
Computer Architecture

SPIM Simulator

Made by Park, Byung-choon

Computer Architecture & Network Lab

LIST

 SPIM Definition
 Multiple versions
 Memory Layout
 PCSPIM
 Example
 Homework

Computer Architecture & Network Lab

SPIM

 Definition
 SPIM is a software simulator that runs programs written for

MIPS R2000/R3000 processors

 SPIM can read and immediately execute assembly language
files or MIPS executable files

 SPIM is a self-contained system
− Debugger
− A few operating system-like services

Computer Architecture & Network Lab

SPIM of Multiple versions

 SPIM
 Command-line-driven program
 Requires only an alphanumeric terminal to display

 XSPIM
 X-windows environment
 Much easier program to learn

 PCSPIM
 Windows version of SPIM

Computer Architecture & Network Lab

Memory Layout

Reserved

Text segment

Data segment

Stack segment

. . .

0x00400000

0x10000000

0x7FFFFFFF

Instruction

Data that
Instruction
operate on

Computer Architecture & Network Lab

PCSPIM

 Download and Install
 Windows

 Register display
 Text segments
 Data and stack segments
 SPIM messages

 Function
 Load
 Go
 Single step
 Multiple steps
 Breakpoint

Computer Architecture & Network Lab

PCSPIM Download

 Downloading PCSPIM
 http://www.cs.wisc.edu/~larus/spim.html

http://www.cs.wisc.edu/~larus/spim.html�

Computer Architecture & Network Lab

Executable File Install

Computer Architecture & Network Lab

Source Code Install

 Step 1

Computer Architecture & Network Lab

Source Code Install
 Step 2

Computer Architecture & Network Lab

Source Code Install
 Step 3

F7 - Compile

Computer Architecture & Network Lab

Source Code Install
 Step 4

Ctrl + F5
Program Run

Computer Architecture & Network Lab

Windows

Register display

Text segments

Data segments

SPIM messages

Computer Architecture & Network Lab

Windows

 Register display
It shows the values of all registers in the MIPS CPU and FPU.

General-purpose registers

Computer Architecture & Network Lab

Windows

 Text segments
Displays instructions both from your program and the system
code that is loaded automatically when PCSPIM starts running

[0x00400000] 0x8fa40000 lw $4, 0($29) ; 89 : lw $a0, 0($sp)

memory address of instruction

Instruction`s numerical encoding
Instruction`s mnemonic description

Line number in assembly file

Source code in assembly file

Computer Architecture & Network Lab

Windows

 Data segments (Data and stack segments)
Displays the data loaded into your program`s memory and the
data on the program`s stack

 SPIM messages
This is where error messages appear

Computer Architecture & Network Lab

Simulator Function
 Load

 File → Open
 Select assembly file

 Reload
 File → Reload
 Reload source file after change it with editor program

 Go
 Simulator → Go
 Results are displayed in console

 Single step
 Simulator → Single Step
 Run an instruction at a time

 Multiple step
 Simulator → Multiple Step
 Run given number of instruction at a time

 Breakpoint
 Simulator → Breakpoint
 Stop program immediately before it executes a particular instruction

Computer Architecture & Network Lab

Function - Load

Computer Architecture & Network Lab

Function - Go

Computer Architecture & Network Lab

Function – Single step

Computer Architecture & Network Lab

Function – Single step

One step

Computer Architecture & Network Lab

Function – Multiple step

Computer Architecture & Network Lab

Function – Multiple step

Two step

Computer Architecture & Network Lab

Function - breakpoint

Computer Architecture & Network Lab

Function - breakpoint

Computer Architecture & Network Lab

Function - breakpoint

Computer Architecture & Network Lab

Example
 Sum

.text # text section

.globl main # call main by SPIM

main: la $t0, value # load address 'value' into $t0
lw $t1, 0($t0) # load word 0(value) into $t1
lw $t2, 4($t0) # load word 4(value) into $t2
lw $t3, 8($t0) # load word 8(value) into $t3

Loop: beqz $t2, End # t2가 0이면 End로가고아니면다음으로내려간다
addi $t1, $t1, 1 # t1의값을하나씩증가시킨다
add $t3, $t3, $t1 # t3에 t1을더해 t3에넣으며같은누적한다
addi $t2, $t2, -1 # t2의값을하나씩감소시킨다
j Loop # Loop로이동시켜루프를돌린다

End: sw $t3, 8($t0) # store word $t3 into 8($t0)

li $v0, 4
la $a0, msg1
syscall

li $v0, 1
move $a0, $t3
syscall

.data # data section
value: .word 0, 100, 0 # data for addition
msg1: .asciiz "SUM of 0~100 Number=>"

Computer Architecture & Network Lab

Function - Go

Computer Architecture & Network Lab

Function - Go

Reserved

Text segment

Data segment

Stack segment

. . .

0x00400000

0x10000000

0x7FFFFFFF

Instruction

Data that
Instruction
operate on

Define upper 2 bytes

Define lower 2 bytes

Computer Architecture & Network Lab

Directives

 .text – Indicates that following items are stored in the user
text segment

 .globl sym – Declare that symbol sym is global and can be
referenced from other files

 .data – Indicates that following data items are stored in the
data segment

Computer Architecture & Network Lab

Data Types

 .word, .half - 32/16 bit integer
 .byte - 8 bit integer (similar to ‘char’ type in C)
 .ascii, .asciiz - string (asciiz is null terminated)

 Strings are enclosed in double-quotas(”)
 Special characters in strings follow the C convention

− newline(\n), tab(\t), quote(\”)

 .double, .float - floating point

Computer Architecture & Network Lab

System calls
 System Calls (syscall)

 OS-like services
 Method

 Load system call code into register $v0
 Load arguments into registers $a0…$a3
 After call, return value is in register $v0

Example)
li $v0, 4 # print string
la $a0, msg1
syscall

li $v0, 1 # print integer
move $a0, $t3
syscall

msg1 = "SUM of 0~100 Number=>“ , $t3 = 5050

Computer Architecture & Network Lab

System calls

Computer Architecture & Network Lab

MIPS Program Assignment

 Heap sort

Build Heap Heap Sort

Output to Monitor

Computer Architecture & Network Lab

12

73

49

29

85

27 35

33

58 44

40

1721 61

Sequence
Sequence: {12, 33, 49, 29, 40, 27, 35, 73, 58, 44, 85, 21, 17, 61}

Computer Architecture & Network Lab

12

73

17

33

85

21 35

29

58 44

40

2749 61

Build Heap
After Build: {12, 29, 17, 33, 40, 21, 35, 73, 58, 44, 85, 49, 27, 61}l

Computer Architecture & Network Lab

85

35

61

58

27

44 40

73

33 29

49

1721 12

Heap Sort
After Sort: {85, 73, 61, 58, 49, 44, 40, 35, 33, 29, 27, 21, 17, 12}

Computer Architecture & Network Lab

MIPS Program Assignment

 제출기한 : 2010.11.22(월) 11:59 PM

 제출항목 : source code, 보고서

 제출방식 : 지정된 FTP 에 upload (추후공지)

 평가: total 100점, -5%/(1-day delay)
 Build heap: 40점
 Heap sort: 20점
 File I/O: 20점
 Report: 20점

Computer Architecture & Network Lab

Reference

 문병로, “쉽게배우는알고리즘, 관계중심의사고법”, 한빛
미디어, pp.93-99

 C source code on course homepage

	Computer Architecture
	LIST
	SPIM
	SPIM of Multiple versions
	Memory Layout
	PCSPIM
	PCSPIM Download
	Executable File Install
	Source Code Install
	Source Code Install
	Source Code Install
	Source Code Install
	Windows
	Windows
	Windows
	Windows
	Simulator Function
	Function - Load
	Function - Go
	Function – Single step
	Function – Single step
	Function – Multiple step
	Function – Multiple step
	Function - breakpoint
	Function - breakpoint
	Function - breakpoint
	Example
	Function - Go
	Function - Go
	Directives
	Data Types
	System calls
	System calls
	MIPS Program Assignment
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	MIPS Program Assignment
	Reference

