Aeroelasticity

2012

Prof. SangJoon Shin

Active Aeroelasticity and Rotorcraft Lab.

Index

- 0. Introduction
- 1. Static Aeroelasticity
- 2. Unsteady Aerodynamics
- 3. Dynamic Aeroelasticity
- 4. Turbomachinery Aeroelasticity
- 5. Helicopter Aeroelasticity

Static Aeroelasticity

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Static Aeroelasticity

- Definition ··· interaction of aerodynamic and elastic force intensive to rate and acceleration of the structural deflection
- Two class of problems
 - 1. Effects of elastic deformation on the airloads
 - ··· normal operating condition \rightarrow performance, handling qualities, structural load distribution
 - 2. Static stability ... divergence

[Note] Instability ··· tendency to move away from

equilibrium

static ···· $e^{(a+iw)t}$, a > 0, w = 0

··· consider a rigid airfoil mounted on an elastic support (in a wind tunnel)

 $\boldsymbol{\theta}$: elastic angle of attack

$$\alpha = \alpha_r + \theta$$

 $\alpha_{i,\alpha} : \subset (+)$

L: lift, \uparrow (+), $L = \frac{1}{2}\rho U^2 SC_L$, where *U*: flow speed, ρ : flow density *W*: weight

 $q: \ \frac{1}{2}
ho U^2$, dynamic pressure

S: reference area = $c \cdot 1$

C_L: lift coefficient

 $M_{ac}: qScC_{M_{ac}}$, where : pitching moment coefficient at a.c.

[Note] $C_L = fn.(\alpha, M, \text{airfoil shape})$ $C_{M_{ac}} = fn.(M, \text{airfoil shape})$

From a Taylor series

$$C_{L} = C_{L0} + \frac{\partial C_{L}}{\partial \alpha} \alpha + h.o.t.$$
$$= C_{L0} + \frac{\partial C_{L}}{\partial \alpha} \alpha$$
$$C_{M_{ac}} = C_{M_{ac0}} + \frac{\partial C_{M_{ac}}}{\partial \alpha} \alpha + h.o.t.$$
$$= C_{M_{ac0}} + \frac{\partial C_{M_{ac}}}{\partial \alpha} \alpha$$

[Note] for a flat plate

$$C_{L_{\alpha}} = \frac{\partial C_{L}}{\partial \alpha} = 2\pi$$
$$C_{M_{ac}} = \frac{\partial C_{M_{ac}}}{\partial \alpha} = 0$$

For a rigid support

$$L_{rigid} = \frac{1}{2} \rho U^2 S C_{L_{\alpha}} \cdot \alpha_r$$

However, for an elastic support

$$L_{elastic} = L = qSC_{L_{\alpha}} \cdot \alpha \checkmark \alpha(\alpha_r + \alpha_e)$$

[Note]

$$L_{rigid} \neq L_{elastic}$$
$$L_{rigid} < L_{elastic}$$

Consider the system in equilibrium, all applied moments at support point must equal the torsional reaction at the point

Torsional divergence

Consider the system in equilibrium, all applied moments at support point must equal the torsional reaction at the point

$$L(x_{ea} - x_{ac}) - W(x_{ea} - x_{cg}) + M_{ac} = K_{\alpha}\alpha_{e}$$

$$qSC_{L\alpha}(\alpha_{r} + \alpha_{e})(x_{ea} - x_{cg}) - W(x_{ea} - x_{cg}) + qScC_{M_{ac_{\alpha}}} = K_{\alpha}\alpha_{e}$$

$$\Rightarrow \alpha_{e} = \frac{-W(x_{ea} - x_{cg}) + qScC_{M_{ac_{\alpha}}} + qSC_{L\alpha}\alpha_{r}(x_{ea} - x_{cg})}{K_{\alpha} - qScC_{M_{ac}}(x_{ea} - x_{cg})}$$

0 ··· torsional divergence

For a given q and α_r , we can evaluate L

Torsional divergence

[Note] equilibrium eqn.

$$(K - qSC_{L\alpha} \cdot e)\alpha_e = qScC_{Mac_{\alpha}} + qSC_{L_{\alpha}}\alpha_r e - W \cdot d$$

A x B

 $Ax=B \rightarrow Kx=F$

The stability is associated with the homogeneous part of the eqn. : $Ax=0, A \equiv 0 \rightarrow divergence$ condition

Torsional Divergence (BAH)

$$1 - C^{\theta\theta} \frac{\partial C_{L}}{\partial \alpha} qSe = 0$$

$$\int \frac{1}{K_{\alpha}} K_{\alpha}$$

If e=0 (a.c. falls on e.a.)

or aft of it, wing is stable at all speeds.

- Divergence: independent of α_r (initial a.o.a) and airfoil camber $C_{M_{ac}}$ the increase in aerodynamic moment about the elastic axis due to an arbitrary change in a.o.a is equal to the corresponding increase in elastic restoring moment

Torsional Divergence (BAH)

