EXPERIMENT
OF
ELEMENTARY FLUID MECHANICS

Bernoulli's Theorem Experiment

Objectives

Chapter 4. Bernoulli's Theorem Experiment

To investigate the validity of Bernoulli's Theorem as applied to the flow of water in a tapering circular duct.

$$
\frac{V_{1}^{2}}{2 g}+\frac{P_{1}}{\gamma}+Z_{1}=\frac{V_{2}^{2}}{2 g}+\frac{P_{1}}{\gamma}+Z_{2}+h_{L}=H
$$

Bernoulli Theorem

Daniel Bernoulli (1700-1782)

Born in Netherland
Mathematician, physicist
Hydrodynamique (1738)
Conservation of Energy
Exposition of a New Theory on the Measuremet of Risk (1738)

St. Petersburg Paradox
Beam theory

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)=q
$$

Bernoulli Theorem

The Bernoulli family

Bernoulli Theorem

Considering flow at two sections in a pipe
Bernoulli's equation

$$
\frac{V_{1}^{2}}{2 g}+\frac{P_{1}}{\gamma}+Z_{1}=\frac{V_{2}^{2}}{2 g}+\frac{P_{2}}{\gamma}+Z_{2}=H
$$

$\frac{V}{2 g}=$ velocity head $\frac{(\mathrm{m} / \mathrm{s})^{2}}{\mathrm{~m} / \mathrm{s}}=\mathrm{m}$	$V=$ velocity
$\frac{P}{\gamma}=$ pressure head $\frac{\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}}{\mathrm{~m}^{2}} / \frac{\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}}{\mathrm{~m}^{3}}=\mathrm{m}$	
	$P=$ gravitational acceleration
$Z=$ potential(elevation) head	$\gamma=$ spescific weight
H	$=$ total head

Bernoulli Theorem

$\frac{V_{1}^{2}}{2 g}+\frac{P_{1}}{\gamma}+Z_{1}=\frac{V_{2}^{2}}{2 g}+\frac{P_{2}}{\gamma}+Z_{2}=H$

Derivation of Theorem

Apply Newton's 2nd law to the motion of fluid particles

Consider a streamline and select a small cylindrical fluid system

Derivation of Theorem

Apply Newton's 2nd law to the motion of fluid particles
$\sum F=m a$
$d F=p d A-(p+d p) d A-d W \sin \theta$
$=-d p \cdot d A=-\rho g d A \cdot d s \cdot \frac{d z}{d s}$
$=-d p \cdot d A-\rho g \cdot d A \cdot d z$
$d m=\rho d s \cdot d A \quad$ (density X volume)
$a=\frac{d V}{d t}=\frac{d V}{d s} \cdot \frac{d s}{d t}=V \frac{d V}{d s}$
$\therefore \quad-d p d A-\rho g \cdot d A \cdot d z=\rho \cdot d s \cdot d A \cdot V \frac{d V}{d s}$

Derivation of Theorem

$d p d A+\rho \cdot d s \cdot d A \cdot V \frac{d V}{d s}+\rho g \cdot d A \cdot d z=0$
Divide by $\rho d A$

$$
\begin{array}{lc}
\frac{d p}{\rho}+V d V+g d z=0 & \gamma=\rho g \\
\frac{d p}{\gamma}+\frac{1}{g} V d V+d z=0 & \\
\frac{d p}{\gamma}+d\left(\frac{V^{2}}{2 g}\right)+d z=0 & d\left(V^{2}\right)=2 V \cdot d V \\
d\left(\frac{p}{\gamma}+\frac{V^{2}}{2 g}+z\right)=0 & \text { Euler's equation }
\end{array}
$$

Application of Theorem

Air lift?

Not the main reason

Bernoulli's equation?

Integrate Euler's equation

$$
d\left(\frac{p}{\gamma}+\frac{V^{2}}{2 g}+z\right)=0
$$

$$
\frac{p}{\gamma}+\frac{V^{2}}{2 g}+z=\text { const }
$$

$$
\frac{V_{1}^{2}}{2 g}+\frac{P_{1}}{\gamma}+Z_{1}=\frac{V_{2}^{2}}{2 g}+\frac{P_{2}}{\gamma}+Z_{2}=H
$$

Lower pressure is caused by the increased speed of the air over the wing.

Since the pressure is higher beneath the wing the wing is pushed upwards.

Experimental Apparatus

Procedure

1. Obtain the area of cross sections of the duct point connected to the manometer.
2. Calculate the flowrate with a stopwatch and the volumetric tank level.
3. Calculate mean velocity of each cross section with flowrate and area of cross sections.
4. Compute Reynolds number and velocity head using mean velocity.
5. Measure the pressure head by reading Manometer level.
6. The sum of velocity head(4) and pressure head(5) and potential head is the total head. (Potential head is zero, we assumed that the centerline of the duct is datum)
7. Measure the total head of each cross section using Pitot tube.
8. Compare the computed total head(6) with measured total head(7).
9. Repeat process (2-5) 5 times with each other flowrate.

Results

Point	1	2	3	4	5	6
Diameter (mm)	25	13.9	11.8	10.7	10	25
Area (mm²)	490.874					
Speed (mm/s)						
Velocity Head (mm)						
Pressure Head (mm)						
Potential Head (mm)						
Calculated Total Head						
Measured Total Head						
Difference						

Results

1. Using Bernoulli Theorem, discuss relations of diameter of duct, mean velocity, pressure.
2. Compare the computed total head with measured total head, discuss why does the difference occurs.
