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 Modeling

 Continuous and Discrete Systems

 Modal Methods

• Eigenmodes

• Rayleigh-Ritz

• Galerkin

 Discrete Point Methods

• Finite Difference

• Finite Element

 Solution of Dynamic Problems

• Mass Condensation – Guyan Reduction

• Component Mode Synthesis

Structural Dynamics Overview
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Modeling Levels

 Real structural dynamics system (structures)

 Continuous representation of the structure

 Discrete representation of the structure

Real structures, in 3-D space, 

comprised of different material, and 

subject to external excitation

Assumption : - material (linear elastic)

- geometry

- loads

More assumptions
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Modeling Levels

 Continuous representation of the structure

• Idealized model (infinite d.o.f)

1-D (continuous beam) 

representation of the blade

More assumptions, for example: low frequency behavior

1-D finite element 

representation of the blade

 Discrete representation of the structure

• Idealized model (finite d.o.f.)
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Structural System Representation 

 Methods for describing structural systems

• Continuous system : infinite D.O.F.  exact solution only

available for special cases

(e.g., vibration of uniform linear beams)

• Approximate solution : finite D.O.F.  two basic approaches

1) Modal methods

2) Discrete point methods
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Discrete System

• Systems represented by finite number of degrees of freedom from 

the outset

• Properties described at certain locations can be obtained from (mass, 

stiffness) influence coefficient functions, or simply lumping techniques

• General mass-spring system represented by

ሽM ሷ𝑢 + 𝐾 𝑢 = {𝐹

Mass matrix Stiffness matrix Forcing vector
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Discrete System

[Example] Lumped parameter formulation for a beam

[M]

Applied force Inertial force

Total force : 𝐹𝑖,𝑇𝑜𝑡 = 𝑓𝑖 −𝑚𝑖 ሷ𝑤𝑖 (D’Alembert’s principle)

𝐹𝑖 𝑡𝑜𝑡 = 𝑓𝑖 −

𝑚1

𝑚2

𝑚3

𝑚4

ሷ𝑤1

ሷ𝑤2

ሷ𝑤3

ሷ𝑤4

Applied force 𝑓(𝑥, 𝑡)

𝐸𝐼(𝑥)

m(𝑥) : mass/unit length

𝑥

𝑥

𝑓1(𝑡) 𝑓2(𝑡) 𝑓3(𝑡) 𝑓4(𝑡)

𝑚1 ሷ𝑤1 𝑚2 ሷ𝑤2 𝑚3 ሷ𝑤3 𝑚4 ሷ𝑤4
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Discrete System

Deflection 𝑤𝑖 is

Repose

flexibility influence coefficient, Deflection @ i due to a unit load @ j

load

𝑤𝑖 = 𝑐𝑖𝑗 𝐹𝑗 𝑡𝑜𝑡

𝑐𝑖𝑗

deflection

ሽM ሷ𝑤 + 𝐾 𝑤 = {𝑓

This can also be extended to a full 2-D, 3-D structures

M

ሷ𝑢
⋮
ሷ𝑣
⋮
ሷ𝑤
⋮

+ 𝐾

𝑢
⋮
𝑣
⋮
𝑤
⋮

=

𝐹𝑢
⋮
𝐹𝑣
⋮
𝐹𝑤
⋮

Note : Generally both [M] and [K] have coupled structures (off-

diagonal components), but still symmetric

= 𝑐𝑖𝑗 𝑓𝑗 − 𝑀 ሷ𝑤𝑖
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Discrete System

Set of simultaneous, coupled DE subject to IC’s @ t=0

- First solve homogeneous equations for the lowest (few) eigenvalues (ω) 

and eigenvectors ([∅]: mode shape matrix)

Set 

M ሷ𝑤 + 𝐾 𝑤 = 𝐹

ቋ
𝑤𝑖 = 𝑤𝑖

𝑜

ሶ𝑤𝑖 = ሶ𝑤𝑖
𝑜 @ t = 0

M ሷ𝑤 + 𝐾 𝑤 = 0

characteristic eqn.

w = ഥ𝑤𝑒𝑖ω𝑡

൯−ω M + K 𝑤𝑒𝑖ω𝑡 = 0 ⋯(∗

eigenvector
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Discrete System

4 eigenvalues            ,  natural frequency 

Eigenvectors are obtained by placing any root into (*)

𝜆𝑖 = ω𝑖
2 𝑓𝑖 =

ω𝑖

2𝜋

𝑘11 −𝑚11ω1
2 𝑘12 −𝑚12ω2

2 ⋯
⋱

𝜙 𝑖 = 0

𝜙 𝑖
Need to set at least one value of 

A N-D.O.F system has N natural frequencies and N mode shapes 

associated to these natural frequencies.

𝜙 1 𝜙 2

ω1
ω2 ⋯
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Discrete System

- Orthogonality Relations

ω𝑗 , 𝜙𝑖
𝑗

set of free vibration mode shapes

−ω2 𝑀 𝜙 + 𝐾 𝜙 = 0

൯−ω𝑟
2 𝑀 𝜙 𝑟 = 𝐾 𝜙 𝑟 ⋯(1

൯−ω𝑠
2 𝑀 𝜙 𝑠 = 𝐾 𝜙 𝑠 ⋯(2

Multiply (1) by         and (2) by 𝜙 𝑠 𝑇 𝜙 𝑟 𝑇

ω𝑟
2𝜙 𝑠 𝑇[𝑀]𝜙 𝑟 = 𝜙(𝑠)𝑇 𝐾 𝜙 𝑟

ω𝑠
2𝜙 𝑟 𝑇[𝑀]𝜙 𝑠 = 𝜙(𝑟)𝑇 𝐾 𝜙 𝑠 ⋯(3)

ω𝑟
2𝜙 𝑟 𝑇 𝑀 𝑇𝜙 𝑠 = 𝜙(𝑟)𝑇 𝐾 𝑇𝜙 𝑠

ω𝑟
2𝜙 𝑟 𝑇[𝑀]𝜙 𝑠 = 𝜙 𝑟 𝑇[𝐾]𝜙 𝑠 ⋯(4)

Take transpose
of both sides

[M], [K]
symmetric

Each satisfies
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Discrete System

Subtract (4) from (3)

If r ≠ s 𝜙 𝑟 𝑇 𝑀 𝜙 𝑠 = 0

r = s 𝜙 𝑟 𝑇 𝑀 𝜙 𝑠 = 𝑀𝑟
∗

Also note that

(some value : modal mass)

𝜙 𝑟 𝑇[𝑀]𝜙 𝑠 = 𝛿𝑟𝑠𝑀𝑟
∗

Kronecker delta 𝛿𝑟𝑠 = ቊ
0 ∶ 𝑟 ≠ 𝑠
1 ∶ 𝑟 = 𝑠

𝜙 𝑟 𝑇[𝐾]𝜙 𝑠 = ω𝑟
2𝑀𝑟

∗𝛿𝑟𝑠 (modal stiffness)

11
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Discrete System

- Complete solution

𝜙𝑇Pre-multiply by 

Generalized coordinate

M ሷ𝑤 + 𝐾 𝑤 = 𝐹

𝑤𝑖 𝑡 =

𝑖=1

4

𝜙𝑖
𝑟
𝜂𝑖(𝑡)let

M 𝜙 ሷ𝜂 + 𝐾 𝜙𝜂 = 𝐹

𝜙𝑇 M 𝜙 ሷ𝜂 + 𝜙𝑇 𝐾 𝜙𝜂 = 𝜙𝑇𝐹

Orthogonality       Decoupled equations

𝑀1
∗ ሷ𝜂 + 𝑀1

∗ω1
2𝜂1 = 𝑄1, 𝑄1 = 𝜙 1 𝐹

𝑀𝑛
∗ ሷ𝜂𝑛 +𝑀𝑛

∗ω𝑛
2𝜂𝑛 = 𝑄𝑛

⋮ ⋮

Generalized mass Generalized 
stiffness

Generalized or normalized coordinate

Generalized force
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Discrete System

- Initial conditions

@ t=0, given

n x 1

)𝑤 0 , ሶ𝑤(0

If all the modes are retained in solution, that is, 

)𝜙 ሶ𝜂 0 = ሶ𝑤(0𝜙𝜂 0 =

𝑤1 0

𝑤2 0

𝑤3 0
)𝑤4(0

and

w =

𝑖=1

𝑛

൯𝜙 𝑖 𝜂𝑖(𝑡

)𝜂 0 = 𝜙−1𝑤(0

m x n n x 1
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Discrete System

- Truncation

where m<<n

mx1

Problem can be truncated by using only a few selected number of modes

w(x, t) =

𝑖=1

𝑚

൯𝜙 𝑖 (𝑥)𝜂𝑖(𝑡

But now calculation of initial condition on 𝜂 is not straightforward.

)𝜂 0 = 𝜙−1𝑤(0

)𝜙𝜂 0 = 𝑤(0

mxn nx1

nxm mx1 nx1

not invertible!
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Discrete System

[Note] The normal equations of motion are uncoupled on the left-hand side due 

to the modal matrix composed of eigenvectors.

Coupling, however, may come from motion-dependent forces, including damping.

→ Solve for       subject to        and       𝜂 𝑡 𝜂 0 ሶ𝜂 0

w(x, t) =

𝑖=1

𝑚

൯𝜙 𝑖 (𝑥)𝜂𝑖(𝑡

𝜂𝑖 0 =
1

𝑀𝑖
∗ 𝜙1

𝑖 ⋯𝜙𝑛
𝑖 [𝑀]

𝑤1 0

𝑤2 0
⋮

)𝑤𝑛(0

)𝑀∗𝜂 0 = 𝜙𝑇 𝑀 𝑤(0

)𝜙𝑇 𝑀 𝜙𝜂 0 = 𝜙𝑇 𝑀 𝑤(0
mxn nxn nxm mx1 mxn nxm nx1

𝑀𝑚×𝑚
∗ ∶ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

Premultiply by           ,𝜙𝑇 𝑀

and find w from 
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Discrete System

- Motion Dependent Forces

Forces 𝐹𝑖 may be dependent on position, velocity, acceleration after 

structure @ its nodes i, as well as time

Consider a general case

Consider an N degree of freedom system

)𝐹𝑖 = 𝐹𝑖(𝑤1, 𝑤2, ⋯ ሶ𝑤1, ሶ𝑤2, ⋯ ሷ𝑤1, ሷ𝑤2⋯ , 𝑡

𝐹𝑖 = 

𝑘=1

𝑁

𝑎𝑖𝑘𝑤𝑘 + 𝑐𝑖𝑘 ሶ𝑤𝑘 + 𝑒𝑖𝑘 ሷ𝑤𝑘 + 𝐹𝑖 𝑡

ሽM ሷ𝑤 + 𝐾 𝑤 = 𝑎 𝑤 + 𝑐 ሶ𝑤 + 𝑒 ሷ𝑤 + {𝐹𝑖 𝑡
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Discrete System

Let

Can also write it as

𝑤𝑖 = 

𝑗

𝑛=3

𝜙𝑖
𝑗
𝜂𝑗 𝑡

𝑀∗ ሷ𝜂 + [ω2𝑀∗]𝜂 = 𝜙𝑇 𝑎 𝜙𝜂 + 𝜙𝑇 𝑐 𝜙 ሶ𝜂 + 𝜙𝑇 𝑒 𝜙 ሷ𝜂 + 𝑄

The terms on the summation on the right-hand side couple (in general) 

the equations of motion. This is typical in aeroelastic problem.

[𝐴] [𝐶] [𝐸]

fully populated (in general)

𝑀𝑟
∗ ሷ𝜂𝑟 +ω𝑟

2𝑀𝑟
∗𝜂𝑟 =

𝑠=1

𝑚

𝐴𝑟𝑠𝜂𝑠 + 𝐶𝑟𝑠 ሶ𝜂𝑠 + 𝐸𝑟𝑠 ሷ𝜂𝑠 + 𝑄𝑟

not necessarily positive definite
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Discrete System

- For proportional damping,

Then, due to orthogonality on [K] and [M]

]C = α K + β[M ⋯ damping matrix is proportional to a linear 

combination of the mass and stiffness matricesany value, constants

𝐶𝑟𝑠 = 0 when r ≠ 𝑠

𝑆𝑒𝑡 𝐶𝑟𝑟 = 2𝜍𝑟𝜔𝑟𝑀𝑟
∗No coupling

Critical damping ratio: obtained from 
experiments or guess

ቊ𝑀𝑟
∗ ሷ𝜂𝑟 + 2𝜍𝑟𝜔𝑟𝜂𝑟 + 𝜔𝑟

2𝜂𝑟 = 𝑄𝑟 𝑡
⋮

m set of 
uncoupled 
equations
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Continuous System

• At this point, a distinction between two main classes of approaches for 

approximating the solution of structural systems needs to be made.

• The two basic approaches are

1) modal methods: represent displacements by overall motion of the 

structure

2) discrete point methods: represent displacement by motion at

many discrete points distributed along the structures

19
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Continuous System

• Consider a basic high-aspect ratio wing modeled as a cantilever beam 

for symmetric response

Partial differential equation for continuous beam

m ሷ𝑤 − 𝑇𝑤′ ′ + 𝐸𝐼𝑤′′ ′′ = 𝑓𝑧

𝑚 𝑥 ∶ Τ𝑚𝑎𝑠𝑠 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ ( Τ𝑘𝑔 𝑚)

𝑤 𝑥, 𝑡 : 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑚

𝑇 ∶ 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑁

𝐸𝐼 𝑥 : 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 (𝑁 ∙ 𝑚2)

𝑓𝑧 ∶ 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒 Τ𝑁 𝑚

𝑓𝑥 ∶ ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒 ( Τ𝑁 𝑚)

• Pinned end

• Fixed end

𝑤 = 0

𝑀 = 𝐸𝐼𝑤′′ = 0

• Free end

𝑤 = 0

𝑤′ = 0

• Vertical spring

𝑀 = 𝐸𝐼𝑤′′ = 0

𝑆 = 𝐸𝐼𝑤′′ ′ = 0

𝑀 = 𝐸𝐼𝑤′′ = 0

𝑆 = 𝐸𝐼𝑤′′ ′ = 𝑘𝑣𝑤

𝑥

𝑤, 𝑧

w(𝑥, 𝑡)
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Response of a Uniform
Cantilevered Beam

Same solution procedure as before

i) find solution to homogeneous equation

ii) then determine complete solution as expansion of homogeneous solution

𝑚 = 𝐸𝐼 = 𝑐𝑜𝑛𝑠𝑡.
𝑇 = 0

B. C. @𝑥 = 0 ቊ
𝑤 = 0
𝑤′ = 0

I. C. @𝑡 = 0 ቊ
𝑤 = 0
ሶ𝑤 = 0

@𝑥 = 𝑙 ቊ𝑀 = 𝐸𝐼𝑤′′ = 0
𝑆 = 𝐸𝐼𝑤′′′ = 0

geometric B.C.

natural B.C.

(Rest I.C.’s)

𝑥

𝑤, 𝑧

𝑓(𝑥, 𝑡)
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Response of a Uniform
Cantilevered Beam

EIw′′′′ +m ሷ𝑤 = 0 ⋯ 1

let w x, t = ഥ𝑤(𝑥)𝑒𝑖ω𝑡

൫EIഥ𝑤′′′′ −mω2ഥ𝑤)𝑒𝑖ω𝑡 = 0 ⋯ 2

ഥ𝑤′′′′ −
mω2

𝐸𝐼
ഥ𝑤 = 0 ⋯ 3

)To solve, let ഥ𝑤 = 𝑒𝑝𝑥 ( 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑠𝑖𝑛ℎ, 𝑐𝑜𝑠ℎ

𝑝4𝑒𝑝𝑥 −
𝑚ω2

𝐸𝐼
𝑒𝑝𝑥 = 0

𝑛𝑜𝑛𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

4 𝑟𝑜𝑜𝑡𝑠

𝑝4 =
𝑚ω2

𝐸𝐼

p = λ,−λ, iλ, −iλ where λ2 = 𝜔
𝑚

𝐸𝐼
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Response of a Uniform
Cantilevered Beam

Determine A, B, C, D from B.C.’s in matrix form

ഥ𝑤 𝑥 = 𝐶1𝑒
λx + 𝐶2𝑒

−λx + 𝐶3𝑒
iλx + 𝐶4𝑒

−iλx

ഥ𝑤 𝑥 = 𝐴𝑠𝑖𝑛ℎλx + Bcoshλx + Csinλx + Dcosλxor

For a nontrivial solution,

Transcendental
equation

Δ = 0

Δ = 2𝑐𝑜𝑠ℎλlcosλl + 𝑠𝑖𝑛2λl + 𝑐𝑜𝑠2λl + 𝑐𝑜𝑠ℎ2λl − 𝑠𝑖𝑛ℎ2λl = 0

cosλl =
−1

𝑐𝑜𝑠ℎλl

= 1 = 1
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Response of a Uniform
Cantilevered Beam

many solutions possible

Ref. : Blevins “Formulas for Natural Frequency and Mode Shapes”

λl = 0.597π, 1.49π,
5

2
π,
7

2
π

3

2
π0.5π

~ ~

𝜔𝑟 = λl 2
𝐸𝐼

𝑚𝑙4

For eigenvectors (mode shapes), place λl into first three equations

ቇഥ𝑤𝑟 𝑥 = 𝑐𝑜𝑠ℎλ𝑟𝑥 − 𝑐𝑜𝑠λ𝑟𝑥 − (
𝑐𝑜𝑠ℎλ𝑟𝑙 + 𝑐𝑜𝑠λ𝑟𝑙

𝑠𝑖𝑛ℎλ𝑟𝑙 + 𝑠𝑖𝑛λ𝑟𝑙
)(𝑠𝑖𝑛ℎλ𝑟𝑥 − 𝑠𝑖𝑛λ𝑟𝑥

cosλl

−1

coshλl
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Response of a Uniform
Cantilevered Beam

w x, t = 

𝑟=1

∞

𝜙𝑟(𝑥)𝑒
𝑖𝜔𝑟𝑡

𝜔2 = 22
𝐸𝐼

𝑚𝑙4

𝜔3 = 61.7
𝐸𝐼

𝑚𝑙4

𝜔1 = 3.52
𝐸𝐼

𝑚𝑙4
Τ𝑟𝑎𝑑 𝑠
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Orthogonality

Since each solution satisfies w x, t = 𝜙𝑟(𝑥)𝑒
𝑖𝜔𝑟𝑡

)−mω𝑟
2𝜙𝑟 + 𝐸𝐼𝜙𝑟

′′ ′′ = 0 ⋯(1

)−mω𝑠
2𝜙𝑠 + 𝐸𝐼𝜙𝑠

′′ ′′ = 0 ⋯(2

Multiply (1) by 𝜙𝑠 and integrate

ω𝑟
2න

0

𝑙

𝜙𝑠𝑚𝜙𝑟𝑑𝑥 = න
0

𝑙

𝜙𝑠 𝐸𝐼𝜙𝑟
′′ ′′𝑑𝑥 ⋯ 3

ω𝑠
2න

0

𝑙

𝜙𝑟𝑚𝜙𝑠𝑑𝑥 = න
0

𝑙

𝜙𝑟(𝐸𝐼𝜙𝑠
′′)′′𝑑𝑥 ⋯ 4

and (2) by 𝜙𝑟 and integrate

m ሷ𝑤 + 𝐸𝐼𝑤′′ ′′ = 0

26
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Orthogonality

Subtract (4) from (3), and integrate by parts

(ω𝑟
2 −ω𝑠

2)න
0

𝑙

𝜙𝑟𝑚𝜙𝑠𝑑𝑥 = 𝜙𝑠 𝐸𝐼𝜙𝑟
′′ ′|0

𝑙 − 𝜙𝑠′𝐸𝐼𝜙𝑟
′′|0

𝑙 +න
0

𝑙

𝜙𝑠𝐸𝐼𝜙𝑟
′′𝑑𝑥

−𝜙𝑟 𝐸𝐼𝜙𝑠
′′ ′|0

𝑙 + 𝜙𝑟′𝐸𝐼𝜙𝑠
′′|0

𝑙 −න
0

𝑙

𝜙𝑟′′𝐸𝐼𝜙𝑠
′′𝑑𝑥

defection shear slope moment

Note that all the constant terms on RHS=0 because of BC’s

for example : • pinned → w = 0 ⇒ ϕ = 0
w′′ = 0 ⇒ ϕ′′ = 0

• fixed → w = 0 ⇒ ϕ = 0

w′ = 0 ⇒ ϕ′ = 0

• free → ϕ′′ = 0 and EIϕ′′ ′ = 0

M=0 S=0
27
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Orthogonality

For 𝑟 ≠ 𝑠, we have

න
0

𝑙

𝜙𝑟 𝑥 𝑚 𝑥 𝜙𝑠 𝑥 𝑑𝑥 = 0

න
0

𝑙

𝜙𝑟 𝑥 𝑚 𝑥 𝜙𝑠 𝑥 𝑑𝑥 = 𝛿𝑟𝑠𝑀𝑟
∗

Also, න
0

𝑙

𝜙𝑠(𝐸𝐼𝜙𝑟
′′)′′𝑑𝑥 = 𝛿𝑟𝑠𝑀𝑟

∗𝑤𝑟
2

⟹ can transform to normal coordinates
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Complete solution

Place (6) into (5) and integrate after multiplying with 𝜙𝑠

let w x, t = σ𝑟=1
∞ 𝜙𝑟(𝑥)η𝑟(𝑡) ⋯ (6)

)m ሷ𝑤 + 𝐸𝐼𝑤′′ ′′ = 𝑓 𝑥, 𝑡 ⋯ (5



𝑟=1

∞

ሷ𝜂 න
0

𝑙

𝑚𝜙𝑠𝜙𝑟𝑑𝑥 +

𝑟=1

∞

𝜂𝑟න
0

𝑙

𝜙𝑠(𝐸𝐼𝜙𝑟
′′)′′𝑑𝑥 = න

0

𝑙

𝜙𝑠𝑓 𝑥, 𝑡 𝑑𝑥

because of orthogonality

𝑀𝑟 ሷ𝜂𝑟 +𝑀𝑟ω𝑟
2𝜂𝑟 = 𝑄𝑟

⋮

𝑀𝑟 = න
0

𝑙

𝜙𝑟
2 𝑥 𝑚 𝑥 𝑑𝑥

𝑄𝑟 = න
0

𝑙

𝜙𝑟 𝑥 𝑓(𝑥, 𝑡)𝑑𝑥

Note : can also show orthogonality conditions hold if −(𝑇𝑤′)′ term is present
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Complete solution

To find I.C.’s on 𝜂𝑟,

and

ሶ𝑤 x, 0 = 

𝑟=1

∞

)𝜙𝑟 𝑥 ሶ𝜂𝑟(0 = ሶ𝑤0 𝑥

@ t = 0, w x, 0 = 

𝑟=1

∞

)𝜙𝑟 𝑥 𝜂𝑟(0 = 𝑤0 𝑥

Multiply by 𝑚𝜙𝑠(𝑥) and integrate

න
0

𝑙

𝑚𝜙𝑠𝑤0𝑑𝑥 = 

𝑟=1

∞

)𝜂𝑟(0 න
0

𝑙

𝑚𝜙𝑠𝜙𝑟𝑑𝑥 = 𝜂𝑠(0)𝑀𝑠
∗

𝜂𝑟 0 =
1

𝑀𝑟
∗න

0

𝑙

𝑚𝜙𝑟𝑤0 𝑥 𝑑𝑥

ሶ𝜂𝑟 0 =
1

𝑀𝑟
∗න

0

𝑙

𝑚𝜙𝑟 ሶ𝑤0 𝑥 𝑑𝑥
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Rayleigh-Ritz Method

 Energy-based method

• Form of the solutions is assumed to be as :

w(x, t) ≈ 

𝑟=1

𝑁

𝛾 𝑥 𝑞𝑟 𝑡

assumed modes need to satisfy at 
least geometrical boundary conditions

assume w x, t =

𝑖=1

𝑁

𝛾𝑖 𝑥 𝑞𝑖 𝑡

satisfy ቅ
𝑤 = 0
𝑤′ = 0

@𝑥 = 0

𝑥

𝑓(𝑥, 𝑡)

𝛾1

𝛾2

𝑥2

𝑙2

𝑥3

𝑙3
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Rayleigh-Ritz Method

T =
1

2
න
0

𝑙

𝑚 𝑥 

𝑖=1

𝑀

𝛾𝑖 ሶ𝑞𝑖

𝑗=1

𝑀

𝛾𝑗 ሶ𝑞𝑗 𝑑𝑥 =
1

2


𝑖=1

𝑀



𝑗=1

𝑀

න
0

𝑙

𝑚𝛾𝑖 𝑥 𝛾𝑗 𝑥 𝑑𝑥 ሶ𝑞𝑖 ሶ𝑞𝑗

V =
1

2
න
0

𝑙

𝐸𝐼 𝑤′′ 2 𝑑𝑥 =
1

2


𝑖=1

𝑀



𝑗=1

𝑀

න
0

𝑙

𝐸𝐼 𝑥 𝛾𝑖′′ 𝑥 𝛾𝑗′′ 𝑥 𝑑𝑥𝑞𝑖𝑞𝑗

δW = න
0

𝑙

𝑓𝛿𝑤𝑑𝑥 =

𝑖=1

𝑀

න
0

𝑙

𝑓(𝑥)𝛾𝑖𝑑𝑥𝛿𝑞𝑖

𝑚𝑖𝑗
∗

𝑘𝑖𝑗
∗

Plug into Lagrange’s equations,

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖
−
𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖

which gives



𝑖=1

𝑀

𝑚𝑖𝑗
∗ ሷ𝑞𝑗 +

𝑖=1

𝑀

𝑘𝑖𝑗
∗ ሷ𝑞𝑗 = 𝑄𝑖 coupled set of equations!
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Rayleigh-Ritz Method

For a quick and “dirty” way to find the first natural frequency,

assume only one mode shape,

𝑚11
∗ ሷ𝑞1 + 𝑘11

∗ 𝑞1 = 𝑄1

Rayleigh quotient with q = ത𝑞𝑒𝑖ω𝑡

Clearly we can obtain higher modes by assuming more than one mode

ω2 =
0
𝑙
𝐸𝐼 𝛾1

′′ 2𝑑𝑥

0
𝑙
𝑚𝛾1

2𝑑𝑥
⋯ upper bound for the 

actual frequency

ω𝑟
2 =

𝛾 𝑟
𝑇 𝐾 𝛾 𝑟

𝛾 𝑟
𝑇 𝑀 𝛾 𝑟
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Galerkin’s Method

• Galerkin’s method applies to P.D.E. directly – residual method

Look at general beams

Domain

• Assumed modes must satisfy all the boundary conditions 
(geometric and natural ones)

න𝛾𝑗 𝑃. 𝐷. 𝐸. 𝑑𝑥 = 0

w x, t = 

𝑖=1

𝑁

𝛾𝑖 𝑡 𝑞𝑖 𝑡

for a pinned-pinned beam,

m ሷ𝑤 + 𝐸𝐼𝑤′′ ′′ − (𝑇𝑤′)′ = 𝑓 𝑥, 𝑡

൰𝛾𝑗 = sin(
𝑗𝜋𝑥

𝐿

If 𝛾𝑗 is on exact mode shape, P.D.E. would be satisfied exactly

But if not  → error

𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑁

34



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Galerkin’s Method

Now set

: Average error in PDE with respect to some 

weighting function ℎ𝑖 𝑥 that minimize the 

error in the interval, usually take ℎ𝑖 𝑥 = 𝛾𝑖 𝑥

approxE = m ሷ𝑤 + 𝐸𝐼𝑤𝑎𝑝𝑝𝑟𝑜𝑥
′′ ′′

− 𝑇𝑤𝑎𝑝𝑝𝑟𝑜𝑥
′ ′

− f

න
0

𝑙

ℎ𝑖 𝑥 𝐸 𝑥 𝑑𝑥 = 0



𝑗=1

𝑀

ሷ𝑞𝑗[න
0

𝑙

𝛾𝑖 𝑥 𝑚(𝑥)𝛾𝑗 𝑥 𝑑𝑥 +

𝑗=1

𝑀

න
0

𝑙

𝛾𝑖 𝐸𝐼𝛾𝑗
′′ ′′

𝑑𝑥 − න
0

𝑙

𝛾𝑖 𝑇𝛾𝑗
′ ′
𝑑𝑥

= න
0

𝑙

𝛾𝑖 𝑓 𝑥, 𝑡 𝑑𝑥
Different from 
Rayleigh-Ritz
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Galerkin’s Method

⋯ coupled set of DE’s
(except when 𝛾𝑗is natural mode shape)

𝑚𝑖𝑗 ሷ𝑞𝑗 + 𝑘𝑖𝑗 𝑞𝑗 = 𝑄𝑗

Used standard technique, let q = ത𝑞𝑒𝑖ω𝑡

]𝐼𝜔2 − 𝑚 −1[𝑘 ത𝑞 = 0

Eigenvalues → approximate natural frequencies

Eigenvectors → approximate natural mode shapes

For M different weighting function 𝛾1, 𝛾2, …𝛾𝑀,

we have M equations to find M unknowns 𝑞1, 𝑞2, …𝑞𝑀

To find M unknowns 𝑞1, 𝑞2, …𝑞𝑀 in matrix form
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Galerkin’s Method

Note : 

iv) The closer 𝛾𝑗(𝑥) is to 𝜙 𝑥 , the less the coupling

i)  more assumed modes → better approximation

𝜙1 𝑥 = 𝐴𝑐𝑜𝑠𝜆1𝑥 + 𝐵𝑠𝑖𝑛𝜆1𝑥 + 𝐶𝑐𝑜𝑠ℎ𝜆1𝑥 + 𝐷𝑠𝑖𝑛ℎ𝜆1𝑥

= 𝑎0 + 𝑎1𝑥 + 𝑎1𝑥
2 + 𝑎3𝑥

3 +⋯

ii)  more accurate assumed shapes → better approximation

iii)  If 𝛾𝑗(𝑥) is natural mode shapes, system will be uncoupled

Galerkin : very powerful, turn PDE’s into ODE’s
very general, can also be used in nonlinear problem !!

v) If Rayleigh-Ritz assumed mode shapes satisfy both geometric    
and natural B.C.’s, two methods are identical

(can be shown by integration by parts)

𝑚 ሷ𝑤 + 𝐸𝐼𝑤′′ ′′ + 𝐹 𝑤𝑛 = 𝑓
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