Speckles in Laser Display Systems and Diffractive Optical Elements

Byoungho Lee School of Electrical Engineering Seoul National University byoungho@snu.ac.kr

Introduction to laser display systems

- > Overview of speckle reduction methods
- > Diffractive optical elements (DOEs)

Laser display system (scanning)

 RGB lasers, modulators, mirror/grating scanning devices, and display screen

Schematic diagram of a laser display system using scanning optics

□ Laser display system (Microscanning mirror)

✓ Schneider Rundfunkwerke AG, LDT, Jenoptik (1998)

Laser display system (Grating)

Schematic layout of a GLV-based HDTV projector

- GLV (Grating Light Valve) MEMS 1-D spatial light modulator
 - Advantages: High efficiency, large dynamic range, precise analog attenuation, fast switching speed (~1 us), high reliability, high yield, integration
 - Static ribbons are interlaced with the electrostatically deflectable ribbons. One or more ribbon-pairs form a pixel. The amount of diffraction can be controlled to impart an 8-bit or better gray-level intensity graduation.

Kodak's Grating Electro Mechanical System (GEMS)

GEMS Device

Mitsubishi's Laser Rear Projector Display

(When the technology is finally released to public, which Mitsubishi says will be sometime in late '07, it will be the first ever consumer laser display technology.)

52"

삼성종합기술원

Laser Display 개념도

색 재현 영역 비교

At CES (2006), Novalux demonstrated two MDTV (microdisplay-based rear-projection TV) laser-based prototypes: a 47-in. 3-LCD (liquid-crystal display) MDTV and a 52-in. MDTV using DLP (digital light processor) technology (see figure). A reference UHP-based MDTV was also shown. The baseline UHP-based MDTV offers about 400 Cd/m² of on-screen brightness. The same TV with the laser source offers about 250 Cd/m² while the DLP set produces about 300 Cd/m². (Green: 532 nm, 1.5W, Blue: 460 nm, 1.5W, Red: 635nm)

Light Blue Optics

(PVPro: Ferroelectric Liquid-Crystal-On-Silicon)

손바닥보다 작은 프로젝터

Univ. of Southampton – High Power Fiber Laser Display

□ Advantages of Laser Projection Display

Increased color gamut

Quasi-parallel (collinear) rays

- No focusing is necessary.
- Projection on non-plane surfaces is simple.

Difficulties

Small, high-power, cheap lasers

Speckles

Speckles

Static speckle noise generation in laser displays

- Coherent laser beam is scattered on a spot in a rough screen surface.
- Complex interference pattern (speckle) is detected by a detector (CCD, human eye).
- ✓ <u>Static speckle image masks the displayed image information.</u>

Speckle grain size is inversely proportional to beam spot radius.

Some Speckle Patterns

Ground Glass

Gray-level Film

Multimode Fiber

Seoul National University

Laser pointer spot on a screen

Speckle Size 1

Speckle reduction methods

- \checkmark The speckle patterns impair the image quality.
 - Strong deblurring of the color edges
 - Degradation of spatial or temporal coherence (after-image effect) of the laser
 - Degradation of spatial coherence
 - Insertion of various optical components, such as diffractive diffuser, refractive lens arrays, fiber bundle, vibrated components
 - Moving random mask or rotating circular aperture
 - Vibrational change of relative positions of a screen and an illuminating laser beam
 - Movie-like generation of collimated beams with complex phase structures using dynamic SLM
 - Laser beam is widely diffused when its spatial coherence is decreased.
 - Digital image processing (spatial averaging) of the detected image

❑ Speckle reduction using multimode fiber

- ✓ The laser light transmitted through a multimode optical fiber shows a speckle phenomenon due to the interference between propagation modes in the fiber.
- ✓ The probability density function (PDF) can be defined for speckle contrast ratio.

(a) Rotating multimode fiber (b) Theoretical PDF w.r.t. multiple image averaging

Speckle reduction using multimode fiber or ground glass

✓ A vibrating multimode fiber and a rotating ground glass are imaged in the telecentric two-lens imaging system.

(a) Vibrating multimode fiber and rotating ground glass (b) Experimental result

Speckle reduction using DOE

- Splits the unfocused laser beam into a number of independent beamlets with random phase distribution
- \checkmark Smaller diameter than the original beam
- ✓ Multi-level phase structure DOE using IFTA

Speckle reducing using rotating DOE

✓ Rotating a collimated diffractive beam (after-image effect)

Speckle reduction using moving diffuser

- \checkmark GLVTM (Grating Light Valve) array is a unique MEMS-based, 1-D SLM that modulates light by diffraction
 - High efficiency, large dynamic range, precise analog attenuation, fast switching speed(1μ sec), high reliability, high yield, and high resolution.
- \checkmark Hadamard diffuser suppressed speckle contrast to 8%.

Silicon Light Machines (USA)

Speckle Reduction 7 – LG Electronics

Speckle Reduction 7 – LG Electronics

	65 105	50 180 150	58 108 158	
	200 200 50 KRO (50 200 200 (A)	280 280 58 180 150 200 280 (B)	258 10 108 08 200 200 (C)	
Rotating Diffuser	NONE	USE	USE	
Running Screen	NONE	NONE	USE	
Speckle Contrast(%)	6.5	3.1	1.6	

70"

OEQELab.

K. Kasazumi et al., Jpn. J. Appl. Phys., 43(8B), 5904-5906, 2004.

(b)

Motorola (US Patent 6,122,023)

Comparison

Comparison of the speckle reducing methods

✓ Speckle contrast ratio

$$CR = \frac{\sqrt{\langle I_i^2 \rangle - \langle I_i \rangle^2}}{\langle I_i \rangle} = \frac{\sigma}{\mu}$$

where, $\langle I_i \rangle$: intensity of the ith pixel of a CCD σ : standard deviation, μ : mean value

- "Severe" speckle is associated with contrast measurement of CR > 0.30
- Comparison of spatial coherence degradation methods

	Component	Speckle contrast	Speckle reduction(%)	Insertion loss(%)
Spatial coherence	Stationary diffractive diffuser	0.312	3.4	5
	Refractive lens array(6×8)	0.309	4.3	14
	Fiber, 2m	0.262	18.9	20
	Vibrated fiber	0.057	82.4	20
Temporal coherence	Vibrated diffractive diffuser	0.048	85.1	5
	Vibrated projection screen	0.034	89.5	0
	All vibrated components and lens arrays	0.009	97.2	35

LEOS '99, IEEE, pp.354-355.

Diffractive optical elements (DOEs)

- Operates on the principle of diffraction and interference
- Diffractive optics control wave fronts, while traditional optic components bend light.
- DOEs can function as gratings, lenses, and any other type of optical functional elements.
- Lightweight, thin and small, low-cost, and feasible for mass-production
- Wavelength-sensitive, chromatic aberration under white light

DOE Design 1

Generalized paraxial optical system

DOE Design 2

Conventional Scalar based method

 $G(x_1, y_1) = A(x_1, y_1) \exp(i\Phi(x_1, y_1))$

A(x, y) : amplitude of incident beam \rightarrow fixed

 $\Phi(x, y)$: phase distribution to be optimized

Optimization methods (error-reduction)

- Local optimization
 - Direct binary searching algorithm (DBS)
 - Iterative Fourier transform algorithm (IFTA)
- \checkmark Global optimization
 - Simulated annealing method (SA)
 - Genetic algorithm (GA)

Fabricated phase profiles (SEM image)

DOE Design 3

Spiral Speckle and Boundary-Modulated DOE

Proposed design

Diffraction image

DOE profile

H. Kim and B. Lee, "Diffractive optical element with apodized aperture for shaping vortex-free diffraction image," Japanese Journal of Applied Physics, vol. 43, no. 12A, pp. L1530-L1533, 2004.

DOE applications

- ✓ Diffractive-refractive hybrid elements
- Beam shaping and pattern generation
- ✓ Optical interconnection
- ✓ 3D display

Experiment of DOE

- ✓ Fourier optic system using SLM
 - Phase-type spatial light modulator + designed phase DOE

Experimental setup using phase-type SLM

□ Synthetic DOE (CGH)s for full-color display

Schematic diagram for full-color 3D image generation

□ Full-color stereoscopic image display

✓ Three color laser diodes and phase-type SLM

Experiment for full-color 3D image generation using phase-type SLM

□ Full-color stereoscopic video display system

Full-color autostereoscopic 3D display demo system

Reconstructed stereo video (simulation)

Reconstructed stereo video (experiment)

Full-color stereoscopic video display demonstration sytem

Seoul National University

Stereo input

Previous Work 1

□ Fabrication process sequence

- \checkmark Process sequence of DOE etching
 - Glass substrate
 - Glass cleaning
 - HMDS (hexamethyldisilane 2%)+xylene
 - PR coating
 - Soft baking
 - Photolithography exposure
 - Develop
 - Hard baking
 - Glass etching
 - PR stripe
 - Surface profile measurement

Previous Work 2

Fabricated DOEs

Microscope images with different focal length (height difference of the fabricated DOE)

