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SPIM

 Definition
 SPIM is a software simulator that runs programs written for 

MIPS R2000/R3000 processors

 SPIM can read and immediately execute assembly language 
files or MIPS executable files

 SPIM is a self-contained system
− Debugger
− A few operating system-like services
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SPIM of Multiple versions

 SPIM
 Command-line-driven program
 Requires only an alphanumeric terminal to display

 XSPIM
 X-windows environment
 Much easier program to learn

 PCSPIM
 Windows version of SPIM



Computer Architecture & Network Lab

Memory Layout

Reserved

Text segment

Data segment

Stack segment

. . .

0x00400000

0x10000000

0x7FFFFFFF

Instruction

Data that 
Instruction 
operate on
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PCSPIM

 Download and Install
 Windows

 Register display
 Text segments
 Data and stack segments
 SPIM messages

 Function
 Load
 Go
 Single step
 Multiple steps
 Breakpoint
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PCSPIM Download

 Downloading PCSPIM
 http://www.cs.wisc.edu/~larus/spim.html

http://www.cs.wisc.edu/~larus/spim.html�
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Executable File Install
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Source Code Install

 Step 1
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Source Code Install
 Step 2



Computer Architecture & Network Lab

Source Code Install
 Step 3

F7 - Compile
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Source Code Install
 Step 4

Ctrl + F5
Program Run
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Windows

Register display

Text segments

Data segments

SPIM messages
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Windows

 Register display
It shows the values of all registers in the MIPS CPU and FPU.

General-purpose registers
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Windows

 Text segments
Displays instructions both from your program and the system 
code that is loaded automatically when PCSPIM starts running

[0x00400000]  0x8fa40000  lw  $4,  0($29)  ;    89  :  lw  $a0,  0($sp)

memory address of instruction

Instruction`s numerical encoding
Instruction`s mnemonic description

Line number in assembly file

Source code in assembly file
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Windows

 Data segments (Data and stack segments)
Displays the data loaded into your program`s memory and the 
data on the program`s stack

 SPIM messages
This is where error messages appear
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Simulator Function
 Load

 File → Open
 Select assembly file

 Reload
 File → Reload
 Reload source file after change it with editor program

 Go
 Simulator → Go
 Results are displayed in console

 Single step
 Simulator → Single Step
 Run an instruction at a time

 Multiple step
 Simulator → Multiple Step
 Run given number of instruction at a time

 Breakpoint
 Simulator → Breakpoint
 Stop program immediately before it executes a particular instruction
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Function - Load
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Function - Go
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Function – Single step
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Function – Single step

One step
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Function – Multiple step
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Function – Multiple step

Two step
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Function - breakpoint
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Function - breakpoint
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Function - breakpoint
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Example
 Sum

.text # text section

.globl main # call main by SPIM

main:   la   $t0, value     # load address 'value' into $t0
lw   $t1, 0($t0)    # load word 0(value) into $t1
lw   $t2, 4($t0)    # load word 4(value) into $t2
lw      $t3, 8($t0) # load word 8(value) into $t3

Loop:   beqz    $t2, End        # t2가 0이면 End로가고아니면다음으로내려간다
addi     $t1, $t1, 1      # t1의값을하나씩증가시킨다
add     $t3, $t3, $t1   # t3에 t1을더해 t3에넣으며같은누적한다
addi     $t2, $t2, -1      # t2의값을하나씩감소시킨다
j Loop                 # Loop로이동시켜루프를돌린다

End:    sw   $t3, 8($t0)    # store word $t3 into 8($t0)

li $v0, 4
la $a0, msg1
syscall

li $v0, 1
move  $a0, $t3
syscall

.data # data section
value:  .word 0, 100, 0     # data for addition
msg1:  .asciiz "SUM of 0~100 Number=>"
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Function - Go
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Function - Go

Reserved

Text segment

Data segment

Stack segment

. . .

0x00400000

0x10000000

0x7FFFFFFF

Instruction

Data that 
Instruction 
operate on

Define upper 2 bytes

Define lower 2 bytes
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Directives

 .text – Indicates that following items are stored in the user 
text segment

 .globl sym – Declare that symbol sym is global and can be 
referenced from other files

 .data – Indicates that following data items are stored in the 
data segment 
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Data Types

 .word, .half - 32/16 bit integer
 .byte - 8 bit integer (similar to ‘char’ type in C)
 .ascii, .asciiz - string (asciiz is null terminated)

 Strings are enclosed in double-quotas(”)
 Special characters in strings follow the C convention

− newline(\n), tab(\t), quote(\”)

 .double, .float - floating point
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System calls
 System Calls (syscall)

 OS-like services 
 Method

 Load system call code into register $v0
 Load arguments into registers $a0…$a3
 After call, return value is in register $v0

Example)
li $v0, 4 # print string
la $a0, msg1
syscall

li $v0, 1 # print integer
move  $a0, $t3
syscall

msg1 = "SUM of 0~100 Number=>“  ,    $t3 = 5050
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System calls
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MIPS Program Assignment

 Heap sort

Build Heap Heap Sort

Output to Monitor
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12

73

49

29

85

27 35

33

58 44

40

1721 61

Sequence
Sequence: {12, 33, 49, 29, 40, 27, 35, 73, 58, 44, 85, 21, 17, 61}
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12

73

17

33

85

21 35

29

58 44

40

2749 61

Build Heap
After Build:  {12, 29, 17, 33, 40, 21, 35, 73, 58, 44, 85, 49, 27, 61}l
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85

35

61

58

27

44 40

73

33 29

49

1721 12

Heap Sort
After Sort:  {85, 73, 61, 58, 49, 44, 40, 35, 33, 29, 27, 21, 17, 12}
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MIPS Program Assignment

 제출기한 : 2010.11.22(월) 11:59 PM

 제출항목 : source code, 보고서

 제출방식 : 지정된 FTP 에 upload (추후공지)

 평가: total 100점, -5%/(1-day delay)
 Build heap: 40점
 Heap sort: 20점
 File I/O: 20점
 Report: 20점
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Reference

 문병로, “쉽게배우는알고리즘, 관계중심의사고법”, 한빛
미디어, pp.93-99

 C source code on course homepage
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