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_[ 1 1(k -wt)+ I . 1(k“—wt)] (1 1 12)
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We can make the following analogy with the spin states of silver
atoms:
S + atom e right circularly polarized bea
g _ (1.1.13)
S, — atom © left circularly polarized beam.
A ] p this analnov to (1.1_17\ we see that if we are allgwpd to make the
coeﬁiments preceding base kets complex, there is no difficulty in accommo-
dating the S, + atoms in our vector space formalism:
71 i
IS:+Y= —IS: +Y+ —I|S.: =) (1.1.14)
1=y =/ A 1Pz TS P \ J
" V<

complex vector space; an arbltrary vector in the ve
hnear combination of the base vectors |S,; +) with, in general complex
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space that describes the spin states of individual atoms with
I / s of the classical electromagnetic field. Actually we
could have made the analogy even more vivid by introducing the photon
concept and talking about the probability of finding a circularly polarized
photon in a linearly polarized state, and so forth; however, that is not
needed here. Without doing so, we have already accomplished the main goal
of this section: to introduce the idea that quantum-mechanical states are to
be represented by vectors in an abstract complex vector space.*
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1.2. KETS, BRAS, AND OPERATORS

n the preceding section we showed how analyses of the Stern-Gerlach
exneriment lead us to consider a comnlex vector snace. In thic and the
experiment lead us to consider a complex vector space. In this and the

* The reader who is interested in grasping the basic concepts of quantum mechanics through
a pavafinl ctnndy AF shAatan mAalaeiantinn  smav Chowntner 1 AF Dawvien 1QLQ\N aAvésramals
a uvaiciul bluu)’ uv1 PllUlUll PUlallLdllUll uay uuu \/lla})lbl 1 U1l Dd 11 (17U7) CAuC llcl)’
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1 we formulate the basic mathematics of vector Spaces as
used in quantum mechanics. Our notation throughout this book is the bra
and ket notation developed by P. A. M. Dirac. The theory of linear vector

spaces had, of course, been known to mathematicians prior to the birth of
quantum mechanics, but Dirac’s way of introducing vector spaces has many
advantages, especially from the physicist’s point of view.
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la). This state ket is postulate
physical state; everything we

in the ket. Two kets can be added:

la)+ |8 =|v). (1.2.1)
The sum |y) is just another ket. If we multiply |a) by a complex number c,
the resulting product c|a) is another ket. The number ¢ can stand on the

left or on the right of a ket; it makes no difference:

ket.

One of the physics postulates is that |a) and c|a), with ¢+ 0,
renresent the same nhvsical state. In other words. only the “direction” in
present th€ same pnysical state. in other words, only the direcuion’” 1
vectar enace ic nf cionificance athamaticiance mav nrafar tn cav that we ara
YyYvw il OP“V\-’ 140 Ui 01511111\1“11\.«\.«. iviQAaiiiviiiauviviQaiio lllu_y Hl\dl\dl v Ou] tiiav Yyvu ai v

ara dealinog wit rave rathar than vartarc

) S L7 @ W) u\aalllls VVIiILIL 1AYD 1Allivil uliAalil YuuLulo.
* For many physical systems the dimension of the state space is denumerably infinite. While
N S R T A A Foonlto miioaalo o o f AT il Lot cmnna thia macilic alon khald
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An observable, such as momentum and spin components, can be
represented by an operator, such as A, in the vector space in question. Quite
generally, an operator acts on a ket from the left,

1T A

A-(ja)) = dja), (1.2.3)
which is yet another ket. There will be
later.

=

ore on multiplication operations

In general, Aja) is not a constant times |a). However, there are
particular kets of importance, known as eigenkets of operator 4, denoted by

77 A 1778 ( S A
la’),la”),la”" ), ... (1.2.4)
with the property
Ala/>=a/|a,>,AlaU>=a”|a”>,... (1.25)
where a’, a”, ... are just numbers. Notice that applying A to an eigenket

just reproduces tne same ket apart from a multiplicative number. The set of
numbers {a’,a”,a’”, ...}, more compactly denoted by {a’}, is called the
set of eigenvalues of operator 4. When it becomes necessary to order
eigenvalues in a specific manner, {aV, a®, 2™, ...} may be used in place
of {a a ")

where |S,; + ) are eigenkets of operator S, with eigenvaiues + / /2. Here we
could have used just | /2) for |S,; + ) in conformity with the notation ja”),
where an eigenket is labeled by its eigenvalue, but the notation |S,; +),
already used in the previous section, is more convenient here because we
also consider eigenkets of S, :

SIS +)=+ 1.2.7

-+
S~
P~~~

N’

We remarked earlier that the dimensionality of the vector space is
determined by the number of alternatives in Stern-Gerlach-type experi-
ments. More formally, we are concerned with an N-dimensional vector

space spanned by the N eigenkets of observable 4. Any arbitrary ket |a)
can be written as

Y=Y c,la’),

/ a 4
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Bra Space and Inner Products

The vector space we have been dealing with is a ket space. We now
introduce the notion of a bra space, a vector space “dual to” the ket space.
We postulate that corresponding to every ket |a) there exists a bra, denoted
by {«|, in this dual, or bra, space. The bra space is spanned by eigenbras
{{(a’|} which correspond to the eigenkets {|a’)}. There is a one-to-one
correspondence between a ket space and a bra space:

allll SQHPSE

IIV\ > /IVI
1~/ A\t

’ ’” DC 4 ’ ’”
la’y,1a”),... & (a’,{a”|,... (1.2.9)

where DC stands for dual correspondence.
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the bra space as some kind of mirror image of the ket space
The bra dual to cla) is postulated to be c*(al, not c{al, which is a
very important point. More generally, we have
5\ PN DC . . ~ [ 2 w2 o~
cla)+cplb) © c (al+ cg( bl (1.2.10)
i pii/ aN T PN \ 7

We now define the inner product of a bra and a ket.* The product is
written as a bra standing on the left and a ket standing on the right, for

examnle
mple,
(Blay = ({(BI)-(a)). (1.2.11)
bra (¢) ket
This product is, in general, a compiex number. Notice that in forming an

inner product we always take one vector from the bra space and one vector
from the ket space.
We postulate two fundamental properties of inner products. First

v— 222 21 2 222 = . ’

PR Vo Y-9

*In the literature an inner product is often referred to as a scalar product because it is
analogous to a-b in Euclidean space; in this book, however, we reserve the term scalar for a

quanuly invariant under rotations in the usual three-dimensionai Space.



14 Fundamental Concepts
Tha cannnAd mActiilata A 11mmmnar sar~diinto 10
1 11T dCLvuIliu PUblulalC UI1 11111C1 }JIUUUDLD D
(ala) =20, (l 2 13)
where the equality sign holds only if |a) is a null ket. This is sometimes
known as the postulate of positive definite metric. From a physicist’s point

of view, this postulate is essential for the probabilistic interpretation of

quantum mechanics, as will become apparent later.*
Two kets la) and |B) are said to be orthoosonal if

4V RV R/ QU |/ QALv saiu W v Ui uiiUgUiial 1

(alB) =0, (1.2.14)

even though in the definition of the inner product the bra (aj appears. The

OI‘IIIOEOI‘lallIV reiation (1 2. 14) aiso lleleS via (l 2. 12),

(Bla) =0. (1.2.15)
(Yivan a Lat whinrh 1ic nat a nnll Lat wa ran fAarm o narmalizad Lat¢
Jivuil a AVl wilivil 10 11Vl a 11ull Avl, WL vdll 1Vllll a nviliaiicLeu nvi
12\ whara
Iu/, 1iCI1C
m\;{ 1 \Im\ (12 16)
lu/ r—\— 'lu/, \.L l-.J.UI
\Lycalay )/
with the property
(ala) =1 (1.2.17)
\ 1 / N\ 7
~ . 11 [7 & N 1 1 PR N ; 1
Quite generally, y(aja) is known as the norm of ja), analogous to the
magnitude of vector ya-a = !al in Euclidean vector space. Because |a) and
c|a) represent the same physical state, we might as well requlre that the kets
we use for physical states be normalized in the sense of (1.2.17).F

Nnaratarc
\I"‘rl“lulﬂ
A(‘ Ay 97- rnmnr]rnr‘ nnfl;nr f\knnﬂrnklan ‘;‘IQ M AAarmantfiirmm nr\rl (‘V\;ﬂ 'e7a%s s 8
432D VWU l1uldlldalAbVUl vaillivi, vudul vauvlld 11AU 111vlliviituliil ailiug Ol.llll LuUlILL
ponents are to be represented by operators that can act on kets. We can
consider a more general class of operators that act on kets; they will be
Annm~tad e YV V and o~ farth lhila A D anAd cn A wx3ill o 2sicnad fAar o
uctioiicu vy a, 1, ald >U 1viui, willie 7z, D, allu dSU vl 111 DT uUdCU 1UlI a
restrictive class of operators that correspond to observables
Az ~smnsmnd s ante ~a a Lot Lo o s 1.f:s A
ALl OpClatol atld 011 a KCl 11011 UIC ICIL S1UC,
X-(1a)) = Xlad (12.18)
\'u/} /‘Iu/, \L l-.,lU’
and the resulting product is another ket. Operators X and Y are said to be

equal,

*Attempts to abandon this postulate led to physical theories with “indefinite metric.” We
shall not be concerned with such theories in this book.
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Xla) =Y|a) (1.2.20)
for an arbitrary ket in the ket space in question. Operator X is said to be
the null onerator if. for anv arbitrarv ket la). we have
YEES EERS | et tind y YR EERY T EEEEE A A g
X|a) =0. 1.2.21)
Operators can be added; addition operations are commutative and associa-
tive
v 7 X7 v 1 7" A1\
AX+Ir=1+ X, (1.2.21a)
v iflv . 72\ _ (v Y\ 7 /& A1)
AT I+ ZLj={A+T1 )+ 2 (1.2 410)

With the single exception of the time-reversal operator to be considered in
Chapter 4, the operators that appear in this book are all linear, that is,

v 1o\ o) A VAN wviN\ {1 '\ f\f\\
\Cal) T CpIP)) T CQA Q) T CAIS) \1.£.22)

An operator X always acts on a bra from the right side
Yays \ -7 7 R ¥4 /e A~ A~AAN
((a))- X =(aj X (1.2.23)

and the resulting product is another bra. The ket X|a) and the bra (a|X

AL ¥4

are, in general not dual to each other. We define the svm001 A as

1»\’\‘

{
(1.2.2

\-/

An ~nrmaratar V3o oo i d tn lha HHasenitinns 1 f
11 UPClaLUl Pg s ID Salll LU UC 1icCllilliliaill 11
X=X, (1.2.25)
Multiplication

Operators X and Y can be multiplied. Multiplication operations are,
in general, noncommuiative, that is,

\ 70 VIR V4 74 (1 A" AN
XY #TX (1.2.20)
Multiplication operations are, however, associative
X(YZ)=(XY)Z=XYZ (1.2.27)
We also have
X(Ylad) = ( XY )a) = XYla) ((BRIX\Y=(BUXY)=(BIXY
(N A/ AN J1%/ 1%/ WP \ P I\ J AP :
(1.2.28)

Notice that



XY|a) = X(Y|a)) & ((afYT) Xt = (VX" (1.2.30)

So far, we have considered the following products: {(Bja), X|a),

{(ajX, and XY. Are there other products we are allowed to form? Let us
multiply |8) and (a|, in that order. The resulting product

|. We will emphasize in
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generally as long as we are dealing with “legal” multiplications among kets,
bras, and operators. Dirac calls this important postulate the associative
axiom of muitipiication.
To illustrate the power of this axiom let us first consider an outer
product acting on a ket:

(18)¢ad) 1. (1.232)

Because of the associative axiom, we can regard this equally well as

1BY-({aly)), (1.2.33)

where (ajy) is just a number. So the outer product acting on a ket is just
another ket; in other words, |8){a| can be regarded as an operator. Because
(1.2.32) and (1.2.33) are equal, we may as well omit the dots and Iet
iB){ajy) stand for the operator |8){a| acting on |y) or, equivalently, the
number {a|y) multiplying |B). (On the other hand, if (1.2.33) is written as

({a]y)):|B8), we cannot afford to omit the dot an

(o9
173

brackets because the

*Later in the book we will encounter products like |a)|8), which are more appropriately
written as |a) ®|8), but in such cases |a) and |B) always refer to kets from different vector
spaces. For instance, the first ket belongs to the vector space for electron spin, the second ket to

the vactar enace fOr electan nrkifql nﬂnl!l

t liag in tha vastar enace
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of particle 1, the second ket in the vector space of particle 2, and so forth.
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rotates |y) into the direction of |B). It is easy to see that if
YV — 1A\ /I (197 24\
P |[J/\u|, \iL.4.9%)
then
Liivii
Xt =lay(Bl, (1.2.35)

that
((BN - (X1ad) = ((BIX) - (1a)) (1.2.36)
\\IT \ ) /7 AN NY I | V4 \1 /7 \ 7
bra ket bra ket

notation
(BIX]a) (1.2.37)
\r 1 1~/ \ )
to stand for either side of (1.2.36). Recall now that (a| X" is the bra that is
dual to X|a), so
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L&A )P g
— /Al YT R\* (19 12Q)
aa71p)7, (1.2.50)
where, in addition to the associative axiom, we used the fundamental
nranarty Af tho innar nradnct (119 1\ Far o Howmmitinn Y wa hava
}Jl\}t}\all Y1 u1lv 1111iv1 PI.U\JU\/L \.I..A-J.A}. AVl A 11Crrruiiure <2 vywy 1i1avwe
/RIYIA\ — /Al YVIR\k (1 7 20)
\’Jl/\lu/ \ulAl’J/ . \L L..))}
11 BASE KETS AND MATRIX REPRESENTATIONS
Aedoe APOANMIAY ANARLUA NI AL NAY AVASY R ANAAY ANLJE ENANIDMU NI N RAVUL W
Diaganbatc ~AFf ann Nhonerahls
ngc IACLd VUl 4ll vudlIvauic
T A4 230 ~~mos 4hin Sinaamlndn amd Slnsmsraliiac AL 4 ‘ Aam e e
LCUL W bUllblUCl UIC CIECIIKCLS alld ClEllivalucy Ul d l_ICl 1uan Opcl-
ator A. We use the symbol A, reserved earlier for an o bservabl because in
quantum mechanics ncrmitian operators of interest Quite often turn out to
be the operators representing some physical observables.

We begin by stating an important theorem:

Theorem. The eigenvaiues of a Hermitian operator A are real; the
eigenkets of A corresponding to different eigenvaiues are orthogonali.

Proof. First, recall that

Ala™d =a’la’.
1 / 1 /

7~
=Y
%
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(a”|A=a"*{a"|, (1.3.2)
where a’, a” ... are eigenvalues of A. If we multiply both sides of (1.3.1) by
{a”| on the left, both sides of (1.3.2) by ja”) on the right, and subiract, we
obtain
(a’—a”*){a"|a’y = (1.3.3)

Now a’ and a” can be taken to be either the same or different. Let us first
choose them to be the same; we then deduce the reality condition (the first
hailf of the theorem)

We expect on physical grounds that an observable has real eigenval-
ues, a point that will become clearer in the next section, where measure-
ments in quantum mecham cs will be dlSCUSSCd The theorem Jus proved
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set:
{a"|a’y =8, . (1.3.6)

We may logically ask, Is this set of eigenkets complete? Since we started our
discussion by asserting that the whole ket space is spanned by the eigenkets
of A, the eigenkets of 4 must therefore form a compiete set by construction
of our ket space.*

Eigenkets as Base Kets

*The astute reader, already familiar with wave mechanics, may point out that the complete-

ness of eigenfunctions we use can be proved by applymg the Sturm ouvx]le theory to the

Crlieitdivnsne ssrnuwrn Amtints D.. L | LA
SCNroainger wave CL.l'LiauOﬁ But to “derive” t
1

mental nnunlmpc the {‘nmh]PtPnPQQ of the pos
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1.3. Base Kets and Matrix Representations 19
~AF tha aigonlbate ~AF A T ~thine vrnsrdes tha aiganlatc ~AF A | - | o
Ul L1c Clsclll\clb Ul 7. 111 OUuICl wulUud, LUIC CIECIILCLD 01 A arc LU OC U3Ca as
base kets in much the sam ay as a set of mutually orthogonal unit vectors

Grven an a rbltr ry ket |a) in the ket space spanned by the eigenkets
of A, let us attempt to expand it as follows

la) =) ¢, la’). (1.3.7)

Multiplying (a”| on the left and using the orthonormality property (1.3.6),
we can immediately find the expansion coefficient,

c.={a’'la) (1.3.8)
a \ ==/ \ 7
In other words, we have
. ., o A AN
lay =) la"Y{(a’'la), (1.3.9)
1 / e | 7/ \ 1 /7 \ 7

,6,(é,-V) (1.3.10)
\ Vi

1

where {€,} form an orthogonal set of unit vectors. We now recall the
associative axiom of multiplication: ja’){a’ja) can be regarded either as the
number (a’|a) multiplying |a”) or, equivalently, as the operator |a"){a’|
acting on |a). Because |a) in (1.3.9) is an arbitrary ket, we must have

Y la’ya|=1 (1.3.11)
et | /\ | ’
where the 1 on the right-hand side is to be understood as the identity
operator. Equation (1.3.11) is known as the completeness relation or closure.

It 1s difficult to overestimate the usefulness of (1.3.11). Given a
we .

of kets, operators, or bras multiplied in legal orders, w ,
place at our convenience, the identity operator written in form (1.3.

.............. ALY cialol

This, incidentally, shows that if |a) is normalized, then the expansion
coefficients in (1.3.7) must satisfy
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outer product, it must be an operator. Let it operate on |a):

(1N ANV — 1A'\ N\ — A g2\ (1 214\
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la’y{a’| is known as the projection operator along the base ket |a’) and is
denoted by A .:
e ’ ’
A, =la"){a'. (1.3.15)
The completeness relation (1.3.11) can now be written as
YA, =1 (1.3.16)
b a \ 7
a/

nAa_ s W __a4_ 4% ___

Matrix Representations

Having specified the base kets, we now show how to represent an
operator, say X, by a square matrix. First, using (1.3.11) twice, we write the
operator X as

X=3 Y 1a"a"|X|a"){a. (1.3.17)

;;;;;

square matrix such that the column and row indices appear a follows

[/ a1 X1aO\ /(D v (N \
I’(‘ |Ala) a*’|X|1a*”’) }
X=|{(a (Z’IXIa‘”> (a®|X)a®) . (1.3.19)
where the symbol = stands for “is represented by.” *

~ AN

At last, the Hermitian adjoint operation, originaily defined by (1.2.24), has

been related to the (perhaps more familiar) concept of complex conjugate
transposed. 1f an operator B is Hermitian, we have

7 - 7 2 oW - S e A ~a\
(a”|pla’)=<(a’|Bla” )" (1.3.21)
*We do not use the equality sign here because the particular form of a matrix representation
Aamanmde ~Anm tha mnetinanlae Alhatan ~Aflinca lrr\.r\ 1gad Tha rnmavatne to Aiffnrnnt Fonmn o vamsencamba_
UCPCIIUD Ull U1 pdl L ulal CIIVUILT Ul vadtT RO uwldu. 1110 U})CldlUl 1> UulicicIIt 111l a lelC Clita
tion of the operator just as the actress is different from a poster of the actress



