$\left.\begin{array}{ll}{ }^{\prime 2} & \frac{S_{s}^{* 2}}{-1} \\ I_{s}^{*} M_{x}^{*}\end{array}\right]$

₹ $1 / \mathrm{rev}$. The solution near $\omega=$

$$
\left.\left.,^{*}+\dot{M}_{x}^{*}\right) \frac{S_{\xi}^{* 2}}{1_{s}^{*} M_{y}^{*} M_{x}^{*}}\right]
$$

ion, and also for the $\omega=\nu_{\xi}-1$ limit $\omega=0$, for which the char0 , which gives $\nu_{\xi}-1=0$. With solution defines where the roots speed for which $\nu_{\zeta}=1 / \mathrm{rev}$. In $5-1$ that intercepts the Ω-axis he low frequency lag mode root 1 values of S_{5}.
case of no damping can be pereleman diagram, which is a plot of the characteristic equation) imensional solution for the un: ξ, plus the corresponding mega(The negative solutions for ω ns, and so need not be plotted.) hed using the above results for and $\Omega=\infty$, plus the knowledge ever cross. The character of the ty on the lag frequency $\nu_{\xi}^{2}=$ o $12-13$ present the Coleman ted rotor ($K_{1}=0$ and $K_{2}<1$), $K_{2}<1$), and a stiff in-plane are sketches of typical results fume that the nonrotating lag the hingeless rotors. The unrizontal lines at $\omega=\omega_{x}$ and tor are the low and high fereapproach $\nu_{N R}=\sqrt{K_{1}}$ at low

Figure 12-11 Coleman diagram of the ground resonance solution for an articulated rotor.
rotor speed and are asymptotic to constant per-rev values $\left(\sqrt{K_{2}} \pm 1 / \mathrm{rev}\right)$ at high rotor speed. Thus the lag mode frequencies are in resonance with the support mode frequencies at some rotor speed.

For $S_{\zeta}>0$, the solution is displaced from the uncoupled frequencies, as indicated by the results for small coupling. If there are four positive solutions for ω at a given rotor speed, then the system is stable (neutrally stable for this case of zero damping). For the articulated and soft in-plane hingeless rotors (Figs. 12-11 and 12-12), however, there are ranges of Ω where only two positive real solutions for ω exist, occurring around the

Figure 12-12 Coleman diagram of the ground resonance solution for a soft in-plane hingeless rotor.
resonances of the low frequency lag mode ($\Omega-\nu_{\xi}$) with a support mode (ω_{x} or ω_{y}). The characteristic equation has four complex solutions in these ranges, so the system is unstable. For the stiff in-plane hingeless rotor (Fig. 12-13), four positive solutions for ω exist at all rotor speeds, and a ground resonance instability does not occur. This behavior of the ground resonance solution is determined by the direction the roots are shifted when $S_{\zeta}>0$, which depends on whether $\nu_{\zeta}<1 / \mathrm{rev}$ or $\nu_{\zeta}>1 / \mathrm{rev}$ at the resonance of the low frequency lag mode with a support mode.

onance solution for a soft
$-\nu_{\xi}$) with a support mode four complex solutions in the stiff in-plane hingeless ν exist at all rotor speeds, ccur. This behavior of the ne direction the roots are er $\nu_{\xi}<1 / \mathrm{rev}$ or $\nu_{\xi}>1 / \mathrm{rev}$ de with a support mode.

Figure 12-13 Coleman diagram of the ground resonance solution for a stiff in-plane hingeless rotor.

In conclusion, a ground resonance instability can occur at a resonance of a rotor mode and a support mode. The resonances of the high frequency lag mode ($\omega=1+\nu_{\zeta}$) are always stable, but resonances of the low frequency lag mode ($\omega=1-\nu_{\xi}$) will be unstable if the rotating natural frequency ν_{ζ} is below $1 / \mathrm{rev}$, as for articulated and soft in-plane hingeless rotors. Thus the placement of the rotor lag frequency determines whether or not a ground resonance instability can occur.
three roots corresponding to $\omega=\nu_{\zeta}$ and $\omega_{y} \pm 1$ the largest and smallest are increased, while the middle root is decreased. From this behavior the solution for $S_{\zeta}>0$ can be sketched. Figs. 12-14 and 12-15 present typical. Coleman diagrams for articulated (soft in-plane) and stiff in-plane twobladed rotors. As in the case of three or more blades, a ground resonance instability appears with soft in-plane rotors ($\nu_{\zeta}<1 / \mathrm{rev}$) at the resonance of the support and the low frequency lag mode - which in the rotating frame means $\nu_{\zeta}=\Omega-\omega_{y}$.

Figure 12-14 Coleman diagram of the ground resonance solution for a two-bladed articulated rotor ($\nu_{\zeta}<1 / \mathrm{rev}$) on an isotropic support.
possibility line, as ind equation be

Now since $2 / \mathrm{rev}$ in t and $\omega_{y}=$ interest he rotor speed
which inc instability vides
then bot instabilit rather la limit fo effect, se

In F
only tw
nomeno
not bee
region
zero fre
rotating
this ins
speed F
to zero,

