Objectives

Free \& Forced Vortices

Chapter 3. Free and Forced Vortices

A vortex can be seen in the spiraling motion of air or liquid around a center of rotation. Circular current of water of conflicting tides form vortex shapes
Turbulent flow makes many vortices.

- Atmospheric phenomenon of a whirlwind or a tornado or dust devil.

In this experiment,
through the generating of free and forced vortex,
we can compare the properties of vortices.

Background Theory

Two types of motion

- Translation: vector specified
- Rotation: specified by angle, has center

Vortex : spiraling motion of air or liquid
around a center of rotation

Background Theory

-Translation
-Vector specified

- Irrotational flow

-Rotation
-Specified by angle
-Rotational Flow

Background Theory

Forced vortex motion

In a forced vortex, the fluid rotates as a solid body,
Motion is similar to a dish of fluid on a turntable rotating

Navier - Stokes Equation (r - component) $\quad \frac{v_{\theta}^{2}}{r}=\frac{1}{\rho} \frac{\partial \rho}{r}$
Solid boundary rotation $\quad v_{\theta}=\omega r \Rightarrow \rho \omega^{2} r=\frac{\partial \rho}{\partial r} \quad \omega$: angular velocity

Navier -Stokes Equation (z - component) $\quad 0=-g-\frac{1}{\rho} \frac{\partial \rho}{\partial \mathrm{z}}=-g-\frac{1}{\rho} \frac{\partial \rho}{\partial h}$
Hydrostatic condition $\quad \frac{\partial \rho}{\partial h}=-\rho g=-\gamma$

Background Theory

Substitute into the differential

$$
d p=\frac{\partial \rho}{\partial r} d r+\frac{\partial \rho}{\partial h} d h=\rho \omega^{2} r d r-\gamma d h
$$

Integrate to obtain

$$
p=\rho \frac{\omega^{2} r^{2}}{2}-\gamma h+C
$$

Boundary conditions $\quad r=0, \quad h=h_{0}, \quad p=p$

Result

$$
p-p_{0}=-\gamma\left(h-h_{0}\right)+\rho \frac{\omega^{2} r^{2}}{2}
$$

Free surface location, $\quad p=p_{0} \quad \Rightarrow \quad h=h_{0}+\frac{\omega^{2} r^{2}}{2 g}$

Background Theory

Free vortex motion

Free surface condition, $\quad p=0, \quad h=h_{0}-\frac{k^{2}}{r^{2} 2 g}, \quad k=q r=v_{\theta} r$
Flow velocity (tangential) $\quad q=\sqrt{2 g H} \quad H$: Hydraulic head
h : height when $r \rightarrow \infty$

Experimental Apparatus

Procedure - Forced Vortex

1. Set the vortex apparatus on the Hydraulics Bench and keep it level
2. Connect the Y-hose to 9 mm inlet of cylinder and outlet of Hydraulics Bench
3. Connect the hose to 12 mm outlet of cylinder and volumetric tank of Hydraulics Bench
4. Attach the rotating paddle to the bottom of cylinder.
5. Attach the depth gages on the cylinder.
6. Turn on the Hydraulics Bench and regulate the water inflow using control valve to keep the water elevation steady.
7. Calculate the angular velocity of flow. Using stopwatch and rotating paddle.
8. Record the water surface profile of Forced vortex using depth gauges.
9. Repeat 6-8 with changing angular velocity.

Forced Vortex

Experiment results

Forced Vortex

	Number of revolution	Angular Velocity	Radius (m)	Measured Needle Length (m)	Height from Datum (m)	Calculated Height (m)	Measured Height (m)
1	47	4.922	0.110	0.1070	0.1700	0.1700	
2							
3							
4							
5							
6							
7							
8							

Free Vortex

Experiment results

Free Vortex

	Pitot tube arm length (m)	Pitot tube water height (m)	$q=\sqrt{2 g h}$ $(\mathrm{~m} / \mathrm{sec})$	h_{0} $(\mathrm{~m})$	Calculated Height (m)	Observed Height (m)
1	0.015	0.021	0.642	0.172		
2						
3						
4						
5						
6						
7						
8						

Procedure - Free Vortex

1. Set the vortex apparatus on the Hydraulics Bench and keep it level
2. Connect the Y-hose to 12 mm inlet of cylinder and outlet of the Hydraulics Bench
3. Close 9 mm outlet of cylinder, the water will be discharged
only through the orifice of cylinder.
4. Attach the orifice to the bottom of cylinder.
5. Attach the depth gages on the cylinder.
6. Turn on the Hydraulics Bench and regulate the water inflow using control valve to keep the water elevation steady.
7. Record the water surface profile of Free vortex using depth gauges.
8. If the free vortex is not formed at the center of cylinder,
it will be difficult to measure the water surface profile with depth gauges.
(Use only one needle of depth gauges to measure the water surface profile.)
9. Measure the hydraulic head using three kinds of pitot tube.

10 . Repeat 4-9 by changing the diameter of the orifice.

Problems

1. Plot the water surface profile, and compare calculated result with measured data.
2. Discuss the reason of difference between calculated result with measured data.
3. Discuss the examples of free and forced vortices.
