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Dynamic aeroelasticity

Two principal phenomena
Dynamic instability (flutter)

Responses to dynamic load, or modified by aeroelastic effects

Flutter -+ self-excited vibration of a structure arising from the
interaction of aerodynamic elastic and internal loads
“response” - forced vibration

“Energy source” - flight vehicle speed

Typical aircraft problems
Flutter of wing

Flutter of control surface

Flutter of panel




Dynamic aeroelasticity

= Stability concept

If solution of dynamic system may be written or
N .
y(x,t) =D ¥ (x) o)
k=1

a)o, <0,0, #0= Convergent solution : “stable”

(4

b) o, =0,w, # 0= Simple harmonic oscillation : "stability boundary*
c) oy > 0,0, # 0= Divergence oscillation : “unstable”
d) o, <0,0, =0= Continuous convergence : “stable”

e) o, =0,0, =0= Time independent solution : “stability boundary”

f) o, >0, =0= Continuous divergence : “unstable”




Dynamic aeroelasticity

= Flutter of a wing
Typical section with 2 D.O.F

z

e e I

o 4 Undeflected airfoil
centerline—

il i??dddd? A

K, K, : torsional, bending stiffness




Dynamic aeroelasticity

= First step in flutter analysis

- Formulate egns of motion
- The vertical displacement at any point along the mean

aerodynamic chord from the equilibrium z=0 will be taken as Z,(X,t)
Z,(X,t)=—h—-(X—x,)

- The egns of motion can be derived using Lagrange’s egn

dfoL) oL _0
dtlog ) oq

L=T-U




Dynamic aeroelasticity

- The total kinetic energy(T)

b
1 “2 ¢ " . ; 1 .2 2
=-h jpdx+hajp(x—xea)dx+§a J (x=x)?dx
" " } L J
| |
m S, |
(airfoil mass) (static unbalance) (mass moment of inertia
about c.g.)

*Note) if %a =%y, thenS_ =0 by the definition of c.g.

Therefore,

T=£mh2+%ld2+8ahd




Dynamic aeroelasticity

- The total potential energy (strain energy)

U :lkhh2+1kaa2
2 2
- Using Lagrange’s egns with L=T —-U

¢ =h,0,=c
N mfj+ S d+kh=0Q,
Sh+l a+k a=Q,

Where Q,,Q,are generalized forces associated with two d.o.f's h,«

respectively.




Dynamic aeroelasticity

Q =-L=—L(a,h,a,hé,h, )
Q, =M, =M_(a,h,ahdh,:)

Governing eqgn.
ol e
= + =
s, I llal |0 K |la| |M,
- For approximation, let’s use quasi-steady aerodynamics

h
L= qSCLa (Of + U—)

e}

M ac chCmdd

M = (Xea = Xoc)e L+ M, =eqSC, (a+ UL) +0S.,C,, @

[e e}




Dynamic aeroelasticity

*Note) Three basic classifications of unsteadiness (linearized

potential flow)

i) Quasi-steady aero: only circulatory terms due to the bound
vorticity. Used for characteristic freq. below2Hz (e.g.,
conventional dynamic stability analysis)

ii) Quasi-unsteady aero: includes circulatory terms from both bound
and wake vorticities. Satisfactory results for 2Hz <, ®, <10Hz,
Theodorsen is one that falls into here. (without apparent mass
terms)

iii) Unsteady aero: “quasi-unsteady”+"apparent mass terms”

(non-circulatory terms, inertial reactions: «, h )

For o >10Hz , for conventional aircraft at subsonic speed.




Dynamic aeroelasticity

Then, aeroelastic systems of equations becomes
qSC,

. 0 .
m Sa h N U_ h N Kh qSCLa h B 0
S, | ||a 4SeC,_ a| | 0 K,—gseC_|la] [0

- For stability_/, we can obtain characteristic egn. of the system and

analyze the roots.

neglect damping matrix for first,

B R by
S, I, |la 0 K,—03C,_ |la 0

Much insight can be obtained by looking at the undamped system
(Dowell, pp. 83)




Dynamic aeroelasticity

Set a =ae™ h=he”
N (mp*+K,)  (S,p°+aSC.,) |[h ot _ |0
S.p*  (I,p°+K,—qSeC, ) || & 0

For non-trivial solution,

Characteristic egn., det(A) =0

(ml, —S,)p* +[K,1, +(K, —gSeC_)m—-gSC,,S,]p* +K (K, —gSeC, ) =0
\ J \ " J \ i

Y \ Y

A B C

, _ BB’ -4AC

S p

2A




Dynamic aeroelasticity

The signs of A, B, C determine the nature of the solution.

A>0,C>0 (ifd<Qp)
B Either (+) or (-)
B=mK, +K,l,—-[me+S,]qSC,

e If[me+S,]1<0,B>0 for all {

« Otherwise B<0 when

Ke — ALY —[1+S“} gSeC, <0

€ me me




Dynamic aeroelasticity

- Two possibilities for B ( B>0 and B<0)
i) B>O0:
@ B*—4AC >0, p* are real, negative, so p is pure imaginary —
neutrally stable
@ B*—-4AC <0, p° is complex, at least one value should have a
positive real part — unstable
@ B?-4AC =0 — stability boundary

« Calculation of (¢

DgZ +Eq. +F=0 «(from B2?-4AC =0,stability boundary)

~E++E?-4DF
O =

2D




Dynamic aeroelasticity

where,

D={[me+s,]sc, |’

(24

E={-2[me+S,][mK, +KqI,]+4[ml, -8’ JeK, |sC,

F=[mK, +K,I, ] =4[ml, -S2 KK,

@ At least, one of the 0 Must be real and positive in order for flutter
to occur.
@ If both are, the smaller is the more critical.

® If neither are, flutter does not occur.

@ If S, <0(c.g. is ahead of e.a), no flutter occurs(mass balanced)




Dynamic aeroelasticity

ii) B<0: B will become (-) only for large g
B?—4AC =0 will occur before B=0 since A>0,C>0
". To determine (g, only B>0 need to be calculated.
Examine Pas ( increases
Low 0 — p =i, *iw,(B° —4AC > 0)
Higher q — p = i, *iw,(B° —4AC = 0) —> stability boundary
More higher = p=—0; im0, tiw, (B —4AC <0) -
dynamic instability
Even more higher 4 — P=0,%l@,(C =0) — stability boundary

Flutter condition: B2 —4AC =0
Torsional divergence: C=0




Dynamic aeroelasticity

Graphically,
K K
of = af =t
|, m
U = 1 *Undamped + Im(p)
1~ % >/ SyStem X
i —
U, =, |
E » ( 0 >
.y e / Re(p)
| —
o > 0(unstable)
1 > q
o > O(stable)
- Effect of static unbalance
In Dowell’s book, after Pines[1958] ,
S, <0 — avoid flutter, if S, = o,q_F _1-%

qD a)a




Dynamic aeroelasticity

1f dp <0(e<0) &<l.O:>qF <0 no flutter
)

a

W
If g,>0 and —>1.0= no flutter
%

(24

- Inclusion of damping— “can be a negative damping”
for better accuracy,
mg+cg+Kqg=0, where i 4SC_
U,

qSC,
U

o0

= —qscC,,

The characteristic equation is now in the form of

Ap'+ApP +Ap°+Ap+A =0




Dynamic aeroelasticity

AP + AP +ADP +AP+A =0--*
« Routh criteria for stability

; At critical position, the system real part becomes zero, damping
becomes zero.

Substitute pP=I® into (*), we get,
Ao*-Aw’+A =0
{ i(—Aw’ +Aw)=0
From the second egn, af:% , substitute into first equation, then,

&[gjz—%[ﬁjm:o or AN —AAA+ AN =0

A




Dynamic aeroelasticity

And, we can examine P as { increases,

Low q— p=-0,tlw,—0o, tiw, —>damped natural freq.

Higher q— p=-0,tio, tio,

More higher q— p=-0, fim,to, *i®w, —»>dynamic instability.

,,,,,,, , - Static instability ---| K |= 0
“ L - Dynamic instability

a) frequency coalescence
! (unsymmetric K)
o b) Negative damping (C;; <0)
c) Unsymmetric damping
(gyroscopic)

4
O

] > q




Consider disturbance from equilibrium

Straight Aircraft Wing

i

b — | b e

S Undeflected airfoil
centerline— f .

w7

Using modal method, the displacement (W,,) and rotation (6,.) at

elastic axis can be expressed as

<

-

N . .

w,, = ¥ h.(y)q,(t) q,(t): generalized (modal) coordinate
=1 where h (y),«, (y): mode shape
N

0.,.=> a (y)q,(t) N : total number of modes
=1

\




Straight Aircraft Wing

For N =4,
a) h =1, =0: rigid translation mode (@, =0)

b) h, =x,,a, =0: rigid pitch mode about c.g. (@, =0)
c) hy(y),a,(y): 1st bending of wing (@, #0)

d) h,(y),a,(y): 1st torsion of wing («, #0)

A A

1st bending mode ¢
(bending dominated)

»
»

y y

v

Modes can be assumed, or calculated from mass-spring

representation. The displacements and rotations at any point

w(X, y,t) =W, +(X—X)6., =i[hr+(x—xo)ar}qr(t)

r=1

o(x,y,t)=6, —Zarqr(t)




Straight Aircraft Wing

The kinetic energy (T) is

LKLY
:_”mz hr"‘(X_Xo)ar]quZNl:[hs+(X_Xo)0‘s]qstdy
—ZZmrsq d,

r=1 s=1

where, m, = J.()I[MhrhS +1a.0,+S, (ha, +ha, )] dy




Straight Aircraft Wing

The potential energy (U) is

2 2
u-1f E|£a j —IGJ(aQ ]dy
290 oy’ oy
= EIZh”q Zh dy+%_f;GJZa;quN:as'qsdy
1 . r=1 s=1
EZZKrsqrqs

r=1 s=1

where, K, = [ EINNdy+ [ Glala'dy

[Note] K_=0 for rigid modes 1,2, since h'=h/=0and o =a, =0




Straight Aircraft Wing

Finally, the work done by airloads,

| | N
OW = __[0 Leaaweady+_[o M,,00..dy — L, SWyr + M (60,7 = ;Qré‘qr
subscript HT :horizontal tail contribution (rigid fuselage assumption)
|
Where, Qr :jo(_hr Lea +arMea)dy_hr(HT)LHT +ar(HT)MHT

I 1
[NOte] r=1- Ql - _Io Leady_ I-HT - _E LTotaI

1
r=2- QZ = E I\/lTotaI (CG)

place T,U, and Q, into the Lagrange’s equation
d| oT or ouU
— + :Qr
del aq, ) dq, g
yield the equation of motion

r

Active Aeroelasticity and Rotorcraft Lab.



Straight Aircraft Wing

Equation of motion in matrix form

00 0 0]7(qg)
oo o o |lg
mrs r + 4 (= Qr
[ ]{q} O O K33 K34 q3 { }
_0 0 K43 K44_ 104

zeros are associated with rigid body modes

[Note] If we used normal modes, W(X,Yy,t)= Z¢ (x,¥)q,(t)

free-free normal mode

The equation of motion would be uncoupled

]—)om.,[K

[m

rs




Straight Aircraft Wing

[Note] Free-free normal mode vs Uncoupled modes
\ J \ J

Y !

from entire structures for individual components

) , then, combine together by
qur + I\/Ira)rqr :Qr

Rayleigh-Ritz method,
Zmrsqs +Zkrsqs = O

,, |

(more accurate) (more versatile)




Straight Aircraft Wing

Now, let’s introduce the aerodynamic load by considering

2-D, incompressible, strip theory
L. = 7pb?[ VW, +Ud,, —bad}, |+ 27pUbC(K) [w +U0, —b(5- a)eea]
M., = zpb’ [a\i\'/ea +U (;—a)éea —b(§+a2)[9'ea]

+27pUb” (5 + a)c:(k)[wea +U0, -b(;- a)Hea]

\ J
1

lift deficiency fn. °c airspeed (downwash)
ob  wC {2
% k = e
u 22U
b | b i
——E Undeflected airfoil
centerline fL




Unsteady Aeroelasticity

- Unsteady Aeroelasticity in Incompressible Flow
(B.A.H p.272 and B.A. p.119)
- For incompressible flow (M <<1)
a separation can be made between circulatory and non-circulatory
airloads
- When the airfoil performs chordwise rigid motion.

the circulatory lift depends only on the downwash at the f{C station

Zc
4

w, =[wea+ueea—b(;—a)eea]: downwash at ’c

L, = 7pb? | W, +U 8, ~badl, |+270UbC(K) [w +U6, -b(3- a)eea]

! !

“always acts at iC " lift deficiency fn.




Unsteady Aeroelasticity

(Wea = Z hsqs
eea = Zasqs

and placing these into L,,M_, yields

However,

Qr :I;(_hrLea+arMea)dy+H'O'T :Qr (qs’qs’qs)

coupled set of homogeneous differential equations.
For stability analysis, assume ¢, (t)=0.e"

where p=o+i®w , and for

a)+o,w=0 /\ A "flutter"

b)+o,0=0 » "divergence"




