Mathematical Background in Aircraft Structural Mechanics

CHAPTER 2. Beam Theory

SangJoon Shin
School of Mechanical and Aerospace Engineering
Seoul National University

NIMS-KSIAM Computational Mathematics/Engineering Winter School 2013 February 17~22, 2013

❖ One of its dimensions much large than the other two

- ➤ Civil engineering structure assembly on grid of beams with cross-sections having shapes such as T's on I's
- Machine parts beam-like structures lever arms, shafts, etc.
- Aeronautic structures wings, fuselages → can be treated as thin-walled beams

Beam theory

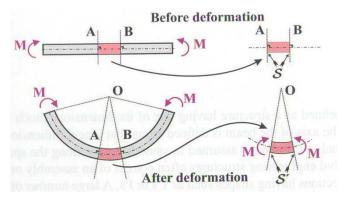
- important role, simple tool to analyze numerous structures valuable insight at a pre-design stage
- Euler-Bernoulli beam theory simplest, must be useful
 - Assumption
 - ① Cross-section of the beam is infinitely rigid in its own plane
 - → in-plane displacement field → ∫ 2 rigid body translations
 1 rigid body rotation
 - ② The cross-section is assumed to remain plane
 - 3 The cross-section is assumed to normal to the deformed axis

5.1 The Euler-Bernoulli assumptions

❖ Fig. 5.1

"pure bending" beam deforms into a curve of constant curvature

→ a circle with center O, symmetric w.r.t. any plane perpendicular to its deformed axis



Kinematic assumptions "Euler-Bernoulli"

- ① Cross-section is infinitely rigid in its own plane
- ② Cross-section remains plane after deformation
- 3 Cross-section remains normal to the deformed axis of the beam
 - → valid for long, slender beams made of isotropic materials with solid cross-sections

5.2 Implication of the E-B assumption

- > E-B assumption
 - ① Displacement field in the plane of cross-section consists solely of 2 rigid body translations $\overline{u}_2(x_1)$, $\overline{u}_3(x_1)$

$$u_2(x_1, x_2, x_3) = \overline{u}_2(x_1) , u_3(x_1, x_2, x_3) = \overline{u}_3(x_1)$$
 (5.1)

② Axial displacement field consists of $\{ \text{rigid body translation } \overline{u}_1(x_1) \}$ 2 rigid body rotation $\Phi_2(x_1), \Phi_3(x_1) \}$

$$u_1(x_1, x_2, x_3) = \overline{u}_1(x_1) + x_3 \Phi_2(x_1) - x_2 \Phi_3(x_1)$$
(5.2)

③ Equality of the slope of the beam the rotation of the section

$$\Phi_3 = \frac{d\overline{u}_2}{dx_1} \qquad \Phi_2 = -\frac{d\overline{u}_3}{dx_1} \qquad (5.3)$$

consequence of the sign convention

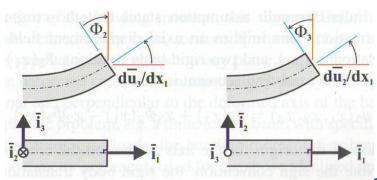


Fig. 5.4. Beam slope and cross-sectional rotation.

5.2 Implication of the E-B assumption

To eliminate the sectional rotation from the axial displacement field

$$u_1(x_1, x_2, x_3) = \overline{u}_1(x_1) - x_3 \frac{d\overline{u}_3(x_1)}{dx_1} - x_2 \frac{d\overline{u}_2(x_1)}{dx_1}$$
 (5.4.a)

 \rightarrow Important simplification of E-B: unknown displacements are functions of the span-wise coord, \mathcal{X}_1 , alone

* Strain field

$$\mathcal{E}_{2} = 0, \quad \mathcal{E}_{3} = 0, \quad \gamma_{23} = 0 \qquad (5.5.a) \leftarrow \text{E-B(1)}$$

$$\gamma_{12} = 0, \quad \gamma_{13} = 0 \qquad (5.5.b) \leftarrow \text{E-B(2)}$$

$$\mathcal{E}_{1} = \frac{\partial u_{1}}{\partial x_{1}} = \frac{d\overline{u_{1}}(x_{1})}{dx_{1}} - x_{3} \frac{d^{2}\overline{u_{3}}(x_{1})}{dx_{1}^{2}} - x_{2} \frac{d^{2}\overline{u_{2}}(x_{1})}{dx_{1}^{2}} \quad (5.5.c)$$

$$\overline{\mathcal{E}}_{1}(x_{1}) = \frac{d\overline{u_{1}}(x_{1})}{dx_{1}}, \quad \kappa_{2}(x_{1}) = -\frac{d^{2}\overline{u_{3}}(x_{1})}{dx_{1}^{2}}, \quad \kappa_{3}(x_{1}) = \frac{d^{2}\overline{u_{2}}(x_{1})}{dx_{1}^{2}}.$$
Sectional axial strain Sectional curvature about $\overline{i_{2}}$, $\overline{i_{3}}$ axes

- > Assuming a strain field of the form Eqs (5.5.a), (5.5.b), (5.7)
 - → Math. Expression of the E-B assumptions

5.3 Stress resultants

❖ 3-D stress field ⇒ described in terms of sectional stresses called "stress resultants"

→ equipollent to specified components of the stress field

> 3 force resultants { $N_1(x_1)$ axial force $V_2(x_1), V_3(x_1)$ transverse shearing forces

$$N_1(x_1) = \int_A \sigma_1(x_1, x_2, x_3) dA$$
 (5.8)

$$V_2(x_1) = \int_A \tau_{12}(x_1, x_2, x_3) dA, \quad V_3(x_1) = \int_A \tau_{13}(x_1, x_2, x_3) dA$$
 (5.9)

 \triangleright 2 moment resultants : $M_2(x_1), M_3(x_1)$ bending moments

$$M_2(x_1) = \int_A x_3 \sigma_1(x_1, x_2, x_3) dA$$
 (5.10a)

$$M_3(x_1) = -\int_A x_2 \sigma_1(x_1, x_2, x_3) dA$$
 (5.10b)

(+) equipollent bending moment about $\ \overline{i}_3$ (Fig 5.5)

bending moments computed about point $P(x_{2p}, x_{3p})$

$$M_2^p(x_1) = \int_A (x_3 - x_{3p}) \sigma_1(x_1, x_2, x_3) dA$$
 (5.11a)

$$M_3^p(x_1) = \int_A (x_2 - x_{2p}) \sigma_1(x_1, x_2, x_3) dA$$
 (5.11b)

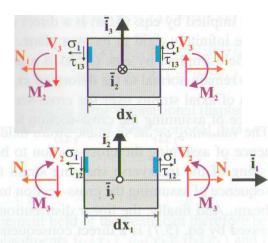


Fig. 5.5. Sign convention for the sectional stress resultants

- \diamond Distributed axial load $p_1(x_1)$ [N/m], concentrated axial load $P_1[N]$
 - \rightarrow axial displacement field $\overline{u}_1(x_1) \Rightarrow$ 'bar' rather than 'beam'

5.4.1 Kinematic description

Axial loads causes only axial displacement of the section

Eq. (5.4)
$$\rightarrow u_1(x_1, x_2, x_3) = \overline{u}_1(x_1)$$
 (5.12a) \rightarrow uniform over the x-s (Fig. 5.7) $u_2(x_1, x_2, x_3) = 0$ (5.12b)

$$u_3(x_1, x_2, x_3) = 0$$
 (5.12c)

Axial strain field $\mathcal{E}_1(x_1, x_2, x_3) = \overline{\mathcal{E}}_1(x_1)$ (5.13)

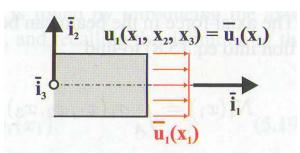


Fig. 5.7. Axial displacement distribution.

5.4.2 Sectional constitutive law

- ❖ $\sigma_2 << \sigma_1$, $\sigma_3 << \sigma_2$ ⇒ transverse stress components ≈ 0, $\sigma_2 \approx 0$, $\sigma_3 \approx 0$
 - Seneralized Hooke's law $\rightarrow \sigma_1(x_1, x_2, x_3) = E\varepsilon_1(x_1, x_2, x_3)$ $\uparrow \qquad (5.14)$
- Inconsistency in E-B beam theory

Eq. (5.5a) \rightarrow $\mathcal{E}_2=0, \mathcal{E}_3=0$ Hooke's law \rightarrow if $\sigma_2=\sigma_3=0$, then $\mathcal{E}_2=-v\sigma_1/E$, $\mathcal{E}_3=-v\sigma_1/E$ (Poisson's effect) \rightarrow very small effect, and assumed to vanish

Eq.(5.13)
$$\rightarrow$$
 (5.14) : $\sigma_1(x_1, x_2, x_3) = E\varepsilon_1(x_1, x_2, x_3)$ (5.15)

Axial force

$$N_{1}(x_{1}) = \int_{A} \sigma_{1}(x_{1}, x_{2}, x_{3}) dA = \left[\int_{A} E dA\right] \overline{\varepsilon}_{1}(x_{1}) = S\overline{\varepsilon}(x_{1})$$

$$\uparrow_{\text{Axial stiffness}} \uparrow$$

$$S = EA \text{ for homogeneous material}$$
(5.16)

→ constitutive law for the axial behavior of the beam at the sectional level

At the "infinitesimal" level

5.4.3 Equilibrium eqns

• Fig. 5.8 \rightarrow infinitesimal slice of the beam of length dx_1

force equilibrium in axial dir.
$$\rightarrow \frac{dN_1}{dx_1} = -p_1$$
 (5.18)

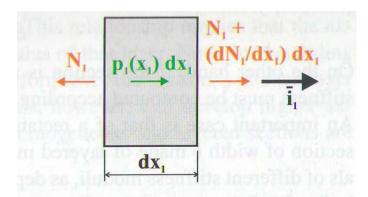


Fig. 5.8. Axial forces acting on an infinitesimal slice of the beam.

Eq. (1.4) \rightarrow equilibrium condition for a differential element of a 3-D solid

Eq. (5.18) \rightarrow equilibrium condition of a slice of the beam of differential length dx_1

5.4.4 Governing eqns

❖ Eq (5.16) Eq. (5.18) and using Eq. (5.6)

$$\frac{d}{dx_1} \left[S \frac{d\overline{u}_1}{dx_1} \right] = -p_1(x_1) \tag{5.19}$$

- 3 B.C ① Fixed(clamped) : $\overline{u}_1 = 0$
 - ② Free (unloaded) : $N_1 = 0 \rightarrow \frac{d\overline{u}_1}{dx_1} = 0$
 - 3 Subjected to a concentrated load $P_1: N_1 = P_1 \rightarrow S \frac{d\overline{u_1}}{dx_1} = P_1$

5.4.5 The sectional axial stiffness

Homogeneous material

$$S = EA \tag{5.20}$$

❖ Rectangular section of width b made of layered material of different moduli(Fig. 5.9)

$$S = \int_{A} E dA = \sum_{i=1}^{n} E^{[i]} \int_{A^{[i]}} dA^{[i]} = \sum_{i=1}^{n} E^{[i]} b(x_3^{[i+1]} - x_3^{[i]})$$
 weighting factor thickness

"weighted average" of the Young's modulus

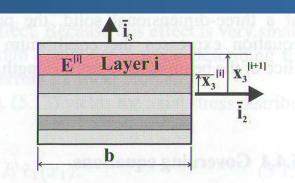


Fig. 5.9. Cross-section of a beam with various layered materials.

(5.21)

5.4.6 The axial stress distribution

Eliminating the axial strain form Eq.(5.15) and (5.16)

$$\sigma_1(x_1, x_2, x_3) = \frac{E}{S} N_1(x_1)$$

Homogeneous material

$$\sigma_1(x_1, x_2, x_3) = \frac{N_1(x_1)}{A}$$
 (5.22)

- → Uniformly distributed over the section
- Sections made of layers presenting different moduli

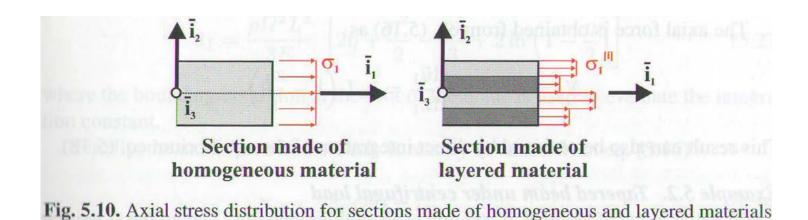
$$\sigma_1^{[i]}(x_1, x_2, x_3) = E^{[i]} \frac{N_1(x_1)}{S}$$
 (5.23)

→ Stress in layer I is proportional to the modulus of the layer

- ❖ Eq (5.13)
 ⇒ axial strain distribution is uniform over the section, i.e. each layer is equally strained (Fig. 5.10)
 - Strength criterion

$$\frac{E}{S} |N_{1\text{max}}^{tens}| \le \sigma_{allow}^{tens}, \ \frac{E}{S} |N_{1\text{max}}^{comp}| \le \sigma_{allow}^{comp}$$
 (5.24)

in case compressive, buckling failure mode may occur → Chap. 14



♦ Fig. 5.14 → "transverse direction" distributed load, $P_2(x_1)$ [N/m] concentrated load, P_2 [N]

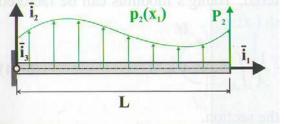


Fig. 5.14. Beam subjected to transverse loads.

bending moments transverse shear forces, and axial stresses will be generated transverse shearing

5.5.1 Kinematic description

❖ Assumption → transverse loads only cause

General displacement field (Eq. (5.6))

$$u_1(x_1, x_2, x_3) = -x_2 \frac{d\overline{u}_1(x_1)}{dx}$$
 (5.29a)

$$u_2(x_1, x_2, x_3) = \overline{u}_2(x_1)$$
 (5.29b)

$$u_3(x_1, x_2, x_3) = 0$$
 (5.29c)

transverse displacement curvature of the section

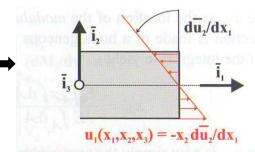


Fig. 5.15. Axial displacement distribution on cross-section.

→ linear distribution of the axial displacement component over the x-s

Only non-vanishing strain component

$$\mathcal{E}_1(x_1, x_2, x_3) = -x_2 \kappa_3(x_1)$$
 (5.36) \rightarrow linear distribution of the axial strain

5.5.2 Sectional constitutive law

Linearly elastic material, axial stress distribution

$$\sigma_1(x_1, x_2, x_3) = -Ex_2 \kappa_3(x_1)$$
(5.31)

Sectional axial force by Eq. (5.8)

$$N_1(x_1) = \int_A \sigma_1(x_1, x_2, x_3) dA = -\left[\int_A E x_2 dA\right] \kappa_3(x_1)$$
 (5.32)

Axial force = 0 since subjected to transverse loads only

$$\kappa_{3} \neq 0, \quad then \quad \left[\int_{A} Ex_{2} dA \right] = 0$$

$$\Rightarrow \quad x_{2c} = \frac{1}{S} \int_{A} Ex_{2} dA = \frac{S_{2}}{S} = 0$$

$$\uparrow \qquad (5.33)$$

Location of the "modulus-weighted centroid" of the x-s

If homogeneous material

$$x_{2c} = \frac{E \int_{A} x_{2} dA}{E \int_{A} dA} = \frac{1}{A} \int_{A} x_{2} dA = 0$$
 (5.34)

- \rightarrow \mathcal{X}_2 is simply the area center of the section
- The axis system is located at the modulus-weighted centroid area center if homogeneous material center of mass 3 coincide
- Center of mass $x_{2nn} = \frac{\rho \int_A x_2 dA}{\rho \int_A dA} = \frac{\int_A x_2 dA}{\int_A dA} = x_{2c}$
 - > Bending moment by Eq. (5.31)

Constitutive law for the bending behavior of the beam bending moment \propto the curvature

$$\Rightarrow M_1(x_1) = H_{33}^c \kappa_3(x_1)$$
 (5.37) Bending stiffness ("flexural rigidity")

"moment-curvature" relationship

5.5.3 Equilibrium eqns

- **♦ Fig. 5.16** → infinitesimal slice of the beam of length dx_1 $M_3(x_1), V_2(x_1)$ acting at a face at location x_1
 - @ $x_1 + dx_1$, evaluated using a Taylor series expansion, and H.O terms ignore

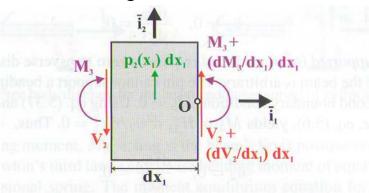


Fig. 5.16. Equilibrium of an infinitesimal slice of the beam.

2 equilibrium eqns vertical force
$$\rightarrow \frac{dV_2}{dx_1} = -p_2(x_1)$$
 (5.38a) moment about 0 $\rightarrow \frac{dM_3}{dx_1} + V_2 = 0$ (5.38b) $\rightarrow \frac{d^2M_3}{dx_1^2} = p_2(x_1)$ (5.39)

5.5.4 Governing eqns

Eq. (5.37) Eq. (5.39), and recalling Eq. (5.6)

$$\frac{d^{2}}{dx_{1}^{2}} \left[H_{33}^{c} \frac{d^{2}\overline{u}_{2}}{dx_{1}^{2}} \right] = p_{2}(x_{1})$$
(5.40)

4 B.C

Clamped end
$$\overline{u}_2 = 0, \ \frac{d\overline{u}_2}{dx_1} = 0$$

② Simply supported (pinned)
$$\overline{u}_2 = 0$$
, $\frac{d^2\overline{u}_1}{dx_1^2} = 0$

③ Free(or unloaded) end
$$\frac{d^2\overline{u}_2}{dx_1^2} = 0, \quad -\frac{d}{dx_1} \left[H_{33}^c \frac{d^2\overline{u}_2}{dx_1^2} \right] = 0$$

4 End subjected to a concentrated transverse load
$$P_2$$
 $P_2 = V_2 = -\frac{dM_3}{dx_1}$

$$\frac{d^{2}\overline{u}_{2}}{dx_{1}^{2}} = 0, -\frac{d}{dx_{1}} \left[H_{33}^{c} \frac{d^{2}\overline{u}_{2}}{dx_{1}^{2}} \right] = P_{2}$$

⑤ Rectilinear spring(Fig. 5.17) $-V_2(L) = k\overline{u}_2(L)$ sign convention

$$\frac{d}{dx_1} \left[H_{33}^c \frac{d^2 \overline{u}_2}{dx_1^2} \right]_{x_1 = L} - k \overline{u}_2(L) = 0, \quad \frac{d^2 \overline{u}_2}{dx_1^2} = 0$$
(+) when the spring is located at the left end

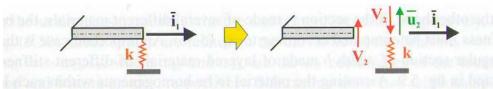


Fig. 5.17. Free body diagram for the beam end linear spring of stiffness constant k.

6 Rotational spring(Fig. 5.18) $-M_3(L) = k\Phi_3(L)$

$$\left| H_{33}^{c} \frac{d^{2} \overline{u_{2}}}{dx_{1}^{2}} \right|_{x_{1}=L} + k \frac{d^{2} \overline{u_{2}}}{dx_{1}^{2}} = 0, \quad -\frac{d}{dx_{1}} \left[H_{33}^{c} \frac{d^{2} \overline{u_{2}}}{dx_{1}^{2}} \right]_{x_{1}=L} = 0$$
(-) when at the left end

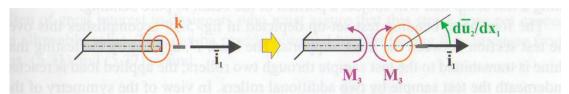


Fig. 5.18. Free body diagram for a beam with end rotational spring of stiffness constant k.

5.5.5 The sectional bending stiffness

Homogeneous material

$$H_{33}^c = EI_{33}^c (5.41)$$

$$I^{c}_{33} = \int_{A} x_{2}^{2} dA \tag{5.42}$$

: purely geometric quantity, the area second moment of the section computed about the area center

Rectangular section of width b made of layered materials (Fig. 5.9)

$$H_{33}^{c} = \int_{A} E x_{2}^{2} dA = \sum_{i=1}^{n} E^{[i]} \int_{A^{[i]}} x_{2}^{2} dA^{[i]} = \frac{b}{3} \sum_{i=1}^{n} E^{[i]} \left[(x_{2}^{[i+1]})^{3} - (x_{2}^{[i]})^{3} \right]$$
 (5.43)

"weighted average" of the Young's moduli

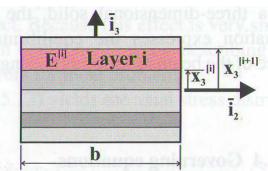


Fig. 5.9. Cross-section of a beam with various layered materials.

5.5.6 The axial stress distribution

♦ Local axial stress → eliminating the curvature from Eq. (5.3), (5.37)

$$\sigma_1(x_1, x_2, x_3) = -Ex_2 \frac{M_3(x_1)}{H_{33}^c}$$
 (5.44)

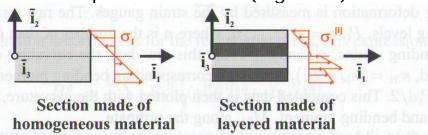
homogeneous material

$$\sigma_1(x_1, x_2, x_3) = -x_2 \frac{M_3(x_1)}{I_{33}}$$
 (5.45)

- → linearly distributed over the section, independent of Young's modulus
- various layer of materials

$$\sigma_1^{[i]}(x_1, x_2, x_3) = -E^{[i]}x_2 \frac{M_3(x_1)}{H_{33}^c}$$
 (5.46)

 \rightarrow axial STRAIN distribution is linear over the section \leftarrow Eq.(5.30) axial stress distribution \rightarrow piecewise linear (Fig. 5.20)



Strength criterion

$$\frac{\left|x_{2}^{\max}\right|}{H_{33}^{c}}E\left|M_{3}^{\max}\right| \leq \sigma_{allow}^{comp}, \quad \frac{\left|x_{2}^{\max}\right|}{H_{33}^{c}}E\left|M_{3}^{\max}\right| \leq \sigma_{allow}^{ten},$$
Maximum (+) bending moment in the beam

- Layers of various material
 - → must be computed at the { top } locations of each ply bottom}

5.5.7 Rational design of beams under bending

- * "Neutral axis" \rightarrow along axis \overline{i}_3 which passes through the section's centroid
 - Material located near the N.A carries almost no stress
 - Material located near the N.A contributes little to the bending stiffness
 - → Rational design → removal of the material located at and near the N.A and relocation away from that axis

- Fig. 5.21 \rightarrow { rectangular } section, same mass $m = bh\rho$ ideal a thin web would be used to keep the 2 flanges
 - Ratio of bending stiffness

$$\frac{H_{ideal}}{H_{rect}} = \frac{E \cdot 2 \left[\frac{b(h/2)^2}{12} + \frac{bh}{2} d^2 \right]}{E \frac{bh^3}{12}} = \frac{1}{4} + 12 \left(\frac{d}{h} \right)^2$$
For $d/h = 10$,
$$\frac{H_{ideal}}{H_{rect}} \cong 1200$$

Ratio of max. axial stress

$$\frac{\sigma_{ideal}}{\sigma_{rect}} = \frac{E\frac{h}{2}M_{3}I_{ideal}}{I_{ideal}E\left(d + \frac{h}{4}\right)M_{3}} = \frac{\frac{1}{4} + 12\left(\frac{d}{h}\right)^{2}}{\frac{1}{2} + 2\left(\frac{d}{h}\right)}$$

For
$$d/h = 0$$
,
$$\frac{\sigma_{rect}^{\text{max}}}{\sigma_{ideal}^{\text{max}}} \cong 6(d/h) = 60$$

- → ideal section can carry a 60 times larger bending moment
- Ideal section = "I beam," but prone to instabilities of web and flange buckling

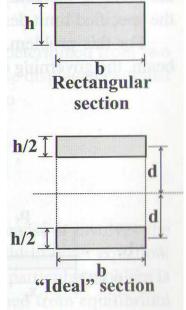


Fig. 5.21. A rectangular section, and the ideal section.

5.6 Beams subjected to combined and transverse loads

♦ Sec. 5.4, 5.5 → convenient to locate the origin of the axes system at the centroid of the beam's x-s

5.6.1 Kinematic description

$$u_{1}(x_{1}, x_{2}, x_{3}) = \overline{u}_{1}(x_{1}) - (x_{2} - x_{2C}) \frac{d\overline{u}_{2}(x_{1})}{dx_{1}}$$
 (5.73a)

$$u_{2}(x_{1}, x_{2}, x_{3}) = \overline{u}_{2}(x_{1})$$
 (5.73b)

$$u_{3}(x_{1}, x_{2}, x_{3}) = 0$$
 (5.73c)

* Strain field

$$\varepsilon_1(x_1, x_2, x_3) = \overline{\varepsilon}_1(x_1) - (x_2 - x_{2C})\kappa_3(x_1)$$
(5.74)

5.6 Beams subjected to combined and transverse loads

5.6.2 Sectional constitutive law

Axial stress distribution

$$\sigma_1(x_1, x_2, x_3) = E\overline{\varepsilon}_1(x_1) - E(x_2 - x_{2C})\kappa_3(x_1)$$
(5.75)

Axial force

$$\begin{split} N_1 &= \int_A \left[E \overline{\varepsilon}_1(x_1) - E(x_2 - x_{2C}) \kappa_3(x_1) \right] dA \\ &= \left[\int_A E dA \right] \overline{\varepsilon}_1(x_1) + \left[\int_A E(x_2 - x_{2C}) dA \right] \kappa_3(x_1) \\ &\uparrow S \text{ (axial stiffness)} \qquad \uparrow_{=\int_A E x_2 dA - x_{2C} \int_A E dA = S_2 - S x_{2C} = 0} \end{split}$$

Bending moment

- * "decoupled sectional constitutive law"

 2 crucial steps { ① Displacement field must be in the form of Eq. (5.73)

 Bending moment must be evaluated w.r.t. the centroid

 - → Thus, centroid plays a crucial rule

5.6 Beams subjected to combined and transverse loads

5.6.3 Equilibrium eqns

- Fig. 5.47 \rightarrow infinitesimal slice of the beam of length dx_1
 - Force equilibrium in horizontal dir.

$$\frac{dN_1}{dx_1} = -p_1 \qquad \Rightarrow (5.18)$$

Vertical equilibrium

$$\frac{dV_2}{dx_1} = -p_2$$

> Equilibrium of moments about the centroid

$$\frac{dM_3}{dx_1} + V_2 = \underbrace{(x_{2a} - x_{2C})}_{\uparrow} p_1$$
 (5.77)

Moment arm of the axial load w.r.t the centroid

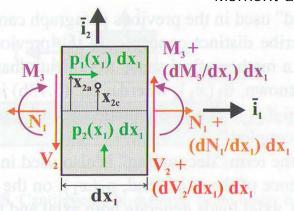


Fig. 5.47. Axial forces acting on an infinitesimal slice of the beam

5.6 Beams subjected to combined and transverse loads

5.6.4 Governing eqns

$$\frac{d}{dx_1} \left[S \frac{d\overline{u}_1}{dx_1} \right] = -p_1(x_1) \qquad (5.78a) \implies (5.19)$$

$$\frac{d^2}{dx_1^2} \left[H_{33}^c \frac{d^2\overline{u}_2}{dx_1^2} \right] = p_2(x_1) + \frac{d}{dx_1} \left[(x_{2a} - x_{2c}) p_1(x_1) \right] \qquad (5.78b) \implies \text{almost similar to } (5.19) \text{ concept}$$

$$\rightarrow \text{"decoupled" eqns} \left\{ \begin{array}{c} (5.78a) \rightarrow \overline{u}_1(x_1) \\ (5.78b) \rightarrow \overline{u}_2(x_1) \end{array} \right\} \text{ can be independently solved}$$

If axial loads are applied @ centroid, extension and bending are "decoupled"
If axial loads are **not** applied @ centroid, extension and bending are "coupled"