Because the ions in a perfect crystal are arranged in a regular periodic array,
led to consider the problem of an electron in a potential U(r) with the periodi
the underlying Bravais lattice; i.e.,

Ur + R) = U(r)

dic it must satisfy (8.1). From this fact alone many important conclusions can
dy be drawn. |

g Qualitatively, however, a typical crystalline potential might be expected to have
- form shown in Figure 8.1, resembling the individual atomic potentials as the ion

for all Bravais lattice vectors R. proached closely and flattening off in the region between ions.

Since the scale of periodicity of the potential U (~ 107 ® cm) is the size of a
de Broglie wavelength of an electron in the Sommerfeld free electron mod
essential to use quantum mechanics in accounting for the effect of periodi
electronic motion. In this chapter we shall discuss those properties of the ele
levels that depend only on the periodicity of the potential, without regard
particular form. The discussion will be continued in Chapters 9 and 10 in two lim
cases of great physical interest that provide more concrete illustrations of the
results of this chapter. In Chapter 11 some of the more important methods
detailed calculation of electronic levels are summarized. In Chapters 12 and 1
shall discuss the bearing of these results on the problems of electronic tran
theory first raised in Chapters 1 and 2, indicating how many of the anom
free electron theory (Chapter 3) are thereby removed. In Chapters 14 and 15 v
examine the properties of specific metals that illustrate and confirm the general th

We emphasize at the outset that perfect periodicity is an idealization. Real
are never absolutely pure, and in the neighborhood of the impurity atoms th
is not the same as elsewhere in the crystal. Furthermore, there is always a § 1
temperature-dependent probability of finding missing or misplaced ions (Chapts
that destroy the perfect translational symmetry of even an absolutely pure
Finally, the ions are not in fact stationary, but continually undergo thermal
tions about their equilibrium positions.

These imperfections are all of great importance. They are, for example, ultim
responsible for the fact that the electrical conductivity of metals is not i
Progress is best made, however, by artificially dividing the problem into two
(a) the ideal fictitious perfect crystal, in which the potential is genuinely periodic
(b) the effects on the properties of a hypothetical perfect crystal of all deviatio
perfect periodicity, treated as small perturbations.

We also emphasize that the problem of electrons in a periodic potential d:
arise only in the context of metals. Most of our general conclusions apply
crystalline solids, and will play an important role in our subsequent discussie
insulators and semiconductors.

Figure 8.1

A typical crystalline periodic
potential, plotted along a line
of ions and along a line mid-
way between a plane of ions.
(Closed circles are the equi-
librium ion sites; the solid
curves give the potential
along the line of ions; the
dotted curves give the poten-
tial along a line between
planes of ions; the dashed
curves give the potential of
single isolated ions.)

- We are thus led to examine general properties of the Schrédinger equation for a
ingle electron,

0

2
Hy = (-f—m V2 + U(r)) v = &y, 8.2)

that follow from the fact that the potential U has the periodicity (8.1). The free electron
chrodinger equation (2.4) is a special case of (8.2) (although, as we shall see, in some
ts a very pathological one), zero potential being the simplest example of a
periodic one.

¥ Independent electrons, each of which obeys a one electron Schrodinger equation
With a periodic potential, are known as Bloch electrons (in contrast to “free electrons,”
to v{hich Bloch electrons reduce when the periodic potential is identically zero). The
\tlonary states of Bloch electrons have the following very important property as
4 general consequence of the periodicity of the potential U':

L

OCH’S THEOREM

®orem.! The eigenstates i of the one-electron Hamiltonian H = —h?V2/2m +
(r), where U (r + R) = U(r) for all R in a Bravais lattice, can be chosen to have the
ot of a plane wave times a function with the periodicity of the Bravais lattice:

THE PERIODIC POTENTIAL

The problem of electrons in a solid is in principle a many-electron problem, f
full Hamiltonian of the solid contains not only the one-electron potentials des
the interactions of the electrons with the massive atomic nuclei, but also pair potent
describing the electron-electron interactions. In the independent electron ap D1
mation these interactions are represented by an effective one-electron potential
The problem of how best to choose this effective potential is a complicated
which we shall return to in Chapters 11 and 17. Here we merely observe that wh
detailed form the one-electron effective potential may have, if the crystal is pe

Yulr) = € Tu,(x), @83

Flg ue;fshfhtheorem was first proved by Floquet in the one-dimensional case, where it is frequently called
: eorem,



where 4
u(r + R) = 1, (r) (8.9)

for all R in the Bravais lattice.?
Note that Egs. (8.3) and (8.4) imply that

l//nk(r o R) 7 eik.Rl/lnk(r)' (

Bloch’s theorem is sometimes stated in this alternative form:® the eigenstates of
can be chosen so that associated with each  is a wave vector k such that

Y + B) = e Hy(), 3

for every R in the Bravais lattice.
We offer two proofs of Bloch’s theorem, one from general quantum-mechanic:

considerations and one by explicit construction.*

FIRST PROOF OF BLOCH’S THEOREM

For each Bravais lattice vector R we define a translation operator T which, w
operating on any function f(r), shifts the argument by R:

Tef@®) = f@r + R).
Since the Hamiltonian is periodic, we have
T,Hy = Hr + R)y(r + R) = Hr)Y(r + R) = HTyy.

T,H = HT;.

In addition, the result of applying two successive translations does not depend
the order in which they are applied, since for any ¥(r)

LLy®) = T TRy(@) = ¥ + R + R). (8.10
Therefore '
R+R""

TR’I;I' = Ti'lz =

Equations (8.9) and (8.11) assert that the T, for all Bravais lattice vectors R ar
the Hamiltonian H form a set of commuting operators. It follows from a fundamentz
theorem of quantum mechanics® that the eigenstates of H can therefore be chosel
to be simultaneous eigenstates of all the Ty : 1

Hy = &,
T = c(R)). (812

2 The index n is known as the band index and occurs because for a given k, as we shall see, ther

will be many independent eigenstates. ‘
3 Equation (8.6) implies (8.3) and (8.4), since it requires the function u(r) = exp (—ik * r) Y(r) to haf"

the periodicity of the Bravais lattice. A
4 The first proof relies on some formal results of quantum mechanics. The second is more elementary

but also notationally more cumbersome.
5 See, for example, D. Park, Introduction to the Quantum Theory, McGraw-Hill, New York, 1964

p. 123.

The eigenvalues c(R) of the translation operators are related because of the condition
(8.11), for on the one hand

TRy = cR) TRy = c(R)c(R')Y, (8.13)
while, according to (8.11),
ToTed = Thur¥ = cR + R)y. 8.14)
It follows that the eigenvalues must satisfy
(8.15)

¢(R + R') = c(R)c(R').

Now let a; be three primitive vectors for the Bravais lattice. We can always write
the c(a;) in the form
c(a;) = e*™ (8.16)
by a suitgble choice® of the x;. It then follows by successive applications of (8.15)
that if R is a general Bravais lattice vector given by

" nia; + na, + nias, (8.17)
then
c(R) = c(ay)"1c(ay)"2c(as)". (8.18)
But this is precisely equivalent to
ciRY = et 8.19)
where
Ki— xlbl s x2b2 U X3b3 (8.20)

and the b; are the reciprocal lattice vectors satisfying Eq. (5.4): b; - a; = 2n4;;.
Summarizing, we have shown that we can choose the eigenstates i of H so that
for every Bravais lattice vector R,

Ry = ¢ + R) = c(R)Y = e* Ry(r).
This is precisely Bloch’s theorem, in the form (8.6).

(8.21)

THE BORN-VON KARMAN BOUNDARY CONDITION

By imposing an appropriate boundary condition on the wave functions we can
demonstrate that the wave vector k must be real, and arrive at a condition restricting
the allowed .v‘alues of k. The condition generally chosen is the natural generalization
gi;hz cpndltlon (2:3) u§ed in the Sommerfeld thegry of free electrons in a cubical
thro' ; in that case, we introduce the volume cpptalning the electrons into the theory
) llljg la Born—von Karman bqundayy cpndltlgn of mac.roscopic periodicity (page
the. latf[l‘ ess, however, '_[h@ Bravais latqce is cublc.and L is an integral multiple of
k- ice constant_ a it is not conv§n1ent to continue to work in a cubical volume

side L. Instead, it is more convenient to work in a volume commensurate with a

6 .
e We shall see that for suitable boundary conditions the x; must be real, but for now they can be
8arded as general complex numbers.



primitive cell of the underlying Bravais lattice. We therefore generalize the peri d
boundary condition (2.5) to

Y + Na;) = y(r), =11y 2,3,

SECOND PROOF OF BLOCH’S THEOREM?

This second proof of Bloch’s theorem illuminates its significance from a rather dif-
ferent point of view, which we shall exploit further in Chapter 9. We start with the
observation that one can always expand any function obeying the Born—yon Karman
poundary condition (8.22) in the set of all plane waves that satisfy the boundary
condition and therefore have wave vectors of the form (8.27):°

Y) = > cet . (8.30)

q
Because the potential U(r) is periodic in the lattice, its plane wave expansion will
only contain plane waves with the periodicity of the lattice and therefore with wave
yectors that are vectors of the reciprocal lattice:°

Ur) = Y Uge®. (8.31)

The Fourier coefficients Uy are related to U(r) by!!

where the a; are three primitive vectors and the N; are all integers of order Nt
where N = N,N,N, is the total number of primitive cells in the crystal.
As in Chapter 2, we adopt this boundary condition under the assumption
the bulk properties of the solid will not depend on the choice of boundary cond
which can therefore be dictated by analytical convenience.
Applying Bloch’s theorem (8.6) to the boundary condition (8.22) we find that

l/jnk(r i Niai) — eiNik.ailpnk(rL i = la 25 35

which requires that
eiNik"i oS 1, i = 1’ 2’ 3

When k has the form (8.20), Eq. (8.24) requires that

o Uy = lf dr e " U ). (8.32)

and consequently we must have U Joell
m; | Since we are at liberty to change the potential energy by an additive constant, we
X; = Ny m; integral. fix this constant by requiring that the spatial average U, of the potential over a

primitive cell vanish:

Ao |
Therefore the general form for allowed Bloch wave vectors is Pl ; J‘ WL 833)
cell

3
mi .
k% ; ﬁl b;, i G ‘ Note that because the potential U(r) is real, it follows from (8.32) that the Fourier
i coefficients satisfy

It follows from (8.27) that the volume Ak of k-space per allowed value of k is jut
the volume of the little parallelepiped with edges b;/N;: 1

o .<b2 bs

1
_m N—ZXE'>=Nb1'(b2xb3).

el ) (8.34)

If we assume that the crystal has inversion symmetry'? so that, for a suitable choice

Ak of origin, U(r) = U(—r), then (8.32) implies that Uy is real, and thus

Ux = Ux = Ug* (for crystals with inversion symmetry). (8.35)

Since by - (b, % b3) is the volume of a reciprocal lattice primitive cell, Eq. (8
asserts that the number of allowed wave vectors in a primitive cell of the recipr
lattice is equal to the number of sites in the crystal.

The volume of a reciprocal lattice primitive cell is (27)3/v, where v = V/N is
volume of a direct lattice primitive cell, so Eq. (8.28) can be written in the alterna

We now place the expansions (8.30) and (8.31) into the Schrodinger equation (8.2).
The kinetic energy term gives

2

L koL h2 2 st iz_ 2 iqer
il o it Vo s 5&“ o 46 (8.36)

form:
@ 7!:)3 ® Although more elementary than the first proof, the second is also notationally more complicated,
Ak = v and of importance primarily as a starting point for the approximate calculations of Chapter 9. The reader
may therefore wish to skip it at this point.

° We shall subsequently understand unspecified summations over k to be over all wave vectors of the
form (8.27) allowed by the Born—von Karman boundary condition.
' A sum indexed by K shall always be understood to run over all reciprocal lattice vectors.
See Appendix D, where the relevance of the reciprocal lattice to Fourier expansions of periodic
functions is discussed.
‘12 The reader is invited to pursue the argument of this section (and Chapter 9) without the assumption
of inversion symmetry, which is made solely to avoid inessential complications in the notation.

This is precisely the result (2.18) we found in the free electron case.

11

7 Note that (8.27) reduces to the form (2.16) used in free electron theory when the Bravais latt
simple cubic, the a; are the cubic primitive vectors, and Ny = N, = N3 = L/a.
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The term in the potential energy can be written!3

- (g e

=Y Ugc,e Btk Mol xeik (8.37
Kq Kq' 3

We change the names of the summation indices in (8.37)—from K and q’, to '
and g¢—so that the Schrodinger equation becomes

i h?
%e“ {<% q* — 8) g + ; UK,cq_K,} ),

Since the plane waves satisfying the Born—von Karman boundary condition ‘
an orthogonal set, the coefficient of each separate term in (8.38) must vanish,!4 an
therefore for all allowed wave vectors q, '

63

3.

i

It is convenient to write q in the form q¢ = k — K, where K is a reciprocal latt‘l

vector chosen so that k lies in the first Brillouin zone. Equation (8.39) becomes
b

hz
<— q* — 8) eath X e o = 0,
“

2m

h? b

<ﬂ k — K>~ 8) Ck-x T ; UkCkx—x = 0, (8'=,

or, if we make the change of variables K’ - K’ — K, "
0 1

<'2—m (k - K)2 e 8) Cx_x o ; UK’—ch—K’ =if) (8."

We emphasize that Eqgs. (8.39) and (8.41) are nothing but restatements of
original Schrédinger equation (8.2) in momentum space, simplified by the fact tha
because of the periodicity of the potential, U, is nonvanishing only when k is a ve
of the reciprocal lattice.

For fixed k in the first Brillouin zone, the set of equations (8.41) for all recipr
lattice vectors K couples only those coefficients ¢, ¢, x, ¢, _x» Cx_x - - - WhoSE Well
vectors differ from k by a reciprocal lattice vector. Thus the original problem ha
separated into N independent problems: one for each allowed value of k in the fif
Brillouin zone. Each such problem has solutions that are superpositions of plan

waves containing only the wave vector k and wave vectors differing from k b 4
reciprocal lattice vector.

'3 The last step follows from making the substitution K + q = q’, and noting that because K is'

reciprocal lattice vector, summing over all q of the form (8.27) is the same as summing over all q’ of tha
form.
14

This can also be deduced from Eq. (D.12), Appendix D, by multiplying (8.38) by the approp
plane wave and integrating over the volume of the crystal.
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Putting this information back into the expansion (8.30) of the wave function i,
we see that if the wave vector q only assumes the values k, k — K, k — K, ...,
then the wave function will be of the form

I e e g (8.42)
K
If we write this as
Ylr) = eik.r(; By g 2,
then this is of the Bloch form (8.3) with the periodic function u(r) given by'>

VTR Gl (8.44)

(8.43)

GENERAL REMARKS ABOUT BLOCH’S THEOREM

1. Bloch’s theorem introduces a wave vector k, which turns out to play the same
fundamental role in the general problem of motion in a periodic potential that the
free electron wave vector k plays in the Sommerfeld theory. Note, however, that
although the free electron wave vector is simply p/A, where p is the momentum of the
electron, in the Bloch case k is not proportional to the electronic momentum. This
is clear on general grounds, since the Hamiltonian does not have complete trans-
lational invariance in the presence of a nonconstant potential, and therefore its
eigenstates will not be simultaneous eigenstates of the momentum operator. This
conclusion is confirmed by the fact that the momentum operator, p = (#/i) V, when
acting on 1, gives

h U
7V lpnk = 7V (elk unk(r))

A
= hky,, + €*'" 7 V u,(r), (8.45)

which is not, in general, just a constant times V/,, ; i.€., ¥, iS not a momentum eigen-
state.

Nevertheless, in many ways #k is a natural extension of p to the case of a periodic
potential. It is known as the crystal momentum of the electron, to emphasize this
similarity, but one should not be misled by the name into thinking that sk is a mo-
mentum, for it is not. An intuitive understanding of the dynamical significance of
the wave vector k can only be acquired when one considers the response of Bloch
ftlectrons to externally applied electromagnetic fields (Chapter 12). Only then does
1ts full resemblance to p/h emerge. For the present, the reader should view k as a
Quantum number characteristic of the translational symmetry of a periodic potential,
Just as the momentum p is a quantum number characteristic of the fuller translational
SYmmetry of free space.

» The wave vector k appearing in Bloch’s theorem can always be confined to
the first Brillouin zone (or to any other convenient primitive cell of the reciprocal

15

- Note that there will be (infinitely) many solutions to the (infinite) set of equations (8.41) for a given
hes

¢ are classified by the band index n (see footnote 2).
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lattice). This is because any k' not in the first Brillouin zone can be written as
kK =k+K (8.46

where K is a reciprocal lattice vector and k does lie in the first zone. Since e R =
for any reciprocal lattice vector, if the Bloch form (8.6) holds for k', it will also holg
for k. §
3. The index n appears in Bloch’s theorem because for given k there are man
solutions to the Schrédinger equation. We noted this in the second proof of Bloch?
theorem, but it can also be seen from the following argument: 4

Let us look for all solutions to the Schrodinger equation (8.2) that have the Blog

form

Y(r) = e* "u(r), @

where k is fixed and u has the periodicity of the Bravais lattice. Substituting this in
the Schrodinger equation, we find that u is determined by the eigenvalue prob

Hiuim) = (21; <1V + k>2 = U(r)) u,(r)

i
= &yty(r)

with boundary condition
u(r) = u(r + R). (

Because of the periodic boundary condition we can regard (8.48) as a Herm
eigenvalue problem restricted to a single primitive cell of the crystal. Because the
eigenvalue problem is set in a fixed finite volume, we expect on general grounds
find an infinite family of solutions with discretely spaced eigenvalues,'® which
label with the band index n.

Note that in terms of the eigenvalue problem specified by (8.48) and (8.49),
wave vector k appears only as a parameter in the Hamiltonian H,. We therefe
expect each of the energy levels, for given k, to vary continuously as k varies.!
this way we arrive at a description of the levels of an electron in a periodic potent
in terms of a family of continuous'® functions &,(k).
4. Although the full set of levels can be described with k restricted to a sin
primitive cell, it is often useful to allow k to range through all of k-space, even tho
this gives a highly redundant description. Because the set of all wave functions a N
energy levels for two values of k differing by a reciprocal lattice vector must

16 Just as the problem of a free electron in a box of fixed finite dimensions has a set of di ‘
energy levels, the vibrational normal modes of a finite drumhead have a set of discrete frequencies, ¢ ‘
17 This expectation is implicit, for example, in ordinary perturbation theory, which is possible on
because small changes in parameters in the Hamiltonian lead to small changes in the energy levels. I
Appendix E the changes in the energy levels for small changes in k are calculated explicitly. i
18 The fact that the Born—von Karman boundary condition restricts k to discrete values of "
form (8.27) has no bearing on the continuity of &,(k) as a function of a continuous variable k, for th
eigenvalue problem given by (8.48) and (8.49) makes no reference to the size of the whole crystal and |
well defined for any k. One should also note that the set of k of the form (8.27) becomes dense in k-spal

in the limit of an infinite crystal.
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identical, we can assign the indices n to the levels in such a way that for given n, the
eigenstates and eigenvalues are periodic functions of k in the reciprocal lattice:

l/jn,lx+l((r) T l//nk(r)s

gn,k+K i 8nk'

(8.50)

This leads to a description of the energy levels of an electron in a periodic potential
in terms of a family of continuous functions &, (or &,(k)), each with the periodicity
of the reciprocal lattice. The information contained in these functions is referred to
as the band structure of the solid.

For each n, the set of electronic levels specified by &,(K) is called an energy band
The origin of the term “band” will emerge in Chapter 10. Here we only note that.
because each &,(k) is periodic in k and continuous, it has an upper and lower bound
so that all the levels &,(k) lie in the band of energies lying between these limits. ,
5. It can be shown quite generally (Appendix E) that an electron in a level specified
by band index n and wave vector k has a nonvanishing mean velocity, given by

1
vik) = Vi & (k) 851)

This is a most remarkable fact. It asserts that there are stationary (ie., time-
mdependent) levels for an electron in a periodic potential in which, in spite of the
nteraction of the electron with the fixed lattice of ions, it moves forever without
any degradation of its mean velocity. This is in striking contrast to the idea of Drude
that collisions were simply encounters between the electron and a static ion. Its

imglilc;tions are of fundamental importance, and will be explored in Chapters 12
and 13.

THE FERMI SURFACE

;I;BZIg;(Ode state of N free eltzctzrons19 is constructed by occupying all one-electron
. ti t with energies §(k) = /%k?/2m less than &, where & is determined by requiring
al number of one-electron levels with energies less than & to be equal to the
total number of electrons (Chapter 2).
On:::llf; ground state of N Bloch electrons is similarly constructed, except that the
. thctr'on levels are now labeled by the quantum numbers n and k, &,(k) does not
e ti Slmp‘Ie explicit fr‘ee c?lectron form, and k must be confined to a single primitive
E le reciprocal lattice if each. level is to be counted only once. When the lowest
ks evel§ are filled by a specified number of electrons, two quite distinct types
configuration can result:

\

19

” prim'?'/e shall not dist‘inguish notationally between the number of conduction electrons and the number
iy 1tive cells when it is clear from the context which is meant; they are equal, however, only in a
Valent monatomic Bravais lattice (e.g., the alkali metals).
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