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7.12 SUMMARY: THE EQUATIONS OF LINEAR ELASTICITY

We are now in a position to summarize the equations of the linear theory of
elasticity. The unknown quantities are the linear strain tensor, €,,, the dis-
placement tensor, ., and the stress tensor, ¢,,,. These tensors are a function
of the coordinates y, y2, y3 of the structure. Their tensor properties are denoted
by the following transformation laws:

enn(Th, U2y Us) = €Y1, Y2, Ya)lole, (7.12.1)
am(gl, gZy g3) == uf(yI) y2y y3)l77i7‘y (7122)
GFrn(T1, T2y Us) = (Y1, Y2, Ya)liwrlie- (7.12.3)

The objective of solid mechanics is the complete specification of these three
tensors throughout any given structure under a preseribed loading condition
and/or a geometrical boundary condition. The equations which govern the
behavior of €y, Un, and g, are as follows:

Linear strain-displacement relations

1 /0%y, . OUn
€mn = 5(3—]/” + aym> (7.12.4)

Force equilibrium equations for linear strains

G mn
OYm

+ Fp = 0. (7.12.5)

Constitulive relations for anisotropic materials (without temperature changes)

Tmn = Lannpr€pr, (7126)

€pr = SmnprTpr. (7.12.7)

These last relations, which are different forms of the generalized Hooke’s law,
introduce the elasticity tensor [, and the compliance tensor S,z The
components of the elasticity tensor are a property of the material, and are
determined experimentally. Since most of the high-strength engineering
materials are isotropie, the bulk of the literature in solid mechanics is devoted
to this class of materials. The number of independent components of the
elasticity tensor reduces to two for isotropy, and Egs. (7.12.6) and (7.12.7)
become much simpler.

The stress-strain relations for isotropic materials with changes in temperature
are

L (1 D) — b nar] - & Sn AT (7.12.8)

€nn —

&
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or alternatively, _
Omn = 2U€mn + Nopn€r — (BN + 2u) Spuna AT, (7.12.9)

where

a = Coefficient of thermal expansion,

E = Young’s modulus,

v = Poisson’s ratio,

E .

J— VE .
S+ nd = 2

The boundary conditions which Eqs. (7.12.4), (7.12.5), and either (7.12.8) or
(7.12.9) must satisfy are of two types:

(a) Geometric constraints on a region A, of the surface. These mean the pre-
scription of

(7.12.11)

u = u¥ (7.12.12)

where u* is a prescribed displacement. At the points of support the boundary
displacements are zero.

(b) Applied surface loads on a region Ao of the surface. This specification
means that the interior stresses in region A, must be in equilibrium with the
externally applied surface loads. This restriction is expressed as

ConnNmly = ¥, (7.12.13)
where o* is the prescribed stress vector acting on region A..

We note that there are a total of fifteen unknowns, consisting of six com-
ponents of the strain tensor, three components of the displacement tensor, and
six components of the stress tensor. Balancing these unknowns are fifteen
equations consisting of three equations of equilibrium, six strain-displacement
relations, and six stress-strain relations. A remark should be made here con-
cerning the six strain-displacement relations. We have shown in Section 5.13
that the six strain-displacement relations for linear strain also lead to a set of
six compatibility relations between the components of the strain:

8% €nr 8%€m, 8% € ’emr

Ym Y1 OYnOyr  OUmdYr  OYndyr

(7.12.14)

Thus instead of using the strain-displacement relations one may verify the
efficacy of a solution for the strain components by determining whether the
compatibility equations are satisfied. However, Eqs. (7.12.4) must be em-
ployed in order to determine the displacements of the body.

The exact solution of the complete set of equations has not been accomplished
except for a very few simple cases. The real challenge of solid mechanics to the
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engineer lies, then, in devising suitably accurate approximate solutions. Great
ingenuity is required, first to construct a suitable mathematical model of the
structure, and second, to solve the simplified equations which describe the
mathematical model. Finally, engineering judgment is required to evaluate the
validity of the analysis in the light of past experience and new experiments.

Our further studies in solid mechanics will be devoted to the solutions of the
equations of elasticity. There are many different mathematical tools which
can be used, and these range over a broad spectrum of mathematics from
numerical analysis through the calculus of variations to the complex variable.
The development of these analytical tools and their application to elasticity
is a fascinating experience.

7.13 SIMPLE EXAMPLES OF SOLUTIONS FOR EQUATIONS OF ELASTICITY

As we have observed, for a solid of general geometry and arbitrary boundary
conditions it is not possible to obtain a close solution of the fifteen equations of
elasticity and the corresponding boundary conditions listed in the preceding
section. For some important structural components of simplified geometry and
loading, however, the number of equations can be reduced. Here for purposes
of illustration we will present two simple examples for which the fifteen equations
are satisfied. In addition we will derive the expressions of strain energy for the
simple structural elements.

(a) Tension of a prismatic bar. Let us consider a uniform prismatic bar under
uniform tension stress, as shown in Fig. 7.8. If body forces are not present, the
equations of equilibrium (Eq. 7.12.5) are satisfied by the following components
of stress:

11 = S = Constant,

099 = Og3 — 019 — 023 — 031 = 0. . (7131)

It is seen that the lateral surface around the bar is free of stress. Since all stress
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Fic. 7.8 Prismatic bar under uniaxial stress.
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components except a1 are zero, the boundary conditions given by Eq. (7.12.13)
are satisfied. At the two ends, however, the boundary condition requires that
the prescribed boundary stress vector a* be given by the normal stress Si;.

Assuming that the material is isotropic, we can calculate the state of strain
using Eq. (7.12.8). The result is

€11 = 011 /E,
€20 = €33 = —voy(/E,
€12 = €23 = €33 = O. (7.13.2)

It is obvious that all the compatibility relations (7.12.14) are satisfied, since all
strain components are constants. The strain-energy density U* is simply
[from Eq. (7.10.3)]

U* = (1/2)0’11611, (7133)

which can be written as either
U* = (1/2B)d1y, (7.13.4)

or

U = (E/2)€%,. (7.13.5)
For a bar of cross-sectional area A, length L, and total axial force P, we have

and hence the total strain energy in the bar is
v= [[[ v*av = PPL/24E. (7.13.7)

If the elongation of the bar is A, we have

e, = A/L, (7.13.8)

and
U = AEA?/2L. (7.13.9)

(b) Pure bending of a uniform beam. Consider a uniform beam bent in its
plane of symmetry by two equal and opposite bending moments M, as shown
in Fig. 7.9. Let the y,-axis lie along the centroid of the cross section. The bending
moment as shown is abouf the yj-axis. According to elementary bending
theory the stress components are given by

g1 = Cya,
= by - (7.13.10)
@9 = G33 = G192 = Oa3 = 031 = (,

where C is a constant.
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Fic. 7.9 Prismatic bar under pure bending.

We see that all the equations of equilibrium, Eq. (7.12.5), and the boundary
conditions, Eq. (7.12.13), for the surface around the beam are satisfied. At the
two ends of the beam the boundary condition requires that the prescribed
boundary stress vector ¢* should consist only of normal stresses, o1yi;. The
variation of o is also given by Cys, that is, it must be directly proportional to
the distance from the ys-axis. Since the prescribed boundary stresses o}; must
be equipollent to the applied bending moment M, we have

M= — /f o¥ysdd = — C/f y2dA = —IC, (7.13.11)

where [ is the cross-sectional moment of inertia with respect to the yj-axis:
I = _f_fy% dA. In order to satisfy the other conditions of equilibrium we need
to verify that the resulting axial force and moment about the ys-axis are zero.
This is indeed true:

f/ ¥ dA = C// yadd = 0, (7.13.12)

and
J[ etz dyadys = C f [ vava dyz dys = 0, (7.13.13)

because the yo-axis passes through the centroid, and y; is the axis of symmetry
of the cross section. We can now determine the constant C' from Eq. (7.13.11),

C=—-M/I, (7.13.14)
and substitute this value in Eq. (7.13.10).
o1, = —Mys/1. (7.13.15)
For an isotropic material the strain components are given by

€11 = —Myg/EI, (71316)
€29 €33 — V]l[yg/EI, (71317)
€19 = €33 =— €37 = 0. (71318)
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The six compatibility equations are then satisfied, because the strain com-
ponents are either zero or of only a first power in y3.

Let us now consider the displacement of the beam under the condition of
pure bending. The strain-displacement relations Eq. (7.12.4) yield the following
differential equations:

duy _ Mys

L= = — (7.13.19)
gyiz — ey = yﬂéy; : (7.13.20)
gyiz — ey — Vﬂga, (7.13.21)

%@Ly; 4 %@y‘_?) — (7.13.22)

%@_Z; + %) Sp— (7.13.23)

%(g% + %) = €5 = 0. (7.13.24)

The displacements uy, uq, and uz can be obtained by integrating these equations
when the geometrical conditions, i.e., the constraints of the bar are given. Let
us now focus our attention on the lateral deflection of the beam, i.e., the com-
ponent uz. From Eq. (7.13.19) we obtain

_ Myiys
Er

Uy = + 7, (7.13.25)

where @ may be a function of y, and y3. From Eq. (7.13.24) we obtain

dus duy, _ My, 9w

= -1 L 7.13.26
Y1 Y3 EI dYs ( )
Differentiation with respect to y; gives
32U3 M
i | (7.13.27)

Since the bending moment is not a function of y;, Eq. (7.13.27) yields the
important result that the second derivative of lateral displacement for every
longitudinal fiber of the beam is a constant. (A longitudinal fiber is an element
of the beam with the same y3-coordinate.) If we denote the lateral deflection
of the axis of the beam by w(y,) instead of u3, we have

dw M

@ = BT (7.13.28)
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We recall from calculus that the curvature of a given curve, y = f(x), is
given by
1 d’f/ds”
R (L + (@f/dz)23i2’
where R is the radius of curvature. For a very fat curve for which df/dz is
very small in comparison to unity, the curvature may be represented simply
by the second derivative of the curve, that is,

(7.13.29)

1 d2
1= %fi- (7.13.30)

The deformed shapes of beams are such that the curvatures are small; thus
d*w/dy? is the curvature of the deformed beam. We also find that the normal
strain €;; 1s related to the curvature by

d*w
€11 = -y:;W% (71331)

We consider next the strain energy dU for an element dy; of the beam. Since
the only stress component is a1, we have

2
AU = (% // 7L gy, dy3> dyy, (7.13.32)

dU = (% // Eé, dys dy3> dys. (7.13.33)

Substituting Eq. (7.13.15) into Eq. (7.13.32), and Eq. (7.13.31) into Eq. (7.13.33),
we obtain respectively

or

M2

and
EI (d*w\?

7.14 ENGINEERING BEAM THEORY

At this point it 1s worth while to mention the so-called engineering beam
theory which covers the nonuniform beam under general lateral loading con-
ditions. In such a case, the bounding surface of the beam may not be free of
stress, and/or the body force F3 may not be zero. Also, in general, the shear
force in each section is not zero, and hence the bending moment M is not
constant along the beam. The engineering beam theory, however, also neglects
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the normal stresses o722 and ¢33, because it can be shown that these components
are of a much smaller order of magnitude than o;;. The theory also assumes
that for a beam, the deformation due to shear strain is negligible in comparison
to that due to the normal strain €;;. As a result, the normal stresses and strains
may still be caleulated using Eqgs. (7.13.15) and (7.13.31), although the bending
moment, curvdture, and moment of inertia are no longer constant along ;.
This engineering beam theory also assumes that the moment-curvature relation,
Eq. (7.13.28), will still hold, and that the strain energy of a complete beam can
be calculated by integrating Eq. (7.13.35).

4 p(y))

| E—

Y2

Axis of
symmetry

Frcure 7.10

7.15 SUMMARY: ENGINEERING BEAM THEORY

The equations of engineering beam theory (see Figure 7.10 for coordinates
and other nomenclature) are as follows:

Definition of equipollent transverse shear and bending moment

S =— / g13dA, (7.15.1)
A
M= — / g11Y3 dA. (7152)
A
Displacements
u3 (Y1, Y2, ¥a) = w(y1), (7.15.3)
dw _
w1 (Y1, Yo, y3) = Y3 gy, (7.15.4)
Sirain-displacement relation
d*w
€)1 = —yazy—i' (7.15.5)
Moment-curvature relation
2
dw _ M (7.15.6)

dy2 ~ EI

1
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Force equilibrium

6%181 = p. (7.15.7)
Moment equiltbrium
% =8 (7.15.8)
Stress-strain relation
o1 = FEeyy. (7.15.9)
Bending stress versus moment relation
o1 = — —@ (7.15.10)

Shear siress versus lransverse shear relation

SQ

018 = 77" (7.15.11)
Cross-sectional moment of inertia
I= // y3dA. (7.15.12)
Static moment "
Q= //ya y3 d4. (7.15.13)

PROBLEMS

7.1 (a) Thin flat panels (Fig. P.7.1) with external forces acting in the yi1ys-plane
of the panel are said to be in a state of plane stress, that is, o33 = o013 = ag23 = 0
(see Problem 6.4). For an isotropic material verify the following expressions for
Y11, Yoo, and Y12 in terms of ¢11, 022, and o2 and the elastic constants & and v.

1+

Y = 1 Y = 1 Y =
11 = E,(Gn — vo22), 22 = E(Uzz — vo11), 12 = —p— 0.

(b) Determine the following inverse stress-strain relations, i.e., the expression of
a11, 022, and ¢12 in terms of Y11, Yoo, and Yi2:

E

(Y22 + vY11), a1z = Y12

H,
011 = m('ﬁl—i—ﬂ’n), 022 = T3 1

+

v

How are the elastic constants related to the elasticity tensor En.p.?

7.2 The fibers of a reinforced plastic panel are evenly distributed along three dif-
ferent preferred directions, 44, BB, and CC, which are 60° apart. All are parallel
to the face of the panel, as shown in Fig. P.7.2. One of these directions is along the




