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However, froml(5.2-I8)
' pdp=mds, - (5.2-20)

whereby ' d}),. = 4-@ “m de = 4nm./2ms de. (5.2-21)

&

FiGuRe 5.1. Spherical surfaces B M ansrgy «
corresponding to constant en- '
ergies ¢ and £+ ds plotted
in the momentum space (P«
py.pa) of & particle.

Momentum 2 + dg;’/
energy £+ gr 7

)

£y

The number of quantum states to be found in thisvolume of momentum space

. - ig determined simply by dividing. this result by the volume of momentum space

fissociated with a single quanturh state as given by (5.2-17). The result,

s
1%
gle) de = By 2n

= m32.f de, (5222)

is by definition the density of states factor referred to in (5.2-1). This result, of course,
refers only to free particles subject to instaptaneous collision interactions only. For
other systems, particularly whese fong range mutual interactions between particles
are involved, the density of states factor would be much more complex. ~Also, the
result {5.2-22) pertains, strictly speaking, only to a container in the shape of a rect-
angular solid. However, since only the volume of the container appears in the final -
result, it is intuitively clear that the same density of states would be obtained for a
cofitainer of like volume independent of its shape. This can indeed be shown to be
true, : o

THE MAXWELL-BOLTZMANN DISTRIBUTION

1f there are_fio_testrictions on the amount of energy or momentum a particle of the

systeril may possess. then_the_probability associated with all quantum states is the
same, and the average humber of particles per quaptufy state will be independent of

)

energy. This means that the dﬁtfibmion-funslionW
simple situation is not very importaat physically, sin a-system which is thermaily -
_ kit ) .
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isolated from its surroundings must obey the restriction that the sum of the enérgies

“-we shall have todeal, {In this more realistic case the proportion of particles occupying
statés of extremely high energy is reduced and the distribution function is no longer

constant with respect to bpergy? - _
To find out just what thé distribution funclion is under these conditions, we

shall proceed initially along classical lines, imw&mmw
{densifabie objects such as pumbered billiard halls. We shall retain the framework of
’m and energy levels, although, ignoring ‘the Pauli exclusion princjple,
Wi &rmit any number of pa rticles to occupy a given quantum statc of the system.
We shall suppose that we are dealing with ‘an isofated sys’tern@éN_di_gmguiﬁhths_
particles, with constant total energy U. which may be distributed among n €acIgy
levels g, £3. 821 *v" Eip **" B Statistically, the ensemble will have ;?at energy distribu-
Tion which corresponds to some chance distribution of particles among levels, the
pumbes in each level being given by Ny, Na Ny, oo Ny - Ny Of all the chance dis-
tributions of /N particles among 1 eneigy levels, sgme will oceur with relatively high
probability on a purely statistical basis. and others will be quite unlikely. This situation
is analogous to the simultaneous lossing of two coins, in which the distribution (1 head,
1tail) i$ more probabie than the distribution (2 heads, Otails) or the distribution (O heads,
2 tails). The distribution which has the maximum.probability of occurrenge is that
distribution of particles among levels which can be realized in a maximum number of
statistically gﬂe%endem' ways. The equinbrium state ol the system will then be assumed
to correspond closely to this statistical distribution of particles among levels which
is of maximum probabifity under the conditions of the problem. _

The calcutation of the number of ways in which iddentifiable particles can_be
distributed among energy levels of a system is equivalent 10 the calenlation. ol the .
“Zumber of waysin which numbered Bbjecis tafl be distributed among a set of pumbsrsd

containers,. We must thus consider the problem of determininig the number of ways
of distributing N identifiable’ objects among # containers such that there are N, in’
the first, N, in the second, -+ . N in the ith, ete. This number wili ke proportional
to the probability with which a distribution where N,, Ny, -+ N, objects are in con-
tainers 1, 2, 3, <+« n, will occur. _ «

~ To begin, let us assume that we have only two containers in which the objects
" may be placed, as shown in Figure 5.2. In general there will be Ny o/bjcc'ts-'m container
1 and N; in container 2, with :

of all the particles of tEe systembe constant, and it is systems of this type with which

N, + Ny=N=const. (5.3-1)

| -+ S )
Let us denote by ((N,.N,) the number of statistically indcpendent ways of arriving
at the distribution (N,.N,} objects in containers (1,2). Now Q10,N,) is certainly equal
to one, because the only way of achieving this distribution is to put all N, objects
into the second box, as shown in the figure. Likewise, O(1.N;) = N, because to realize
this distribution, we may put object 1 in the first container and the rest in the second,
object 2 in the first container, and the rest in the second, and so on through the ¥
objects. There are N ways of choosing the objcct to be put in the first container and
thus N ways of arriving at the distribution in question. If there are two objects in-
the fiest box, then Q(2.N,)} = N(N - 1)/2!. This result follows because there are ¥
ways of choosing the first object which goes into the first container, but only ¥ — 1

ways of choosing the second {rom the remaining objects; also, the two distributions
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where the object numbered. a was chosen as the first object and the object numbered
B as the second object to be put into the first container and where § was chosen as
the first and « 2s.the second are really identical, the same two objects ending up
finally in the first box; the factar N(N — 1) must thus be divided by two. For the case
where there are three objects in the first box, there are N ways of choosing the first,

2 O @ 9---0--@
Compartment no. 1 F particies .
Glomlel — ’ Ny ‘

S A Videl ] N woys of choosing a
O{E.Nzil-—(r - |®‘ Ny ] . @@ # M-t woys of choosing B
! _{but the two distribulions
shown of left ore the some]

N A= -2) - )

o - 1002 [S@0]] - [0DB]] - [BO@]] s o oo«
N-1 woys of thoosing B
~-2 woys of choosing ¥
[tat the 3! distributions

. [@@@l,ﬂ : ED@(E[”A . l®®©l”=] chown ave the same)

- Figurk 5.2. The possiblc ways of disiributing N ideniiﬁable particles among two con-

tainers.

N — 1 ways of choosing the second and N — 2 ways of choosing the third, while there
are 3! ways of permuting numbered objects «, B, and y among themselves as having
been chosen first, second or third, whereby QU,N;) = N(N -~ 1)}(N — 2)/{31. By an
obvious extension of this process, and recalling (5.3-1), it is readily established that

_NN-DN =2 (N= N+ D
N,

A

.3.2)

Suppose now that the second container is dividéd into two subcompartments
containing v, and v; objects, where, of course, ;

vi+vy=Ny=N=Ny (5.3-3)

as shown in Figure 5.3. The number of independent ways of realizing the distribution
(v,,¥;) among the sub-compartments of the second box is, from (5.3-3)

Q(vyvy) = N, ' ' (5.3-4)

vytvyl
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. But now we may, if we wish. regard the sysiemn as having three distinct containers. and
the total number of ways of arranging the objects so that there are' Ny in Ahe first
container, v, in the second and v, in the third {which we shall call-Q(N,,v,¥;}} will
be just thj product of Q(N,,N;) and O(v(,vy), since for each arrangement {N,N3)

" Fioure 53. The subdivision

of the second container into _ ,.__’EL_.__..
two subcompartments, leading [ ‘ : -
to a system which can be ‘ . ‘ "N. w4
thought of as actually having . . _ 1

been divided into three distinct Compariment 1 . 5
containers, :

there will be O(v,,v;} ways of arranging particlés among the subcompartments, and
there are O{N,,N,) basic ways of arriving at a distribution (Ny,N2) for the two original
containers. We shall find thus, that o -

Nt Ny! Nt
Q(Nln"lv_v‘l)-" Q(NnNz)Q(“hvz)"—“ N‘!qu ‘.':!V:I! = N:“’:!"z!

(5.3-5)

We may now simply relabel the three containers as boxes 1, 2, and 3, and call the
number of objects in each N, N3, and Ny, rather than Ny, v;. and vy, in which casc
{5.3-5) may be written :

N1

TR (5.3-6)

Q{Nthst) =

Again, one may imagine the third compartment to be subdivided as before, and
obtain in the sam¢ manner.an expression for the number of ways of arranging N
objects among four boxes 5o as to obtain a distribution (N,,N;,N3,N,). By repeated
application of this process, the result may be extended iridefinitely by induction to
cover the case where there may be n boxes. 1t s clear from the f {5.3-3) and

N! 5
= .37
N:!NI!N;!“'N,‘ ( )
where the [ | notation is u-segigo indicate an extended product in the syme way that
the more Tamiliar ¥ notation is used 10 gxpress & summation.

<1The actual probabilily associated with 4 given drstribuiion of N objects among n
boxes is the number of independent ways of arranging objects among boxes QN -

N,) which lead to that particular distrihution, divided by the total numper of ways of

arranging N objects.among n boxes withowt regard for what distributiqn of objects
among boxes resultsf It is easily shown that this latter factor is sim ”.é‘The proba-
bility associated with a given distribution will then bc@(r\’.. o~ N,){n" JWe shall fin

it more convenient, however, to geal exclusively with the quantities Q(M, =+ N,
which are proportional to the actual probabilities, since we shall only be interested

in finding the vatues N, -~ N, which render the probability a maximum, and if

u ) [} . g o mmaad
O(Ny, -+ N,) is a maximum, then 50 i the associated probability,
e = 4
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Now let us identify the ith container with the jth energy level of the system and

-the aumber of objects N; in that containes with the pumber of particles belonging to

that level. We must, however, allow for the fact that the energy levels may DE. ..
d we shall assume there are g; indep ndent quanium stafes AsSOCIA with {
fth energy level, gac aetinas the same g priori probability © g qccupted,
accor = fundamental postulate of Section 3.1 Each energy level must then
be thought of not as a single container, but as a group of g; containers, as illustrated
in Figure $.4. For a given energy lavel, say the ith, containing N, particles and g;

Fisure 5.4, The subdivision ; o .
of cnergy levels into separate Degenaracy ¢ 7 4 6 - — i 3

quantum states according 10 T =T T
- -

their degeneracy. The scparate . M — :
quantum states play the role of . Ole PR -t

the containers in the statisti-
cal development, each having

Level i z SO -
equal statistical weight. 4

© population M 4

independent quantum states, there are g ways of arranging the particles among the
states or containers pertaining to that level. because there are g independent choices

.of where the first particle may be placed. and for each of these there are g; choices

of where the second may be placed. and so on to N; factors. Each of these arrange-
ments would consutule a separale Tatistically independent way of distributing particles
among the quantum states of the system. since it is the quantum states themselves

which are of equal probability, not the enefgy levels.{ If the first energy tevel, g, wers
the only degenérate level, Then there would be gy' times as many independent ways of
forming a given distribution of particles among encigy tevels as is given by (5.3-7)
because there arc that many Ways of permuting particles among separale depeneraie
states belonging to the first Jevel. and for each of these there stilt remain the same
number of ways of assigning particles 1o the other levels of the system in such 2 way
that the distribution (N, Na, N,) results. If, in addition, the second level were
degencrate, there would be g¥ possibilities for cach one that existed before, the total
number of independent ways of achieving a given distribution of particles among
fevels being now g¥'g}’ times that given by {5.3-7). 1tis clear that when the degeneracy
of all the levels is included. the resuit (5.3-7) will have to be multiptied by g¥'a7g%*
gt giving e e

' N o
QN Ny - N = Ni!‘[l‘g' | (5.3-8)
S

when degeneracy is incl uded. _

We shall now assume that the actual distribution (NN, = Np) of particles
among energy states which is observed in equilibrium is essentially that which can
be realized in the maximum number of statistically independent ways, in other words,
that for which the quantity Q of (5.3-8) is a maximum. ( must then be maximized

with respect to the parameters NN, o Ny subject to the restriclions

iilNi = N=comst. : (5.3-9)

L
(F 12

e
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and - - .Y gNy= U =const. (5.3-10)
i=1 - §

-, This maximization is most easily carried out by the usé of %&m
nique cailed the method of Lagrangean multipliers. and we shall digtess briefly 1o
~deéscrihe This Subject. SUPPOSE WE are given a [unchion Jixy.c;. -« x,) of n variables.

and we are asked to find the values of x,, ¥s. - X, which make f a maximum wnder

the resiriction that some other given fumction §lx,,Xa. - X,} remain constant. For a
maximum {or minimum) value of f, «ff = 0, and if ¢ remains constant, dp =0, sothat

if fis a maximum or minimum under the stated conditions, then

df + 2dgp=0 (5.3-11

no matter what value the arbitrary undetermined multiplier « may have. But{5.3-11)
may be written :

3 - - ] i ? ’
(-_—.‘1 + 2 ff—)dx. + (-,_-:i 4 -e—i)dx,.-i- S (—Cl + a-;-?-)d.\‘,, =0, (53-12)
ox,y itxy £x, 8x, éx, 9x, .

According 1o this equation, condition (5.3-11} will certainly be fuifilled il for every i

af a¢ . .
B, +a B (i=1.2-n) _ (5.3-13

while, in addition, we were given to begin with the fuct that

..&’(xhxiv b -\Iu) = const. - l (5.3'14)

&r
4

Equations {5.3-13) and (5.3-14), taken together, represent a set of n + i simuitaneous

aquations which cag be solved for the n quantities ¥y, ¥p. -+ X, which maximize (or

minimize) £ and for the undetermined multiplier « which was introduced in (5.3-11). -
If there are rwo auxiliary functions $(x,.x;, +- X,) and Y(xy,x3, - X,) which are

to rémain constant as the function f is maximized. then fwe arbitrary mulfiphers

and J are introduced and it ts required that

df + o d¢p + Bf =0, (5.3-15)

which leads. in the same maaner. to a set of n + 2 equatipns

o de L@ A

= " — . = 1,2, 5. _l

Px. + T + 48 X, 0 . (i=1 n) (5.3-16)
%, xp, - Xa) = o.= const, (5.3-17}
Y(xyaXy, o0 Xa) = Wo = CONSL ] (5.3-18)

for the 7 + 2 unknowns x,. x;. - X,, % and ﬂ._‘ E N
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We shall now proceed to apply this method to find the distribution Ny, N, - N,
for which (5.3-8) is a maximum. As a matter of mathematical convenience, we shall
actually maximi ther t i ince the logarithm is a single-

. monotonic function of all the variables involved, when in O is a maximum, so aiso is
we take the logati ol both sides of (5.3-8),-we find ’

In QN Ny N)= I NEE SN Ing = SlaNL  (5319)
* =) i=1 £ .

We sha;ll assume that our system is so jarge that for each level N i majr be approxi-

mated by STrIAES ammzn_whinh.smmmiou&-_l‘_

( mxlzgxhx—x. ) (5.3-20)

Making use of this approximation, -(-5.-3-19') becomes .

mOo=InN+Y Ning,—F NiInN + 3 Ni, 5328
f : L 1

-
iF

which must be maximized under the restrictions

NNy, - N)y=3 Ny=N (53-22)
. . ) i
YN Ny o N =T oN; = U. (5.323)

From (5.3-16), this requires that M 7
; . 5 4

AnQ) 06 o _ 2 -
2N, +a.aN1+ﬁaN1~aN1[£‘:N,lng,——;N‘]nN,-

c4 “aiN,(E N,) + ﬁaiNj(); aiNi) sl et
| (5.3-24)

Working out the derivatives in (5.3-24), noting that the only terms of the summations F
whose derivatives with respect to v, are oiher than zero are those Tar which =,

e e e A st
{5.3-24) can be reduce —=

|

ng,—InNy+a+pe=0 (j=12-n) (5.4-25)

Solving forIn {N,!g_,)' and expon i izing, this be rewritten in the form

Ny et m g, (5.3-26)

a;

p——

uation {5.3-26) gives the avera

system and thus, by.definition, represents the ener distribution function fie). This

————,

—_— .
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particular energy distribution function obtained as (5.3-26) uader the classical assump-

particles and witiiout the use of the Pauli exclusion principle, is
“oalied the Maxwell- Boltzmann distribution function, _ '
==We must now discuss how the constants(gjand p are related io the physical prop-
erties of thie system. To begin with, we shall assign to the constant B the value

=—1 (5.3-27)

_ wherg(Tjis the absolute temperature of the system and&)is a constant called Boltzmann’s
constant, and we shall regard this equation, along with (5.3-26) as defining what is
meant by temperature. We shall see, in due course, that this definition leads to all the

~ familiar characteristics of temperature as-related to an ideal gas, and it will then be
clear that the definition of temperature could have been postponed until the properties
of an ideal gas had been worked out from (5.3-26). An identification of § with the
value given above could then have been assigned on the basis of a comparison of the
sesults so obtained and the familiar thermodynamic equation of state for an ideal gas
(from which the temperature is more commonly defined). It will be shown that the
value of k can be related to the measured ideal gas constant R and Avogadro’s number.

. [" Using the vatue given by (5.3-27) for §; }!;#%-G)‘l?may now be written

. Al N

Nj = gje'f"”'". _ (5.3-23)

The value of the constant @ may now be expressed in terms of the total number of
particles N, since from (5.3-9) and (5.3-28)

N= Z!: N;=¢ ; gje T, (5.3-29)

whereby (5_.2-_3{2
Ney

f——rﬁ;‘-w

T aa
£ “Ysa31)

and

If the energy levels of the system are crowded very closely together, as are the
levels of the gas of free particles which was discussed in the previous section, then the
quantit_y_giin (5.3-28) may be regarded as g(e)de and the quantit; N; in that equation
may be regarded as N%sg. as discussed in connection with Equation (5.2-1). The
number of particles i fergy range de about ¢ in this limit will, according to (5.3-28),
be given by ' '

N(e) de =( efe“‘.’*m (5.3-32)
7

For an ideat gas of free particics, the density of states factor g{£) will be given by (5.2-22).
Note that the form of (5.3-12) is the same as that of (5.2-1) with f(e) = " Al
Again, as discussed in connection with (5.3-31), we may cvaluate the fonstamt ¢ by the
condition that the total number of particles in the system shall be 2 constani N,”
iy I
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(5.3-33)

(5.3-34) |

FiGure 5.5. A schematic rep-
resentation of the Maxwell--
_ Boltzmann energy distribution
function for three different

remperatures.

(4

~ Weshould note that the quantity 0 of (5.3-8) is closely connected with the thermo-
dynamic entropy of the system. At equilibrium, the state of the system is such that ¢,
the number of statistically independent ways of distributing particles among guanium
_states. is 2 _maximum, as.is the entropy of.the-system. We shall not go into details at
this point, but it can indeed be demonstrated’ that the refation between these two
guantities is : -

{5.3-35)

where 15 t

5’.-4 "MAXWELL-BOLTZMANN STATISTICS OF AN
IDEAL GAS '
__________‘.—--—"'

We shall now discuss the properties of an ideal g.as of free particles of the type dis-
cussed in Section-4-2¢ Far this system, the density of states factor gte) de is given by
" {5.2-22). whereby. according to 15.3-34). ; .

E———

1, E. Maver and M. Goppert-Mayer, Sratistical Mechanics. John Wiley and Sons, New Yon
{19401, Chaper 4. .




SEC.E.4

. patticlg
“in a simpter form by t

he subgtitution

x = ¢/kT. .

whence (5.3-1) becomes

& =—F I '
SV‘QnV(MkT) J‘ xte™r
The integral can now be expressed as a T-function.? since I'{n) is defined as

Q,“ ‘3
r(p)=J e dx, LL'/Q“‘“ T {54-4)

Q

the integral in (5.4-3) thus being equal to ['(3/2), which in turn equals \,-":'ifz. Inserting
this value into (5.4-3), we find - e

N[ R i
e —E?(ank‘f) ’ _ aea)

which makes it possible to write the Mazxwell-Boltzmann distribution function for an
ideal gas as

M1
fle) = ete™ M = s ( i ) J o WIE, (5.4-6)

2¥ \2amkT

Tt will be noted that the value of ¢ given by (5.4-5)is rem%e@ure dependent, 1t should
also be emphasized that this particular value for e* pertdins only to thedtee particle
itvtol states function (5.2-22) and that for systems having other density of states

ssociated with them the value Tof e Wl
5.4-5).; A plot of the Boltzmann distribution (5.4-6) for several temperatures is shown
in Figure 5.5, Qom (5.4-6) and (5.2-22) it is clear that the actual distributien of particle
density with energy is given b;%

MmN
N(e) de = f(E)g{e) ds = h-r’:;—),ﬁ Jee T ds, (5.4-7)

1 See, for instance, L. S. and E. S. Sokolnikofl, Higher Mathematics Jor Engineers and Physicists,
McGraw-Hill Book Ce., Inc., New York {1941}, pp. 273-276.
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The total internal energy and specific heat of the gas can '}:e obtained verjr easily
from these results. Since the energy of the particles in the range de about ¢ is simply
£N(¢) de, the total internal energy of the gas is .

U= j.u_nsN(s) de, (5.4-8)
1]

P

or, using (5.4-7), U= -—2-@-— I Mra AT g : (549

AT R

This integral can be evaluated in terms of T-functions by making the substitution

—e )

(5.4-2). Working out the integral in this way, noting that I'G/2) = (BIDLBID = 3/n/4,

we find
( U= iNkT,z {5.4-10) -

whence the average internal energy per particle, UiN, is( -}kT) an jmportant and
Jure is the rate of increase

familiar result. The heat ca acity of the gas at constant vo.
of internat energy with respect to temperature, whereby from (5.4-10),

U

(5.4-11)

_independent of temperature. The specific heat ¢, is simply the heat capacity per umit

volume.

Oué objective, eventually, is to derive the equation of state for an ideal Boltzmann
gas from the dynamical properties of the particles and from the distribution function.
Before doing this, however, we must convert the energy distributions (5.4-6) and (5.4-7)
into appropriate velocity Jistributions, and investigate briefly how to use these velogity
distribution functions. Table 5.1 gives the valuc of some of the definite integrals
which are frequently encountered when working with the Boltzmann velocity distribu-
tions.

In a gas of free particles possessing ro internat degrees of freedom, all the energy
resides in the kinetic energy of the particles, We may relate this to the velocity by
writing . '

© -whence ds=mvdy, o (5413)
. '!
. and the energy distribution (5.4-7) may be written directly as a velocity distribution
of the form .
m N o wmr . : 5.4.
N(v) do = 4xN (m) ve duv. (5.4-14)

This function expresses mmmmgur the sysiern whose speeds li¢ in a

range dv about p, or the number of particles which lie within & spRericat shel of vl

ness dv and radius v in pelocity space.
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T~ TABLEBA.

‘Maxwell-Boitzmann Integrals

1 [n 1 f2mkT né
-gsd a2 L bl gt
¢ & 2A/¢ 2 m
—ax? 1 - kT . -.-r_é’
xe dx = 2.-; = i 5
a, 1 [ A7 (2T w2
i =ux? —ieie gl RS ity Comidi] =
Rt =l T (m) 2
1 1{2kT\? mat
3 -4t i Gl il o TG
xems= dx i -"2(m) w
Mx‘e-‘u’dx 3 J; f:hfs_r '2LT)”’ - kP ot
Joo BN 2 i 8 \m] 256
Ao - . " i
x’e"‘? dx = l_‘- = 2—!‘-1. Py .ﬂ:-‘-?—
_ L _ mj. .
caga iy m o0 J;_r" _ 15V 2k'r)'“’, _ 15me2
: T 162°N & T3 FI
k} T\ Jard Y
X -Il’d = a— = e st
o e 3( m ) T
x sz 329
e m 10 [7 103 VRUTY 000
320N & 32 m . e

» ‘The second column in the table gives the valye ol Tiedsfiniteiotegral shos pn-fri The first column,

The third colums givee the vaiue of the definite integral wh f ais 2T pPhich 75 usaally

€ 3 en working wilh Holtzmann veloeity distributions. QUTIR Colbmr Expresses the repult
shown in the third ¢column &5 & mullipte of ihe mean thermal specd T where ]

# =/ BkTTmm.

Suppose now that we wish to know how many particles of the system have
velocities such that the x-component of velocity is in a range dv, about v, the p-
component is in a range dv, about v, and the z-component is in a range do, about v,,
thus the number of particles in a rectangular volume element (dodvdv,) in velocity
space centered on the value (v,,p,,0,). We shall call this number N{v,.v,.0,)dp, db, dv,.
We must now proceed miore carefully, starting with (5.4-6), which according to (5.4-12)
we may write as

. N PEIRG T ' .
S(Vavyts) = Z—V(W) grietyruly RER AT {54-15)

Then, as required by (5.2-1),

N(v,.v,,v,) dv, dv, dv, = J(208,,0,)9(05,0,,0,) du, do, dv,. ‘ (5.4-16)
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where g(v,,é,,v,’jdp, dv, dv, is the number of quﬁntum states within the velocity space
element dv, dv,dv,. From (5.2-17) the number of states in.a volume element dj dp, dp.
of momentum space is {2F/h*)dp.dp,dp,), whereby

2V 2m’V y

o) dp, dp,dp, = — dv, dv, dv, = g(v.,0,v.) dv, dv, do,. ( @
e — '

Since the density of states in Momentum space is constant, So alsp is the

ubstituting (5.4-15) and (5.4-17) inte (5.4-16) and simplifying,

i 312 S
) \ n . ~miety ol Fot j20T
{N(u,.v,,v,) dog dv, dv, = N (_Zar . T) ] _ dv, dv, db,.

7(5.4-18)

A third velocity distribution function, N(v)dv,, representing the number of particles
whose x-component of velocity lies in a range dv, about v,, regardless of what values
the y- and z-components of velocity for those particles may have, is closely refated to
the distribution function (5.4-18). The distribution function N(r,)dv, can be calculated
from (5.4-18) by integrating over ai{ possible values of v, and v, the result being

-] ol -
N(v,)dv, j J‘ [N(g,.v,,u,)du,@: N \/51':;:_7: g~MEANT gy
—w J-o —

7t
X {5.4-19)

The values of the definite integrals required in integrating (5.4-18) have been taken
from Table 5.1. A plot of the distributions N(») and N(v,) as functions of the appro-

priate velocity coordinate is shown in Figure 5.6,

M) 7, Nlv,)

{a) ' (b}

FIGURE 5.6, {a) A schematic representation of the Maxwell-Bolizmann distribu-
tion of particle speeds, N(v), for three different temperatures. (b) The corresponding
distribution of x-<components of veloeity, N(.).

Knowing these three velocity distribution functions it iﬁ an easy matter to evaluate

averages over the velocity distributions. wﬂmumﬂi_



2
-

[ X

’ QUELINE OF STATISTICAL MECHANICS  ~ B
for a particle in a Boltzmann. distribution is obtained quite’ simply from (5.4-14) by
writing ; " : Co :

o ( i .

uN(v)dv 32 peo .
W) =2z = % i (‘i‘"';?i) j. ol dy
— I N(o)dv - VERELE 50
1]

= JSkTjam,  (5420)
——————————. ’ :
the integral having been evaluated: with the help of Table 5.1. o
We are naw in a position to discuss the equation of state of an ideal gas. Consider
the particles striking unit area of the wall of a container filled with such a gas, a8 shown

in Figure 5.7. If the wallis a plane oriented normal to the x-axis, the momentum com-
ponents p, and p; of the particles striking the wall are conserved if the collisions of the

e -

Portictes of . - L —— Uit Or80
velocity Ve within I :

thiz volumas will

el

within tima of

A . ‘
p— ‘ﬂ—“'r——Contuimr wall
— " '
Fioure 5.7. The elastic collision of a particle whose
x-component of velacity is o, with the wali of & rigid,
fixed container. '
particles with the walls are elastic, which we shall assurne to be the case. In each col-
lision the velocity component v, directed toward the wall is changed to —u;, di
away from the wall. The transfer of momentum from the particle to the wall,
collision, is thus 2mu,.. The transier of momentum to the wall 1n time af 1 this quantity
"giﬁs’tm&sﬂtﬁﬁ collide with the wall during that time; for particles

whose x-component of velocily is _v,, this is simply the number

volume extending a distance if_g,itghshind the wall, or the number pef unit volume

times v,dl, thus v,dt - Niv)du/V. The momentum transfer in time dt for particles of
elocity in the range du, about b, is then :

Wi ! E x : u“o\.

(dpl)fg = 2m”.l'

e y

\ : dp\  Im ' .
or, _ : \(?T) 7 “iN(v.)dv,} (54-21)

ki

of such particlesima
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“The total rate of momentum transfer to the walls by collisions_ involving particles with

all possible values of v, can be obtained by integrating over o, giving, with the help
of (5.4-19) and Table 3.1, . E

dp, 2m m (", -.m!.y.zkr- NKT ;
T v N J kT J‘u vie do, =—V_ (5.4-22)

The time rate of transfer of momentum to unit area of the container wall, however, is
according to Newton's law equal to the force experienced by 3 unit area of the wall,

which by definition is the pressure P. Equation (5.4-22) then reduces to

PV =N kT!( (5.4-23)

which is the equation of state for a Boltzmann gas of independent particles.
This equation has the form of the familiar ideal gas law, which is more commonly
written in the form .

PV = nRT, (5.4-24}

where(z E the number of moles of gas in the system md@ijumﬂ%amM&
sured “Tnolar gas constant” which is the same for all “ideal” gases. If there are

moles of gas Present, then the number of particles must be given by N = nN,, where

N, is Avogadro's number, equal to 6.026 x 10?* molecules per mole. Under these
conditions (5.4-23) takes the form -

L.
PV = n@l (5.4-25)

whence, comparing (5.4-24) with (5.4-25), it is clear that Boltzmann's constant k must -
be given by o :
k= R{N,. (5.4-26)

Boltzmann’s constant is thus simply the gas constant per particle of the system. Iis
value can be derived from N, and R, and is equal to 1.380 x 10~ 1% ergs/°K, or B.615 x
1073 e¥/°K.

1t is clear now that the value for the constant f§ in the distribution function which:
was assumned in <Thosen correctlyc. Had we carried through all our caleula-
tions up to this point without ever having assumed any value for B, we should have
found for equation {5.4-23), instead,

e ) 64

and in order that our results be in agresment with the experimentally established gas

law-(5.4-24) we should have been forced tochoase B smcnsns

~N/f = nRT = -‘Y-RT.
e S AR
- B - A= ~UkT. (5428)

pemETE———
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FERMI-DIRAC STATISTICS

In the-dével_oﬁment of the Maxwell-Bolizmann distribution function, the particles are .
~ considered to be Jistinguishabledvhile in actual fact it is quite ithpossible to distin-

guish one clectron or other elemehtary particle from another,” Furthermore, we
permitied any Tumber of particles to occupy the same quantum tate'of the systen, in

spite of the fact that many particles, electrons in particular, obey_the Pauli

ditions are imposed upon the system, the calculations of Section
3, resulting in another distribution function, which is called the
‘bution function) This energy distribution is of the greatest import-

ancé, since it d
conductors, an€s‘ince many of the electrical and thermal propérties of solids which
could not-be uniderstood at ail on the bagis of classical statistics follow as a direct
consequence of the Fermi-Dirac statisticsj :
f the particles of the system arc indistingnishahie, they cannot be jdentificd by
number in the manner which was adopted when discussing the various possibilities
iTostrated in Eigure 5.2. As a matter of fact, all the various distributions in ecach row
of Figure 5.2 leading to Q(N;, N ;) for & particular value of N, are the same if the num-
bered labels are removed from thgga_r_tjg]gg‘,ip which case the factor (5.3-7) reduces to
unity. It is still possible, howevef, to permuie the N, particles in-the ith energy level

. among the g; quantum states belonging to that level in many ways, each of which

copstitutes a statistically independent way of achieving an arrangement wherein N;
particles are in the ith energy level of the system, as shown in Figure 5.8, The product

ith '
anergy lavel aln|w «le -
degsnarocy &

state no. 1 2 3 4 5 6 7 .= ¢

Ficure 5.8. A possible distribution of particies
among quantum states in the ith energy level of a
system wherein the Pauli exclusion principle is
applicable.

of the possible numbers of permu!étions of particles among quantum states over all
energy levels of the system then gives the number of independent ways of realizing a
given distribution of particies among energy levels,

/ );_gr_mg_Fgmi.:Dithich the Pauli exclusion principle is assumed to
apply, a maximum of one particle per quantum state is ailowed, Relerring 1o Figure
8, Which depicts the ith energy level of the system, there areg; wa 3 of choosing where

to insert a first particle, g; — 1 ways of choosing where to insert a second, since the
second cannot occupy the same quantum state as the first, g; — 2 ways of choasing

principle, which allows each quantum state to accept no more than one particle. If

ribes the statistical behavior of free elecirons in metals and semi~

where to insert a third, and so forth. The total number of ways of arranging N, particles

in the ith level obtained on this basis is

9dgi— Vg~ D (g~ N+ 1) (5.5-1)

i

However, since the particles are indistinguishable, the N1 wa of permauting the
P
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particles among themselvesin any,given aﬂl apgement of particies among siates do not-
he actual number of independent ways of realizing &

E&xjisM%’.“ﬁ‘%Q
Jistribution of N, particles 1 the ith level is thus arrived at by dividing (5.5-1) by

NS, givingj)

(5D

The total number of independent WhY Alizing a distribution of (Ny.Ny, N)
indistinguishable particles among 7 energy levels, no more than one per quantund
state, is just the product of individual factors of the form (5.5-2) over all the lavels,
that is, ' s i

(5.5-3),

We now proceed 1o maximize the logarithm of this Quantity with respect to the
variables Ny, Na, =+ Ny gt s method of Lagrangean multipliers used in Section 5.3.
We find Trom (3.3-3) 1 '

InQ, =% Ing!~- Tin Nt - y in(é. - Nt (5.5-4)
i i £

which by using Stirling's approximation (5.3-20) can be wriuen'

s,u\‘r‘- ,*f\ Ing,= Z [g:lng— NilaN,—(g:— Ny In(g, —- N} ' (5-5-5)
' rﬁ/ - AT - W)

;s . 1 2y S
Again, itis requ 4d that the totaf number of particles in the system and the total energy

of the system b constant, which means that EWM&M"
here also, in which case onc may write, as before,
p——— it

Aoy b . g0 _
ot P,

it e

are given by (5.3-22) and (5.3-23). Substituting (5.5-5), (5.3.22), and

(=1,2, ... n) (5.5-6)

where ¢ and

(5.3-23) into t equation, one obtains
—-—?—{}: N;ln N, +}:(gl — N)In(g, — N}]+a-—i—(‘r N-) + ﬁi-(zs-N) =0.
Nj : : i i i ﬂN‘; ;_'.. i . aN} ; (ol |

e e + %20
Working out the derivatives as in Section 3.3, we find
‘n(gj - Nj) —laN;= —a~- st, l (5.5‘8}

or, rearranging, exponentializing and solving for Njja;=s{(&):

fiep = Nla; = T (5.59)
—ﬁ’ : : £ fF.-
e ; e ©
gd._NJ - —'d—ei ij.’ A g
a. M e,gle'?
T
(q@—f:—})i’“'ke j,:i”\ X
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This is the Fermi-Dirac distribution function.
As in Section 5.4, we shall take the value of 5 to be

= —1/kT, ' {5.5-10)

postponing uotil later the justification for this step. 1t is customary to write « in the
form: '

w = g fkT, (5.5-11)

where ¢, is a pararﬁeter with the dimensions of energy, which is called the Fermi
energy, or the Fermi level, of the system, Equation (5.5-8) then becomes
PhiladdAd

f
)
=——‘L-W“"" . 5.5-12
N" 1+ g~ (P ( )

'
et

“or, if the levels are assumed to crowd together into a continuum, so that g,{&;) —+ g(e)de,
then

- (5.5-13)

For a gas of independent 'pani'clas such as free electrons, g(e)de is represenied by

(5.2-22), just as for a Ma;ngl—Boiumann 235,
e Fermi energy e, is in general a fupction of the temperature, whose form and e

temperature dependence are critically dependent upon the density of states function s~
for the system, just as for the corresponding parameter 2® of the MachlhBohzmann
distribution. Its valuc is detefmined by the condition {5.3-22), or for a cdntni'uum of

levels, by /
gle)ds :
N =const. = Imm = J g(e)f(e)de. 'ff(5.5-14)
The integral is taken over all energies available to the particles of the system. For a
4 Fermi gas of independept particles, g(e) is given by (5.2-22) and ¢ is determined by
' _ 8/ 2m¥m? : de
f” = e ds (5.5-15)

l + ele -f:,r)!k'l"

Unfortunately, this integral cannot be evaluated '{/c!nsed analytic form, so that ¢,
cannot be determined as a simple function of the/zempcrature. For a twoa-dimensional
independent particle gas, however, the density of states function can be showa by the
methods used to derive (5.2-22) to be k

ERT....... 17} (5.5-16)

P ST R it

independent of ener, xercise 3, Chapter 5). In this formula, A represents the
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argzi of'the Itwo—dimensional-"container."' For this system {5.5-14) becomes

N= (5.5-17)

damd {® de
hl s 1 +el,'s-l;),fkl‘l

which can be évaluated in closed form, allowing one to solve for ¢, and obtain

_____ . g,(r) = kT In(e"r'®*T ~ 1, (5.5-18)
2

ey (5.5-19)

whers ¢ g ,(0)

is the value which ¢,(T) as given by (5.5-18) assumes as T approaches zero. The details
of calculating this resnlt ar€ very Instrucitive, and are assigned as an exercise for the
reader. The variation of the Fermi energy of the two-dimensional independent
particle gas with temperature is shown in Figure 5.9. It will be noted for this case
that the Ferimi exergy is 2 monotonic decreasing function of temperature. { The Fermi__
_g;ggy_ftheummmmmm ermi gas, with the density of states function (5.2-22)
will be found 1o exhibit the same general behavior, except {hat in this case the.variation

gﬂh;&@mwlth temperature is Jinear with tem

ra whil s ISIOTAL- B AATELe
complex at low temperatures. (For many syslcms, mcludmg these two, the variation

of the Fermi level with temperature is quite small over the range of physically realizable
temperatures; in Figure 5.9 the temperature for which ¢, = 0 would be of the order of

‘r (ri

., {e]]
FIcure 3.9. Schematic repre-
sentation of the variation of
Fermi energy with t use
in a two-dimensional free elec-
fron gas, according to (5.5-18). 7

75 000" K for an electron gas with the free-clectron density of metallic copper. For

Wy o N T . .
this reason, in many applications the temperature dependence of the Fermi energy

may cither be neglected or approxlmated by a linear or other appropriate function o

temperatu
The Fermi distribution function itself,

e T

1

is plotted in Figure 5.10 for several values of the temperature. Since only one parlicle
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particular energ doadbie probability that 3 auaptum state of that eneray
will be occupied zero, it is easily seen from Figure 5.10 and from (5.5-20%
that the Fermi distribution function becomes simply the step function

f(s) = 1 (8 < ef) (5.5_21)
=0 (e>¢p).

[413] Ti<heh

bt F £ 0

« [0}

FiGurs 5.10. Schematic represeniation of the Fermi
distribution function for four different temperatures.
Note the variation of the Fermi energy with temperature.
The temperature dependence of the Fermi energy depicted
here is typical of a three-dimensional free-electron gas, but
the actual variation in any particular system will depend
critically upon the density of states function (or level
degeneracies) for that system.

As the temperature increases, the edges of the step are rounded off, and the distribution

function varies rapidly from nearly unity to nearly zero over an energy range of a tew
times k7" around the value ¢ = £,. [Al the same time. (he value of ¢, itsell changes, the
variation illustrated in Figure 5.10 being approximately that associated with the three-
dimensional electron gas whose density of states is given by (5.2-22). At very high
temperatures, the distribution function loses its step-like character and varies much
more slowly with energy. From (5.5-20), 3 is clear that the value of f(z) at ¢ — g, is

“just 3, that is.

Lo=4, (5.5-22)

hence a_guantum state at the Fermi level has a probability of occupation 0@
Figure 5.11 shows the actual disiribulion of particle density N{c} as a funttion of
energy for a Fermi gas of independent particles, as given by (5.5-13) with the density
of states function {5.2-22). Agaip, at T O the curve has a step-like character, the
portion for which (s < e,) being the density of states parabala (5.2-22) and that for
which (g > ¢,) being zero. As the temperature increases this step-like aspect becomes
less and less pronounced, as shown in the drawing. At low temperatures, when the
Eermi distribution function is step-like. the distribution 15 said to be highly degenerare.
At low temperatures, the Fermi-Dirac distribution may b€ represented as 3 Soher

. ‘ L1853 SPREre.
0 momentum space in which all or most of the quantum states of energy less than ¢,
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-are filled, while ail or most of the states of energy greater than &, are empty. From
{5.2-14), the equation of the surface of this *“Fermi sphere’ must be

P2+ B} + pl = 2me, (5.5-23)

the radius therefore being ./ 2ms;, as shown in Figure 5.12, At very high temperatures
the surface of the Fermi sphere becomes poorly defined, due to the disappearance of
the step-like aspect of /(¢), and the concepi Joses some ol its usefulness.

nied
heh=<n =0

FiGure 5.11. Schematic repre-

sentation of electron densiity as

afunctionof epergy for a three-

dimensional free-eleciron gas,
7

FIGuURrE 5.12. The representa-
tion of the absolate zero Fermi
distribution for a free-electron
gas as a sphere of electrons in
momentum space. TS repre-
sentation 18 a ufeful one so
long as T <€ Ty

——

{r-oris L to paper])

Although, as we have already seen, the faci that the integral (5.5-15) cannot be
evaluated in closed form, prevents us from finding a simple expression for the Fermi
energy of a three-dimensional Fermi gas at all temperatures, the simple characier
(5.5-21) which the function assumes at T = O permits one to evaluate ¢ » very simply at_,

-absolute_zero.  Using {5.3-21) to répresent /{s) at 1 =0, we may rewrite (5.5-14),
using the density of states function (5.2-22), as ’

N Bﬁumm 0y _ |6ﬁﬂm311£5!(0)]m
vET o . \/B de = T .

(5.5-24)

Solving this equation for £,(0), wé may obtain

el
( £/(0 “s“ﬁ(ﬁ) : , (5.5-25)
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In 2 somewhat similar manner, it is possible to obtam the internal energy of a Fermi

.gas at absolute zero, the result being.

Uy . ak? (JN)“3

7 40m \nV

(5.5-26}

The details of this calculation are assigned as an e
For energies which are much greater than gy, !~ KT is much farger than unity

and for such energies the Fermi-Dira¢ distribution function (5.5-20) may be written
approximately as ’

J(e) = es™MTem T, (5.5-27)
- R =

If all the energies available to the system satisfy the condition

=6, > kT, (5.5-28)

that is, if £, is many kT"units smaller than any energy a particle belonging to the system
may have, then (5.5-27) will be a good approximation to. (5.5-20) for all particles of
the system. The approximate distribution function (5.5-27), howevér, is simply the
Maxweil-Boltzmann distribution function of (5.4-6) with « = g,/kT. If the condition

(5.5-28) holds, then, for all particles of the system, the Fermi-Dirac distribution and

the Maxwell-Bolizmann distribution are very nearly the same. |
For the two-dimensional Ferm gas, where the Ferinl energy is given by {5.5-18),

if T is so large that k7" 3 £,(0), the exponent £,(0)/kT will be small, so that the expo-

nential can be approximated by 1+ [z (O}kT], giving

K—;{T) kT 1n &2 ‘5’( )

= 0 ;5 0 47
— )[e;(O) eizi]v_( (5.5-29)

From this, we see that as T becomes large, £,(7) - — co. Since the lowest energy any
particle of the system may have is zero| it is clear that condition (5.5-28} will be

fulfilled for sufficiently high temperatures, and the distribution function will therefore
be approximately the same as the Maxwell-Boltzmann distribution_at very high tem-

eratures, The same result can be shown 10 hiold for the three-dimensional case. These
m on physical grounds, since at high temperatures the particles
are distributed over a very wide range of energy states, the number of particles in
every range of available energies being so small that there are always many more
available quanium states than there are particles to occupy them. Under these cir-
cumstances, the probability of two or more particles occupying the same quantum
state becomes vanishingly small in'any case, so that there is not much difference
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between the distribution function for which the Pauli principle is obeyed (the Fermi-
Dirac distribution) and that for which it is not {the Maxwell-Bolizmann distribution),?
Since the quantity £-0) which is required to be much less than k7 for the two distribu-
tions to coincide is proportiunal to the density of particles N/.4 by (5.5-19}.€' he redue-
tion of the Fermi distribution 1o a Maxwell-Boltzmann distribution will take place at

e - ARSI
Tower temperatures in less dense gases. By the same token, according to (5.5-19) it

will take place at lower temperatures in gases where the particle mass m is’large. It is
for these reasons IHAal ordinary gascous substances obey the Maxwell-Boltzmann
statistics at normal temperatures rather than the Fermi-Dirac (or Base-Einstein)
statistich. For a dense gas of very light particles, such as the free electrons in a metal,
howevef, the Fermi energy at absolute zero is quite Jarge, and the condition (5.5-28)
can be satisfied for all particles of the system only at temperatures so high as o be
unrealizable physically. A dense free electron ga st therefl e treated usin

Fermi-Dirac statistics. In semiconductors, however, the peculiar form of the density

of states Tunction is such that the Maxwell-Boltzmann distribution is virtually a/ways
a good approximation to the Fermi-Dirac distribution. We shali examine this situation
in considerable detail in a later chapter.

Had we made a choice for the undetermined mufltiplier § other thap that given
by (5.5-10) we should nor in general have found the correspondence between ihe

Fermi-Dirac and Maxwell-Boltzmann systems in the high-temperature limit, which,

as we have seen, we have every right to expect on physical grounds. We must therefore
conclude that the vatue for § as given by (5.5-10) is physically justified.

THE BOSE-EINSTEIN DISTRIBUTION v@b"#—--

o . wwt-
In the previous section we ﬂ/f@d that the statistical distribution which characterizes
the behavior of an_ensefble of indistinguishable particles which obey the Pauli

exclusion principle is the Fermi-Dirac distribuiion (3.5-20). Sincct“not all elementary
particles obey the Pauli principle (photons being the most conspicuous exception) it is
necessary to consider the statistical behavior of particles which, though indistinguish-

able, do not obhey the Pauli exclusion principle. In this ca;i again, since the particles

are not numbered, the factor (5.3-7) reduces to unity and{we need only consider the
passible permutations of M, identical particles amang the g, quantum states of the ith
energy level,! but now with no restrictions with regard to the number of pariicles
which may dccupy any given quanium state,

Consider a linear array of N; particles and g, — | partitions which would be neces-
sary to divide these particles into g; groups, as shown in Figure 5.13. 1t is not difficult
to see that the number of ways of permuting the N, particles among g; levels is equal

to the number of independent permutations of Sbjets and pattitions in Figure 5.13.

31t might be contended that the indistinguishability of particles renders. the Fermi-Dirac
distributian distinct from the Maxwell-Boitzmann distribution even in this Hmit. It can, however, be
shown, as we shall see in the next section, that the distribution function for indistinguiskable particles
which do not abey the Pauli exclusion principle (the Bose-Einstein distribution} also approaches the
Maxwell-Bolizmann distribution function in this limit. A more accurate way of explaining the situa-
tion would be 1o say that in the high-temperature limil the Fermi-Dirac distribution approaches the
Bose-Einstein distribution, which in turn approaches the Maxweil-Boltzmana distribution.
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Since there are a total of N, + g, ~ 1 particles plus partitions, these can be arranged
linearly in (N, + g; — 1)! ways, but since permutations of particles among themselves
or of parfitions among themselves do not count ¢ dent arrapgements, we
must divide by the number of ways of permuting particies among themselves. (N,!)

7= 1h energy lavel: degenerocy g;*9
populaiion Aj =14

.Figure 5.13. A possible dis-

quanium states in the /th en-
ergy level of a system to which
the Pauli exclusion principle
does not apply.

s

and again by the number of ways of permuting partitions among themselves ({(g, — NN,

giving

(N, +g. - D!

M@ = 1! il

ways of realizing a distribution of N,! indistinguishable particles among g, states which
may accommodate any number of particles. The number g, of statistically indepen-
dent ways of achieving a distribution (N Ny, -+ N,) particles among the energy levels
of the system according to these rules is then Just the product of factors of the form
(5.6-1) over all levels of the system, whence

_f Nt g -1
A e B
S s .

H is now possible to maximize this quanlity with respect to the variables M, Na,
- N, using the method of Lagrangean multipliers, under the restrictions {5.3-22)
and (5.3-23). The actual calculations will ot be set forth here, but will be left a< an
exercise for the reader. The result is

S eI . e

This formula is referred to as the Bose-Einstein distribution function. It is again
possible to identify 8 as

B = —1kT, (5.6-4)

while & may be determined in_terms of the number of particles in the system, just as

in the Maxwéll-Boltzmann and Fermi-Di For the case of a continuum of
closely spaced Ievels; } £)as and N, — N(eyde, giving
' 1
fley= PP (5.6-5)

-

For the independent particle density of states function (5.5-16 for a two-di i
free particlé gas, the parameter a may be explicitly calculated in the same way as ¢, for
—""_-—_‘—"-_"x_____
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this system under F_ermi-Dir;ic statistics. It may then, be shown that as
large, @ - —00, in Whic : onential in the denomin
‘Becomes much larger than.unity, and the Bose-Einstein d_istril;ution(5.6-5),gpproaches

= e, ' (566

which is a distribution function of the Maxw’eil_«_Boltz‘magg'me.E The same general

Thehavior is obtaiged for a threc-dimcnsianal_fndependent-particle Bose-Emstein gas,
—although in this case it is not possible to obtain an expression for « in closed form.
In the limit of very high tenmiperatures, the particles of the system will be distn-

tuted-over a very wide range of energies, and the number, of particles in every available
“energy range will become much smaller than the number of quantum states inthat
range, whence for all states g; > N, In this situation, we may write, approximately,

(N + g, = D!

~ ot =
Pt TR 6D .

whereby (5.6-2) becomes
QN Ny Nz [1

i=1

g
o (5.6-8)

e

But this, aparl from a constant factor N1, is.just equal to Q(N;, N3, -~ N;) as given
by (5.3-8) for a Ma xwell-Boltzmann system! We should then expect the Bose-Einstein
and Maxwell-Boltzmann_distributions to coincide in the high-temperature limit on
purely physical grounds. The choiee of the value given by (5.6-4) for f is thus justifi
Tor this choice, as we have seen above, leads directly to the correspondence between
the Bosc;Einstein and Maxwell-Boltzmann Statistics shown by (5.6-6).

In the case of the two-dimensional and three-dimensional indcpendent particle
Bose-Einstein gases, as the temperature ‘approaches zero, the value of & tends toward
Ziro, the result being that all the particles of the system tend to condense into the lawest

st;tem at ahsolute zera, This phenomenon, called the Bose conden-
Tafion, 1s charactetisti .stems obeying Bose-Einstein statistics,

In some applicalions it is of Tnterest 1o obiain the Bosc-Einstein distribution
function without making the restriction that the number of particles in the system
be constant. It can be seen from{5.3-15) and (5.3-16) that this result can be obtained
from (5.6-5) if 2 is taken to be identically zero. In this case {5.6-5) reduces to

1
- flg) = s (5.6-9)

EXERCISES

1. Show that the wave front associated with the plane wave 1" = gtr-e" advances

along the k direction.
2. Show for the free particle in three dimensions, whose wave function is given by
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(5.2-1 that the expectation value of the vector momentum p is equal 10. Ak, and that p

th k) i§ a constant of the motion. _

t@C’alculale the density. of statés factor q(a)ds for a two-dimensional system of free
paruc es, with inslantaneous collision interactions only, contained within a rigid container
of ageq A and dimensions x, and yo. Start with Schridinger's equation.

Suppose that 4 coins are tossed simultaneously ; what are the probabilities assocmled
¢ distributions (0 heads, 4 tails), (1 head, 3 tails) --- (4 heads, 0 tails)?

5. Find the dimensions and area of the rectangle of maximum area with sides parallel
to the coordmale axes which can be inscribed within an ellipse whose major axis is Za angd
whose minor axis is 2. The axes of theellipse may be taken 1o be parallel with the coordinate
axes. Use the methad of Lagrangean multipliers,

6. Fiond the root-mean-square speed and the most probable speed -of a particle in an
ideal Boltzmann gas.

7. Show that the flux of particles in an ideal Bohzmann gas, whose x-components of
velocity are positive, per unit area across a plane normal to the x-axis is ING/V. Hinr: The
flux or current density is defined as the number of particles per unit volume tires their velo-
citponcnt along the normal to the plane across which the fiux is observed.

wi

Show that the Fermi energy of a two-dimensional Fermi yas of free particles, whose
densify bf states function is given by the result of Exercise 3. is ¢,(T) = kT In{e™ 2" — 1),
where ¢ (0) = Nh*/(4nmA). '

9. Calculate the Fermi energy, in electron volts, for the free electrons in coppetr at
ahsolute zero, assuming one free electron per copper atom. For what temperature would
kT be equal to £,(0)?

10. Show that the internal energy per unit volume of a Fermi gas of free particles at

L3N
absolute zero is i (0).

11. Show by the method of Lagrangean multipliers that if @ (M., M;, - M) is given
by Equation {5.6-2), the distribution function corresponding to the most probable values of

Ni, N, is given by (5.6-1)
Using the density of states [unction calculated in Exercise 3, show that the parameter
P »-dimensional Bose-Einstein gas of free particles is given by

a = ln{l _ e-nlmuumn)_

Discuss the properties of the resuliing distribution function for 7 — oo and for T =0,
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