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FIG. 4.1 The near-visible region of the electromagnetic spectrum with a variety of wave-

lenth, energy, wave-number, and frequency scales.
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Properties of electric and magnetic fields
TABLE 4.1 Maxwell’s Equations

Wave equations for

EM waves:

Maxwell’s equations

Light Waves
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of free space

Gaussian Units SI Units
VD =4np V:-D=p
vV:B=0 V:-B=0
1 0B JB
VXx8=—-— VXE=——
c Ot at
108 4nl aD
Vi H == o VXH=—+1
é o1 at
D—electric displacement
D=¢8& D = £¢&686

¢,—dielectric constant; & = (367 x 10°)™' F/m—permittivity

&—electric field
p—charge density
B—magnetic induction

B =uH

B = uruoH

u;—permeability; uo = 4n X 107" H/m—permeability of

free space
H—magnetic field

J = g86—current density; g—electrical conductivity
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Properties of electric and magnetic fields

The First Maxwell Equation: VeD = Jo, in Sl unit

From coulomb’s Law: the force on a charge g due to another charge
qg'separated by distance r 4

Fo_49
dre,r

2

If we define the electric field generated from gis £, the force on a
charge g’ is givenby F= q'£, q

E

— 2
T Are,r
Electric field due to charge g in the dielectric material with dielectric
constant ¢,
E - q

T dre g,r
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FIG. 4.2 llustration of relationship between displacement D and electric field & with the
simple case of a material between two condenser plates. (a) With no material between the plates
the normal components are related D, = &,&,. (b) With polarizable material between the plates
D, = &£,&,8,is the same both in free space and in the material, since it is conserved upon crossing
the boundary. Because of the polarizability of the material, however, the electric field in the
material is reduced so that £,(in) = &.(out)/e,. Note that in this simple example, the tangential
component of £ that is conserved on crossing the boundary between the two materials is zero
in all cases.

Polarization, P: dielectric dipole moment per unit volume induced

by the electric field  where Nis the volume density of dipoles, p
. is the dipole moment, and g”is the charge
P= Np — Nq d involved in the dipole moment, with positive
and negative charges separated by
distance d
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Properties of electric and magnetic fields

The polarization is proportional to electric field P = 80}(E
Proportional constant, x: dielectric susceptibility

Since the electric displacement, D is defined by
D=¢,E+P=¢e¢E Thus &, =1+%

Since there are a number of possible mechanism contributing the
dielectric susceptibility (depending on frequency of EM waves)

gr = 1 + Z iZi
For the displacement of atoms in the lattice x, and that of electrons
in an atom, x, — _
Yo & =14+ 2L+ X, & (hi) =1+ 7.

The following relation is a good indication of the relative degree of
ionic binding for materials

{[l/gr(hi) |- [1/8r(10) 15 =x. /[gr(hi)gr(lo)]

N N RN RN



% Light Waves
NN NN NN

Properties of electric and magnetic fields

Consider charge gwith spherical symmetry and £ (1) at a distance r

q
E —
T A gy’ Divergence theorem ﬁ)AF -dS = ”J;/V -FdV

8r80 grg() ‘9rgo

By writing D:gogrE, V‘DZIO

The first Maxwell Equation for an isotropic and homogeneous
material.

E = —V¢ where @ the is called electrostatic potential
¢ p

S =T Poisson’s
Ox €€ Equation
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Properties of electric and magnetic fields
The Second Maxwell Equation VeB=0(
“Isolated magnetic poles do not exist”

Only magnetic dipole exist. A line of force starting on a “North”
pole is terminated on a “South pole”. No divergence of magnetic
field line.

When we apply a magnetic field to a material, the magnetization M
M = xH
Where Kis the magnetic susceptibility

A gquantity B is conserved at an interface even when magnetization
is present

B=uyH+uyM (inSlunit)y B=H+47zM (incgs unit)
1 =1+x U, =1+4rx



Light Waves

N N RN RN

Properties of electric and magnetic fields

The Third Maxwell Equation VXE = _a_B

ot

When a wire is moved into or out of the pole of magnet. The wire will
be subjected to a changing magnetic fidx/ o¢, with ® = j BedS

A potential difference @ has been induced in the wire with a value
which can be given simply by A

G

@: aline integral of electric field E

jE-dlz—J%—?-dS = VXE:_%?

By Stoke’s Theorem
pF-dl = [[VxF-dS
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Pfoperties of electric and magnetic fields

D
The Fourth Maxwell Equation VxH= 8_ +J

ot

“ A continuous electrical current | or a displacement current (— )
gives rise to a magnetic field” ot

N N RN RN

Consider the attempt to measure a magnetic field around a wire
carrying a current. At distance rfrom a wire direct current |

g
27

oD oD
JH dl=1=-dS+1 — displacement current

Ot Ot

l Stoke’s Theoremand | = jJ o (S

oD where J is electrical current density

VXH_E—FJ J=0oFE
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Dielectric Relaxation Time

Suppose that a charge is placed on a neutral material. The length of
time it takes for this charge to relax either to a uniform charge
density if the material is electrically isolated, or to zero, restoring the

neutral state, by the excess charge leaking off to ground: die{%ctric
relaxation time, '

VeVxA=0 Aisanyvector: applied to the 4th Maxwell

Equation
VxH:%—?+J
l VeVxH=0 J=0okE D=¢g¢E
0=20V*D) ¢,
ot

l 1st Maxwell equation
@0 op solution

g = P, eXp| —— —
ot  &&, £ p( de Tar =
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Electromagnetic wave equation

Deviation of wave equation from Maxwell Equation

VxE = _@ (3rd Maxwell equation)

ot
——VxVxE=V(VeE)-V’E B=puH VeE=

gty S (VxH) =2 _vE
Ot £.€,

<—V><H:(Z—D+J , D=¢e E » J=0E
t

*OE 0E  Vp

2
— & U U — U UO—=—""—"— E
PO o U o £,.€,

yo,
gr 80




Toe Light Waves

Electromagnetic wave equation

(continued) we neglect the first term on the right of the equation since

we are interested in the steady-state condition after the decay of any
such space charge

N N RN RN

PP
atz /urlLlO 8t

VzE — EFEOILlrlLlO

If we calculate V xV xH , ratherthan VxV xE

We obtain the same form of equations for the magnetic field H

0°H oH
+ lLlrlLJOG AL

V' H=¢¢
r OILlrILlO @tz 8t
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Electromagnetic wave equation: the case of no absorption

In the absence of all absorption processes: a first time derivative
term of the EM equation equal to zero: then EM equation —
“Harmonic wave”
0’E o’H

V*H =¢,&01, 14

VE=¢e& v
ok Mo — 5 o . PYe

Solution of these equations have the form

E=E,expli(k-r—awrt)] H=H,expli(k-r—or)]

In the form of EM wave equation, we can conclude immediately the

phase velocity of the electromagnetic waves is given by
1

(&,8028, 12, )

L= _ : . ( )—1/2
2 =¢, invacuum c=(¢&, 4,
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Appendlx The Divergence Theorem and Stoke S Theorem

The Divergence Theorem: Because of the definition of the
divergence, it can be shown that

va o AdV = jVA o NdS

Thus converting a volume integral of the divergence of A into
surface integral of the scalar product of A with the vector n, the
outward drawn unit vector normal to d$

Stoke’s Theorem: It follows from the properties of the curl that

Ln-(vxF)dS=§F-ds

thus converting a surface integral of the curl F to a line integral of
F over a closed path on the surface



