

Balanced and overturned-stairs have regular 
structure - can be designed in a systematic way 
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Complete Structure of Over-turned Tree

Building blocks indicated with dotted lines 
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Complete Structure of Balanced Tree

Building blocks 
indicated with dotted 
lines 
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Layout of CSA Tree

Wires connecting carry-save adders should have 
roughly same length for balanced paths 

CSA tree for 27 operands constructed of (4;2)
compressors
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Layout of CSA Tree

Bottom compressor (#13) is 
located in middle so that 
compressors #11 and #12
are roughly at same distance 
from it

Compressor #11 has equal 
length wires from #8 and #9
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Fused Multiply-Add Unit
Performs A x B followed by adding C 

 A x B + C done as single and indivisible operation 

Multiply only: set C=0; add (subtract) only: set B=1
 Can reduce overall execution time of chained multiply and then 

add/subtract operations 

Example: Evaluation of a polynomial anx +an-1x   +…+a0

through [(anx+an-1)x+an-2]x + …
Independent multiply and add operations can not be 

performed in parallel

Another advantage for floating-point operations -
rounding performed only once for A x B+C rather then 
twice for multiply and add
 Rounding introduces computation errors - reducing number of 

roundings reduces overall error

n n-1
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Implementating Fused 
Multiply-Add Unit

A,B,C - significands;                                      
EA,EB,EC - exponents                                             
of operands

CSA tree generates                            
partial products and                                                  
performs carry-
save accumulation to                                                 
produce 2 results                                
which are added with                                                        
properly aligned C

Adder gets 3 operands -
first reduces to 2 ((3,2) counters), then 
performs carry-propagate addition

Post-normalization and rounding executed next
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Two Techniques to reduce Execution Time

First: leading zero anticipator circuit uses 
propagate and generate signals produced by 
adder to predict type of shift needed in post-
normalization step

It operates in parallel to addition so that the 
delay of normalization step is shorter 

Second (more important): alignment of significand 
C in EA+EB-EC done in parallel to multiplication 

Normally, align significand of smaller operand 
(smaller exponent)

Implying: if AxB smaller than C, have to shift 
product after generation - additional delay
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Instead - Always align C

Even if larger than AxB - allow shift to be 
performed in parallel to multiplication

Must allow C to shift either to right (traditional) 
or left 

Direction - EA+EB-EC is positive or negative

If C shifted to left - must increase total number 
of bits in adder
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Example

Long IEEE                                    
operands -
possible range of                                     
C relative to AxB:

 53  EA+EB-EC  -53

If EA+EB-EC  54, bits of C shifted further to 
right will be replaced by a sticky bit, and if 
EA+EB-EC  -54, all bits of AxB replaced by 
sticky bit 

Overall penalty - 50% increase in width of  
adder - increasing execution time

Top 53 bits of adder need only be capable of 
incrementing if a carry propagates from lower 
106 bits
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Additional Computation Paths

Path from Round to 
multiplexer on right 
used for 
(XxY+Z)+AxB

Path from Normalize 
to multiplexer on left 
used for (X x Y+Z) x 
B +C

Rounding step for (X 
x Y+Z) is performed 
at same time as 
multiplication by B, by 
adding partial product 
Incr.x B to CSA tree
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Array Multipliers

The two basic operations - generation and 
summation of partial products - can be merged, 
avoiding overhead and speeding up multiplication

Iterative array multipliers (or array multipliers)  
consist of identical cells, each forming a new 
partial product and adding it to previously 
accumulated partial product

Gain in speed obtained at expense of extra 
hardware 

Can be implemented so as to support a high 
rate of pipelining
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Illustration - 5 x 5 Multiplication

Straightforward implementation -

Add first 2 partial products                        
(a4x0, a3x0,…,a0 x0 and a4x1, a3x1,…,a0x1) 
in row 1 after proper alignment

The results of row 1 are then added to          
a4x2, a3x2,…,a0x2 in row 2, and so on
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5 x 5 Array Multiplier for           
Unsigned Numbers        

 Basic cell - FA accepting                                                  
one bit of new partial                                             
product aixj 

+ one bit of previously                                               
accumulated partial                                                              
product                                                                        
+ carry-in bit  

No horizontal carry propagation in first 4 rows - carry-save type 
addition - accumulated partial product consists of intermediate 
sum and carry bits 

 Last row is a ripple-carry adder - can be replaced by a fast   
2-operand adder (e.g., carry-look-ahead adder)
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Array Multiplier for Two’s 
Complement Numbers

Product bits like a4x0 and   
a0x4 have negative weight 

Should be subtracted       
instead of added
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Type I and II Cells

Type I cells: 3 positive inputs - ordinary FAs

Type II cells: 1 negative and 2 positive inputs 

Sum of 3 inputs of type II cell can vary from -1 to 2
 c output has weight +2

 s output has weight -1

Arithmetic operation of type II cell -

s and c outputs given by                                                            

II
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Type I’ and II’ Cells

Type II' cells: 2 negative inputs and 1 positive 

Sum of inputs varies from -2 to 1
 c output has weight -2

 s output has weight +1

Type I' cell: all negative inputs -
has negatively weighted c and s outputs 

Counts number of -1's at its inputs - represents 
this number through c and s outputs  

Same logic operation as type I cell - same gate 
implementation 

Similarly - types II and II' have the same gate 
implementation

II’
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Booth’s Algorithm Array Multiplier
For two's complement operands 

n rows of basic cells - each row capable of adding 
or subtracting a properly aligned multiplicand to 
previously accumulated partial product  
 Cells in row i perform an add, subtract or transfer-only 

operation, depending on xi and reference bit

 4-bit operands

 Controlled add/ 
subtract/shift 
(CASS)
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Controlled add/subtract/shift - CASS
H and D: control signals indicating type of operation

H=0: no arithmetic operation done

H=1: arithmetic operation performed - new Pout

 Type of arithmetic operation indicated by D signal

 D=0: multiplicand bit, a, added to Pin with cin as incoming 
carry - generating Pout and cout as outgoing carry

 D=1: multiplicand bit, a, subtracted from Pin with incoming 
borrow and outgoing borrow 

Pout=Pin(a H)(cin H)                   
cout=(PinD)(a+cin) + a cin

Alternative: combination of                    
multiplexer (0, +a and -a) and FA

H and D generated by CTRL -
based on xi and reference                              
bit x{i-1}
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Booth’s Algorithm Array Multiplier - details
 First row - most significant bit of multiplier 

 Resulting partial product need be shifted left before 
adding/subtracting next multiple of multiplicand 

 A new cell with input Pin=0 is added Number of bits in 
partial product 
increases by one 
each row - expand 
multiplicand before 
adding/subtracting it

 Accomplished by 
replicating sign bit 
of multiplicand
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Properties and Delay

Cannot take advantage of strings of 0's or 1's -
cannot eliminate or skip rows 

Only advantage: ability to multiply negative numbers 
in two's complement with no need for correction

Operation in row i need not be delayed until all upper 
(i-1) rows have completed their operation

P0, generated after one CASS delay (plus delay of 
CTRL), P1 generated after two CASS delays, and 
P{2n-2}, generated after (2n-1) CASS delays

Similarly can implement higher-radix multiplication 
requiring less rows 

Building block: multiplexer-adder circuit that selects 
correct multiple of multiplicand A and adds it to 
previously accumulated partial product
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Pipelining

Important characteristic of array multipliers - allow 
pipelining

Execution of separate multiplications overlaps

The long delay of carry-propagating addition must be 
minimized

Achieved by replacing CPA with several additional 
rows - allow carry propagation of only one position 
between consecutive rows

To support pipelining, all cells must include latches -
each row handles a separate multiplier-multiplicand 
pair

Registers needed to propagate multiplier bits to their 
destination, and propagate completed product bits
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Pipelined Array 
Multiplier
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Optimality of Multiplier Implementations
Bounds on performance of algorithms for 

multiplication 

Theoretical bounds for multiplication similar to those 
for addition 

Adopting the idealized model using (f,r) gates:

Execution time of a multiply circuit for two operands 
with n bits satisfies

Tmult   log f 2n 

If residue number system is employed: 

Tmult   log f 2m 

m - number of digits needed to represent largest 
modulus in residue number system
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Optimal Implementations

Need to compare performance (execution time) 
and implementation costs (e.g., regularity of 
design, total area, etc.) 

Objective function like A T can be used

A - area and T - execution time

A more general objective function: A T
  can be either smaller or larger than 1


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Basic Array Multiplier

Very regular structure - can be implemented as a 
rectangular-shaped array - no waste of chip area 

n least significant bits of final product are produced 
on right side of rectangle; n most significant bits are 
outputs of bottom row of rectangle 

Highly regular and simple layout but has two 
drawbacks: 
 Requires a very large area, proportional to n², since it 

contains about n² FAs and AND gates  

 Long execution time T of about 2 n FA (FA - delay of FA)

More precisely, T consists of (n-1)FA for first (n-1) 
rows and (n-1)FA for CPA (ripple-carry adder) 

AT is proportional to n³
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Pipelined & Booth Array Multipliers
Required area increases even further (CPA replaced)

Latency of a single multiply operation increases 

However, pipeline period ( pipeline rate) shorter

Booth based array multiplier offers no advantage
 A - order of n² and T - linear in n

Radix-4 Booth can potentially be better - only n/2
rows - could reduce T and A by factor of two

However, actual delay & area higher - recoding logic 
and, more importantly, partial product selectors, add 
complexity & interconnections - longer delay per row

Also, since relative shift between adjacent rows is two 
bits, must allow carry to propagate horizontally
 Can be achieved locally or in last row - then carry propagation 

through 2n-1 bits (instead of n-1)

Exact reduction depends on design and technology
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Radix-8 Booth & CSA Tree

Similar problems with radix-8 Booth's array 
multiplier
 In addition, 3A should be precalculated

 Reduction in delay and area may be less than expected 1/3 

 Still, may be cost-effective in certain technologies and 
design styles

Partial products can be accumulated using a cascade 
or a tree structure with shorter execution time

But CSA tree structures have irregular interconnects 
- no area-efficient layout with a rectangular shape

Moreover - overall width 2n usually required -
multiplier area of order 2n log k

AT may increase as 2n log² k
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Delay of Balanced Delay Tree

Balanced delay tree - more regular structure
 Increments in number of operands - 3,3,5,7,9...

 Sum of series - order of k=j   (j - number of elements 
in series, k - number of operands) 

Number of levels - determines overall delay -
linear in j=  k

Compare to log k - number of levels in complete 
binary tree

Proof: exercise

Above expressions - theoretical, limited practical 
significance

Detailed analysis of alternative designs is 
necessary for specific technology
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