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Measure ements, UDbCIVdOle and the UI]LCI'[dlIlly Relations

The eigenket-eigenvalue relation

S|+Y=+x(h/2)|%) (1.3.37)

S,=h+¥—1|, S_=h—-)+] (1.3.38)

which are both seen to be non-Hermitian. The operator S - actmg on the
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component by one unit of 4; if the spin component cannot be raised any
further, we automatically get a null state. Likewise, S _ can be interpreted as
an operator that lowers the spin component by one unit of 4. Later we will
show that S, can be written as S, +1iS,.

In constructmg the matrix representatlons of the angular momentum
operators, it is customary to label the column (row) indices in descending
order of angular momentum components, that is, the first entry corresponds
to the maximum angular momentum component, the second, the next

highest, and so forth. In our particular case of spin 1 systems, we have
by= (1) (0] (1.3.39)
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We will come back to these explicit expressions when we discuss the Pauli
two-component formalism in Chapter 3.

14, ”-E, SUREMENTS, OBSERVABLES, AND
THE UNCERTAINTY RELATIONS
Measurements
nnnnn Aacralacad ¢hha smnntlhhacnntinae ~F Lo spaces e A “ n
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the great master, P. A. M. Dirac, for guidance (Dirac 1958, 36):
measurement always causes the system to jump into an eigenstate of the

(lvnarmcal variable that is Deln2 measured.” What does all this mean? We
mterpret Dirac’s words as foliows: Before a measurement of observabie 4 is
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made, the system is assumed to be represented by some linear combination
lay =Y c la’y =) |a"){a'|a). (14.1)
a’ a’
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When the measurement is performed, the system is “thrown into” one of
the eigenstates, say |a”) of observable 4. In other words,
|\ A measurement | (149)
|u/ 'u /. \l ."Y.L}
For example, a silver atom with an arbitrary spin orientation will change
into either |S,; +) or |S,; —) when subjected to a SG apparatus of type
SGZ. Thus a measurement usually changes the state. The only exception is

when the state is already in one of the eigenstates of the observable being
measured, in which case

[P AY [P AN /v a A\
la’) ja”) (1.4.3)
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sense that the result of a measurement yields one of the
observable being measured.

Given (1.4.1), which is the state ket of a physicai system before the
measurement, we do not know in advance into which of the various ja”)’s
the system will be thrown as the result of the measurement. We do
postulate, however, that the probability for jumping into some particular
la”y is given by

Probability for a’= (1.4.4)

provided that |a) is normalized.

Although we have been talking about a single physical system, to
determine probability (1.4.4) empirically, we must consider a great number
of measurements performed on an ensemble—that is, a collection—of

identically prepared physical systems, all characterized by the same ket |a).
Such an ensemhle 1s known as a pure ensemble (We W1ll say more about

examnle of a n
K 1 exampie of a pu nsem u very mem

the ensemble is characterized by |S,; + ).
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A Liw ylvuuullloll\# “ll\llyl vidAalvivii \L-_' _'} AV Liiv o\iuul\/u 111111 }JLUUUUL
|/n’|m\|2 1c nna nf tha fiimAdamantal mactiilatac Af Alrantiim manhanincg on 1t
|\u |u/| 10 ViiL Ul Ulv 1ulllailiiiviiialr PUOtulal\/D Ul Llualllulll 111oel1i1alliv s SV 1L

: A v ¢

cannot be proven. Let us note, however, that it makes good sense in extreme

a 1 A
cases. Suppose the state ket is |a”) i 'tself even before a measurement is
made; then according to (1.4.4), the

precisely, for being thrown into ia’)—as the result of the ‘neasure“iert 1s
PR L 4~ ~ cxrlal AL S o4 L. oo 4 < r emm et e e s e
predicted to be 1, which is just what we expect. By measuring A once again,
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we, of course, get ja”) only; quite generaily, repeated measurements of the
same observable in succession yield the same result.* If, on the other hand,
we are interested in the probability for the system initially characterized by
la’y to be thrown into some other eigenket |a”) with a” # a’, then (1.4.4)
gives zero because of the orthogonality between |a”) and |a”). From the
point of view of measurement theory, orthogonal kets correspond to mutu-
ally exclusive alternatives; for example, if a spin § system is in |S,; + ), it is
not in |S,; — ) with certainty.

Qulte generally, the probability for anything must be nonnegative.

Furthermore, the probabilities for the various alternative possibilities must
add up to unity. Both of these expectations are met by our probability
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To make sure that we are referring to state ja), the notation (4), is
sometimes used. Equation (1.4.5) is a definition; however, it agrees with our
intuitive notion of average measured value because it can be written as

PPN lulw 27\ 7 ; ;
(A=) ) (ala” ) {a"|Ala")(a'|la)
\ 7/ unnd  fmed  \ L 7/ \ 1 1 7/ N 1 4
al all
«— P r 2 {1 A £\
= ) a I[{a’la)l (1.4.0)
== A ‘l\ I 1 B
a’ |
measured value 2’ probability for obtaining o’

It is very important not to confuse ei

example, the expectatlon value o
value between — A /2 and + A/
h/
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DCCOH]C ClCaI’ WDCH we discuss the time evolution of a state ket in L,Ildp ier 2.
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FIGURE 1.6. Selective measurement.
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in our notation, and deduces

also of M(b’,a’) which amount to |b"){a’]) by studying the outcome of
various Stern-Gerlach-type experiments. In this way he motivates the entire
mathematics of kets, bras, and operators. In this book we do not follow
Schwinger’s path; the interested reader may consult Gottfried’s book.

(Gottfried 1966, 192-9).

Before proceeding with a general discussion of observables, we once
again consider spin ; systems. This time we show that the results of
sequential Stern-Gerlach experiments, when combined with the postulates
of quantum mechanics discussed so far, are sufficient to determine not only

Firct wa racrall that whan tha € L haam ic cnthiantad tA an annaratiig
471151, WU itlail uldt wiiCil uiC o, 7 0OCdilil 15 SUuUjeliCu WU ail appaiaius
Af tuma Q15 tha haam anlite intn tuwn Anmmnnnante anth aaral intancitioc
O1 typC 52, Ul 0Caill SPiiis IO (WO COMPOICIitS wiul &Juail nNiCnsiiics.
Thic moang that tha mralhahility fae tha © 1 gtata tn ko theagrm tntn 1Q 0 1\
LiilS fHikaiis ulat uiC pidvaoidty 10T uiC o, 7 StdiC 10 o€ ulirOwil 1o (o, T ),
. . l
simply denoted as |t ), is 5 each; hence,
1

K+ 1S =K 1S >I=ﬁ' (1.4.8)

We can therefore construct the S + ket as follows

1 1
— 8

|Sx,+>—ﬁ|+>+‘/§e =), (1.4.9)
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Notice that expressions (1.4.46) and (1.4.47) are different! This is remark-
able because in both cases the pure |a’) beam coming out of the first (A4)
filter can be regarded as being made up of the B eigenkets

AN A RTINS NI (1 A A0\
!a ) = _)_ !D /)(\D !a ,).. (\1.4.46,
b

‘reasuremems have actually been carried out. In the first case we experi-
. M r© n 1
f

the B eigenvalues are actually realized; in the

1 [ AVAR]

second case, we merely imagine |a’) to be buiit up of the various |»")’s in
the sense of (1.4.48). Put in another way, actuaily recording the probabilities
of going mrougn the various b” routes makes all the difference even though
we sum over b’ afterwards. Here lies the heart of quantum mechanics.
Under what conditions do the two expressions become equal? It is
left as an exercise for he reader to show that for this to happen, in the
S

The last topic to be discussed in this section is the uncertainty
relation. Given an observable 4, we define an operator

AAd= A—/ A\ (1 4 80
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dlspersmn Sometlmes the terms variance and mean square deviation are
used for the ‘same quantlty Clearly, the dispersion vamshes when he state
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enin 1 cvctem the dicnercion of € can bhe comnuted to he
spin ; system, the dispersion of 5, can be computed to be

(S2)—(S.)* = h?/4. (1.4.52)

\

in conirast the GlSDCrSlOl’l (/ASZ\) ) ODVIOUSIV vanishes for the D + state. DO,
for the S, + state, S, is “sharp”’—a vanishing dispersion for S, —whiie S,
1s fuzzy.

We now state the uncertainty relation, which is the generalization of
the well-known x-p uncertainty relation to be discussed in Section 1.6. Let
A and B be observables. Then for any state we must have the following
inequality:

5 5 1
A ANNHARY NS Z1i/T 4 BINI2 (1 4 §2)
a4y )&y =27K14, 51 \1.4.95)
To prove this we first state three lemmas.
Lemma 1. The Schwarz inequality
/ 4 NI DIDN 1/ 1D\ 12 (1 A Cca\
(@) PIp) = KBl (1.4.04)
which is analogous to
lal*b|* > ja-b|* (1.4.55)

Dynnf Firct nAta
Vi IUUJ. 4 11Ol 11Ul
({al+A*(B])-(la) + A|B)) = 0, (1.4.56)
where A can be any complex number. This inequality must hold when A is
set eaual to —(Rlad/(BIR:
NI 1 /7 NI \r-/
(ala){B|B)— Ka|B)|*=0 (1.4.57)
whirh 1¢c tha cama ac /1 A4 §A\ —
wiiilil 15 Ui 5ailii das (1.4.54) (]

real.
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tainty relation (1.4.53). Using Lemma 1 with
ay=AA4| )
| ' ’ (1.458)
(1.4.58)
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where the blank ket | ) emphasizes the fact that our consideration may be
applied to any ket, we obtain

where the Hermiticity of A4 and AB has been used. To evaluate the
right-hand side of (1.4.59), we note

AAAn_]'I'A‘ An'l.lfAAAn\ (1 A N0\
AAAB=7184,0B|+5{A4,0B}, (1.4.60)
where the commutator [AA4, AB)], which is equal to [A4, B], is clearly
nnf;= armitian
aliiliTiiviiiiiviail

([A4,B]) = (4B-BA) =BA— AB=—-[4,B]. (1.4.61)

In contrast, the anticommutator { A4, AB} is obviously Hermitian, so

] ]
[AAARN = — /T4 BRIN L /(A A4 ARYN (1 4 £9)
\l-lﬂl..lu/ q\l/‘l,uj/ ) ,’\\Hfl,l-luj/, \1 'T.UL}
< purely < purely
imaginary real
where Lemmas 2 and 3 have been used. The right-hand side of (1.4.59) now
becomes
7 A AA-\\-Z l.lr -1 ) 1-1’A . A w2 2 /- a2 AN\
KAAAB)*=ZK[4, BD)* + 7({A4, AB})] (1.4.63)

The proof of (1.4.53) is now compiete because the omission of the second
(the anticommutator) term of (1.4.63) can only make the inequality relation

stronger.™

Applications of the uncertainty relation to spin 1 systems will be left
as exercises. We come back to this topic when we discuss the fundamental
x-p commutation relation in Section 1.6.

Transformation Operator
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by the set {|b")}. For example, for spin 3 systems |S, + ) may be used as
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interested in finding out how the two descriptions are related. Changing the

. / 2 : Lo
*In the literature most authors use AA4 for our |((AA4)") so the uncertainty relation is

written as AAAB > %]Q[A, B])|. In this book, however, A4 and A B are to be understood as
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