Ch. 15 Kinematics of Rigid Bodies

Prof. SangJoon Shin

15.11 Plane Motion of a Particle Relative to a Rotating Frame

Fig. 15.27. ---- two frames of ref, in the plane of the figure
fixed frame OXY, rotating frame Oxy
$(\dot{\vec{r}})_{O X Y}$: rate of change of \vec{r}, w.r.t. a fixed frame

Fig. 15.27

15.11 Plane Motion of a Particle Relative to a Rotating Frame

$(\vec{r})_{o X Y}$:
w. r. t the rotating frame OXY
$\vec{\Omega} \quad: \quad$ angular velocity of the frame Oxy w.r.t OXY

$$
\begin{equation*}
\overrightarrow{v_{P}}=(\vec{r})_{O X Y}=\vec{\Omega} \times \vec{r}+(\stackrel{\bullet}{r})_{O x y} \tag{15.32}
\end{equation*}
$$

$F:$ rotating frame
: P^{\prime} velocity in the slab which coincides with P at the instant

Fig. 15.28

$$
\begin{equation*}
\overrightarrow{v_{P}}=\overrightarrow{v_{P^{\prime}}}+\overrightarrow{v_{P / F}} \tag{15.33}
\end{equation*}
$$

15.11 Plane Motion of a Particle Relative to a Rotating Frame

Absolute acceleration --- rate of change of $v_{P}, \mathrm{w}, \mathrm{r}, \mathrm{t}$ OXY

$$
\begin{aligned}
\overrightarrow{a_{P}}=\stackrel{\dot{\vec{v}}}{P}
\end{aligned}=\dot{\vec{\Omega}} \times \vec{r}+\vec{\Omega} \times \stackrel{\rightharpoonup}{r}+\frac{d}{d t}\left[(\dot{\vec{r}})_{O x y}\right] \text { (15.34) }
$$

$$
=\vec{\Omega} \times \vec{r}+(\dot{\vec{r}})_{o x y} \text { by } E q .(15.32)
$$

(15.36)

15.11 Plane Motion of a Particle Relative to a Rotating Frame

Abs. Accel of P Accel. of P^{\prime} of moving frame $F \quad$ Accel. of P^{\prime} of coinciding with $P \quad$ relative to F

Compared with Eq. (15.21) $\overrightarrow{a_{P}}=\overrightarrow{a_{P}}+\overrightarrow{a_{B / A}}$
\downarrow accel. w. r. t a frame in translation
\rightarrow if the frame is rotating, necessary to include Coriolis' acceleration $\overrightarrow{a_{C}}$
Direction of $\overrightarrow{a_{C}}$
$\left|\overrightarrow{a_{C}}\right|=2 \Omega v_{P / F}$, rotating $\overrightarrow{v_{P / F}}$ through 90°
in the sense of rotation of the moving frame (Fig. 15.29)

Fig. 15.29

15.11 Plane Motion of a Particle Relative to a Rotating Frame

Significance of a_{C}
Abs. velocity of P at time t and $t+\Delta t \quad$ (Fig. 15.30(b))
At t , velocity components $\vec{u}, \overrightarrow{v_{A}}$, at $t+\Delta t \overrightarrow{u^{\prime}}, \overrightarrow{v_{A^{\prime}}}$

- Fig 15.30(c), change in velocity during $\Delta t \rightarrow \overrightarrow{R R^{\prime}}, \overrightarrow{T T^{\prime \prime}}, \overrightarrow{T^{\prime \prime} T^{\prime}}$

- $\overrightarrow{T T^{\prime \prime}}$---- change in the direction of $\overrightarrow{v_{A}}, \overrightarrow{T T^{\prime \prime}} / \Delta t$ represents

$$
\begin{aligned}
\overrightarrow{a_{A}} \quad \text { as } \quad \Delta t & \rightarrow 0 \\
\lim _{t \rightarrow 0} \frac{T T^{\prime \prime}}{\Delta t} & =\lim _{t \rightarrow 0} v_{A} \frac{\Delta \theta}{\Delta t}=r \omega \omega=r \omega^{2}=a_{A}
\end{aligned}
$$

--- change in direction of \vec{u} due to the rotation
---change in magnitude of v_{A} due to the motion of P along the rod
"combined effect of the relative motion of P and of the rotation of the rod

(c)

15.11 Plane Motion of a Particle Relative to a Rotating Frame

- sum of these two $\rightarrow a_{c}$
$\overrightarrow{R R^{\prime}}=u \Delta \theta, T^{\prime \prime} T^{\prime}=v_{A^{\prime}}-v_{A}=(r+\Delta r) \omega-r \omega=\omega \Delta r$

$$
\lim _{t \rightarrow 0}\left(\frac{R R^{\prime}}{\Delta t}+\frac{T^{\prime \prime} T^{\prime}}{\Delta t}\right)=\lim _{t \rightarrow 0}\left(u \frac{\Delta \theta}{\Delta t}+\omega \frac{\Delta r}{\Delta t}\right)=u \omega+\omega u=2 \omega u
$$

Eqs. (15.33.),(15.36) \rightarrow mechanism which contain parts sliding on each other abs. and relative motions of sliding pins and collars.
a_{c}---- useful in long-range projectiles, apprecialbly affected by the earth rotation.

* system of axes attached to the earth--- not truly a Newtonian frame.
\rightarrow rotating frame of ref., formulas derived in this section facilitate the study of the motion w.r.t. axes attached to the earth.

