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Similarly, we can sum the amplitudes of all the reflection paths.
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t3, and rj, can also be obtained in a similar manner by starting with a wave inci-

dent from the right rather than from the left.

1.4 Tunneling: Consider the structure in Fig. 1.7 but with an electron energy E that
1s less than E¢, (E¢, < E < E,). Assume k, = k, = 0. It is apparent from

eq. (1.62) that k, i1s imaginary. Derive an expression for 7.
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From eq. (1.66), using eqs. (1.43), (1.48), and (1.49),
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It is straightforward to calculate the reflection coefficient ry from eq. (1.67), using

eqs. (1.43), (1.48), and (1.49).
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It is easy to check that Ry + Ty = 1. Also, it can be shown that 7 = t; and
rg = rg; this is expected from the symmetry of the structure.

It is apparent from eq. (1.78) that there is a non-zero probability for an elec-
tron to transmit through a barrier if it is thin enough, that is, if yd is small enough.
This is a quantum mechanical phenomenon known as runneling, not predicted by
Newton’s law. From a particle point of view, Ty = 0 regardless of the barrier
thickness “d” as long as E < E,. But from a wave point of view, when E < E,
the wave becomes decaying (or evanescent) rather than propagating within the
barrier. If the barrier ends before the wave has attenuated sufficiently — that is, if
yd = 1—then it can transmit significantly through the barrier. This phenomenon
of tunneling has found extensive applications in both basic and applied sciences
(Ref. [1.3]). A recent application is the Scanning Tunneling Microscope that
makes it possible to get very high-resolution images of surfaces by exploiting the
exponential dependence of the tunneling current on the barrier thickness “d”.
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1.5 Resonant Tunneling: Consider the double barrier structure shown in Fig. 1.11a.
We have already calculated the transmission coefficient 7 and the reflection coef-
ficient ry for a single barrier (Exercise 1.4). Assuming that the two barriers are
identical, show that the overall transmission coefficient 7, through the double bar-
rier structure is given by
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where ry = Rze ™, |t5|* = T;. Plot Ty and Ty as a function of electron energy E
in the range E., < E < E;, + 0.3 eV assuming that E., = E;, + 0.3 eV, d =
40 A, L = 100 A, m* = 0.07 m,.
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Fig. 1.11 The resonant tunneling device (d = 40 A. L = 100 A). (a) Ec(2) vs. z; (b) Te(E),
T(E).
Solution:

Earlier we derived 7 [eq. (1.66)] by cascading the scattering matrices for two po-
tential steps and a free propagation region in between. t,5 1s derived by cascading
the scattering matrices for two barriers and a free propagation region in the same
manner.

Figure 1.11b shows plots of T and T, as a function of the electron energy E.
It is interesting to note how an electron with energy £ = 0.035 eV has a very low
probability of getting through a single barrier (7 = 0) but can go clean through
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two barriers (75,3 = 1). This behavior is very hard to rationalize with a particle-
: like picture. This phenomenon is known as resonant tunneling and has received
| considerable attention lately as a high-frequency negative-differential resistance
! device (Ref. [1.4]).

1.6 What is the probability current density J, for a single electron with a wavefunction
given by

W(z,t) = (e + ae')e ="

where v = k — ik, k and k being real numbers.

Solution:
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When k = 0, the net current is simply the difference between that carried by
the forward wave (~e™) and that carried by the reverse wave (~e ~*). It is inter-
esting to note that this is not true if k # 0. The current carried by a decaying
wavefunction (~e ™) or a growing wavefunction (~e ™) is individually zero. But
a linear combination of the two (as in a tunnel barrier, Exercise 1.4) carries a cur-
rent proportional to Im(a).



