Wireless Channel Model

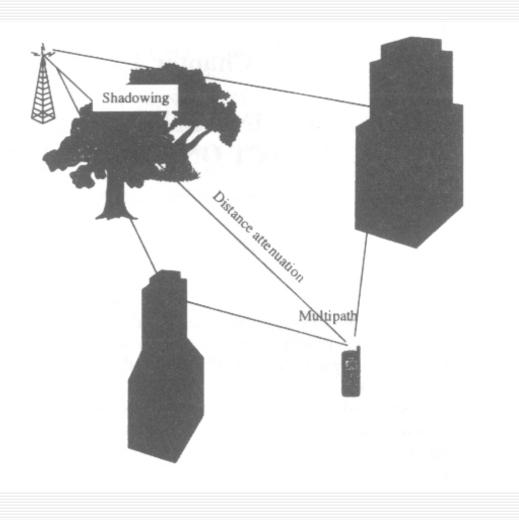
Wha Sook Jeon

Fall 2021

Mobile Computing and Communication Lab.

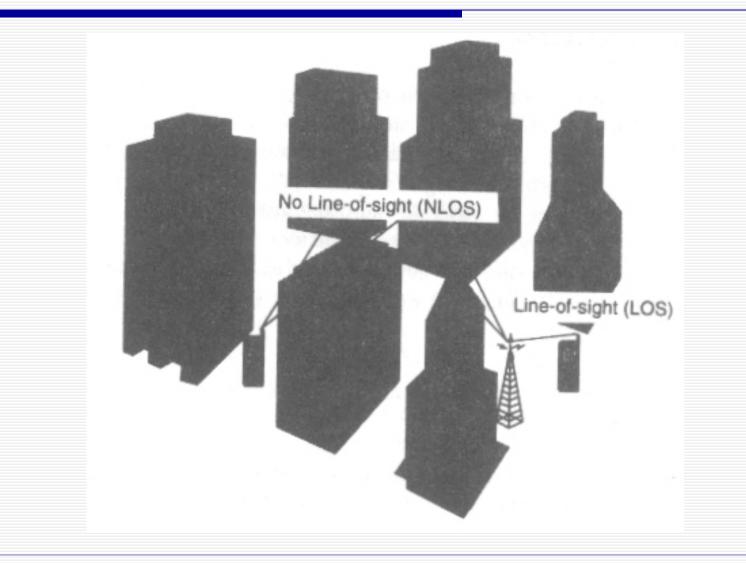
Signal Fading on Radio Channel

- Path Loss
 - large-scale
- Shadowing
 - medium-scale
 - slow varying
- Multipath
 - small-scale
 - fast varying



Mobile Computing and Communication Lab.

LOS Path vs. NLOS Path



Path Loss & Shadowing

Path Loss

 caused by dissipation of the power radiated by the transmitter

- depends on the distance between transmitter and receiver

Shadowing

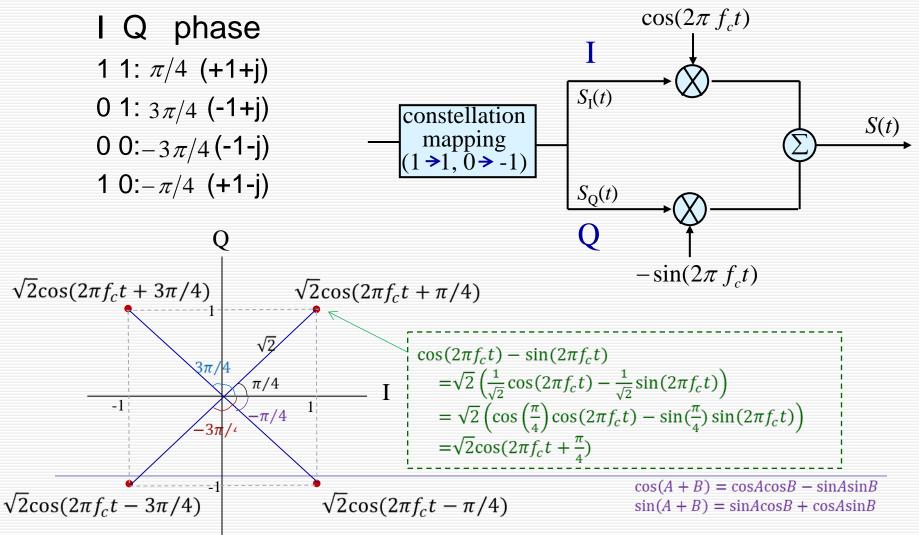
 caused by obstacles between the transmitter and receiver that absorb power.

Path Loss Modeling

- Maxwell's equations
 - Complex and impractical
- Free space path loss model
 - Too simple
 - Ray tracing models
 - Requires site-specific information
 - Empirical Models
 - Don't always generalize to other environments
- Simplified power falloff models
 - Main characteristics: good for high-level analysis

Preliminary

QPSK(Quadrature PSK) modulation



Complex Baseband Signal Representation

- Complex baseband representation
 - The transmitted or received signals are actually real sinusoids
 - The complex representations are used to facilitate analysis
- Transmitted signal
 - $s(t) = \operatorname{Re}\left\{u(t)e^{j2\pi f_c t}\right\} = s_I(t)\cos(2\pi f_c t) s_Q(t)\sin(2\pi f_c t)$
 - $u(t) = s_I(t) + js_Q(t); e^{j2\pi f_c t} = \cos(2\pi f_c t) + j\sin(2\pi f_c t)$
 - complex baseband signal with in-phase component $s_I(t)$ and quadrature component $s_Q(t)$ $u(t) a^{j2\pi f_C t} = s_1(t) \cos(2\pi f_1 t) =$
 - Received signal

Rx

Tx

$$\begin{split} u(t) \, e^{j 2 \pi f_c t} \, &= s_I(t) \cos(2 \pi f_c t) - s_Q(t) \sin(2 \pi f_c t) \\ &+ j(\, s_I(t) \sin(2 \pi f_c t) + s_Q(t) \cos(2 \pi f_c t) \,) \end{split}$$

u(t)

v(t)

 $u(t-\tau)$

• $r(t) = \operatorname{Re}\left\{\alpha \ u(t-\tau)e^{j2\pi f_c(t-\tau)}\right\}$ = $\operatorname{Re}\left\{\alpha \ u(t)e^{-j2\pi f_c\tau}e^{j2\pi f_ct}\right\}$ for narrowband signal: $u(t) \approx u(t-\tau)$

• Free space:
$$f_c \tau = d/\lambda$$
, $\alpha = (\lambda \sqrt{G_I})/(4\pi d)$

Mobile Computing and Communication Lab.

 $\cos(2\pi f_c t)$

 $-\sin(2\pi f_{a}t)$

 $S_{\rm I}(t)$

 $s_0(t)$

Free Space Path Loss

- LOS channel
 - no obstructions between the transmitter and receiver
 - signal propagates along a straight line
- Received signal $r(t) = \operatorname{Re}\left\{\frac{\lambda\sqrt{G_{l}}e^{-j2\pi d/\lambda}}{4\pi d}u(t)e^{j2\pi f_{c}t}\right\} = \operatorname{Re}\left\{\frac{\lambda\sqrt{G_{l}}}{4\pi d}u(t)e^{j(2\pi f_{c}t-2\pi d/\lambda)}\right\}$
 - λ : wavelength, G_i : antenna gain, d: distance between transmitter and receiver
 - -Ratio of the received power to the transmit power:

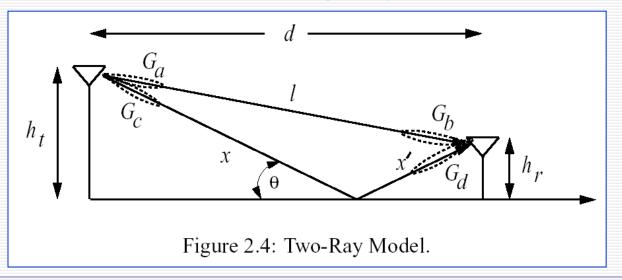
•
$$\frac{P_r}{P_t} = \left[\frac{\sqrt{G_l}\lambda}{4\pi d}\right]^2 = \left(\frac{\sqrt{G_l}\lambda}{4\pi}\right)^2 d^{-2}$$
 path loss exponent

- power falls off in inverse proportion to the square of the distance
- As carrier frequency increases, the received power decreases

Ray Tracing

Two Ray Model

- predicts signal variation resulting from a ground reflection interfering with the LOS path
- when a single ground reflection dominates the multipath effect
- characterizes signal propagation in isolated areas with few reflectors (rural roads or highway)



Two Ray Model

Received signal

$$r(t) = \operatorname{Re}\left\{\frac{\lambda}{4\pi}\left[\frac{\sqrt{G_{l}}u(t)e^{-j2\pi l/\lambda}}{l} + \frac{R\sqrt{G_{r}}u(t-\tau)e^{-j2\pi(x+x')/\lambda}}{x+x'}\right]e^{j2\pi f_{c}t}\right\}$$

• *R* : ground reflection coefficient

•
$$G_l = G_a G_b, G_r = G_c G_d$$

Received Power

- Narrowband signal:
$$u(t) \approx u(t-\tau)$$

•
$$\frac{P_r}{P_t} = \left[\frac{\lambda}{4\pi}\right]^2 \left|\frac{\sqrt{G_l}}{l} + \frac{R\sqrt{G_r}e^{-j\Delta\phi}}{x+x'}\right|^2$$
 where $\Delta\phi = \frac{2\pi(x+x'-l)}{\lambda} \approx \frac{4\pi h_t h_r}{\lambda d}$

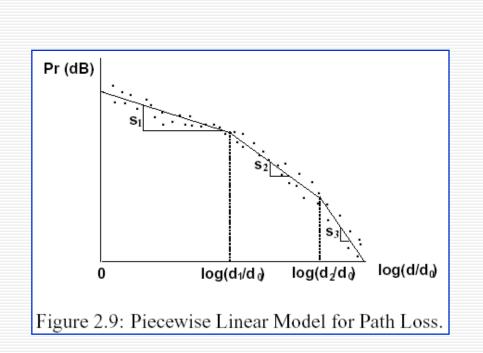
- For large d, $x + x' \approx l \approx d$, $\theta \approx 0$, $G_l \approx G_r$, $R \approx -1$, $e^{-x} \approx 1 - x$

•
$$\frac{P_r}{P_t} \approx \left[\frac{\sqrt{G_l}h_th_r}{d^2}\right]^2 = \left(\sqrt{G_l}h_th_r\right)^2 d^{-4}$$

Empirical Path Loss Models (1)

- Empirical Path Loss for the given environment (e.g. city, suburban)
 - The average of local mean attenuation (LMA) measurements at distance *d* averaged over all available measurements
- Okumura's Model
 - large urban macrocell, base station heights are 30-100 m
- Hata's Model
 - empirical formulation of the graphical path loss data provided by Okumura
 - closed form formula
- COST 231 Extension
 - extended Hata model for higher frequency (2 GHz)

Empirical Path Loss Models (2)



Piecewise Linear Model

Indoor Attenuation Factors

partition loss

	Partition Type	Partition Loss in dB
	Cloth Partition	1.4
	Double Plasterboard Wall	3.4
ſ	Foil Insulation	3.9
	Concrete wall	13
	Aluminum Siding	20.4
	All Metal	26

- floor loss
- the building penetration loss
- It is difficult to find generic models

Simplified Pass Loss Model

- Path loss as a function of distance: $P_r = P_t K \left[\frac{d}{d_0} \right]^{-\gamma}$
 - sometimes simple model can captures the essence of signal propagation without resorting to complicated path loss models.
 - Free-space, two-ray, Hata, COST extension to Hata are all of the same form
 - *K* : constant which depends on antenna characteristics and the average channel attenuation
 - Free space path gain at distance d_0 assuming omni-directional antennas
 - Empirical measurements at d_0
 - d_0 : reference distance
 - generally valid only at $d > d_0$
 - d_0 : 1-10 m (indoor), 10-100 m (outdoor)
 - $-\gamma$: path loss exponent
 - at higher frequencies tend to be higher and at higher antenna heights tend to be lower

Shadowing (1)

Statistical models

- The transmitted signal experiences random variation due to blockage from objects in the signal path and changes in reflecting surfaces and scattering objects.
- Log-normal shadowing: $\psi = P_r / P_t$
 - Distribution of ψ_{dB} (the dB value of ψ) is Gaussian with mean $\mu_{\psi_{dB}}$ and standard deviation $\sigma_{\psi_{dB}}$ $f(\psi_{dB}) = \frac{1}{\sqrt{2\pi}\sigma_{\psi_{dB}}} \exp\left[-\frac{(\psi_{dB} - \mu_{\psi_{dB}})^2}{2\sigma_{\psi_{dB}}^2}\right]$ $\frac{d\psi_{dB}}{d\psi} = \frac{10}{\ln 10} \frac{1}{\psi_{dB}}$ Retice of transmit to receive neuron ψ_{dB} is a random variable with a
 - Ratio of transmit-to-receive power, ψ , is a random variable with a log-normal distribution $f(\psi_{dB})\Delta\psi_{dB} = f(\psi)\Delta\psi$

$$f(\psi) = \frac{10/\ln 10}{\sqrt{2\pi}\sigma_{\psi_{dB}}\psi} \exp\left[-\frac{(10\log_{10}\psi - \mu_{\psi_{dB}})^2}{2\sigma_{\psi_{dB}}^2}\right] \qquad f(\psi) = f(\psi_{dB})\frac{d\psi_{dB}}{d\psi} = \frac{10}{\ln 10}\frac{1}{\psi}f(\psi_{dB})$$

Shadowing (2)

- Justification for the Gaussian model as the distribution of Ψ_{dB}
 - when shadowing is dominated by the attenuation from blocking object
 - attenuation of a signal as traveling through an obstacle with depth d
 - $s(d) = e^{-\alpha d}$, where α is an attenuation constant.
 - attenuation of a signal as it propagates through the region $d_t = \sum d_i$
 - $s(d_t) = e^{-\alpha \sum d_i} = e^{-\alpha d_t} \longrightarrow d_t = \frac{-1}{\alpha} \ln s(d_t) = \frac{-1}{\alpha \log_{10} e} \log_{10} s(d_t)$
 - d_t : Gussian r.v. (by the Central Limit Theorem)

 $- \log_{10} s(d_t)$: Gussian r.v.

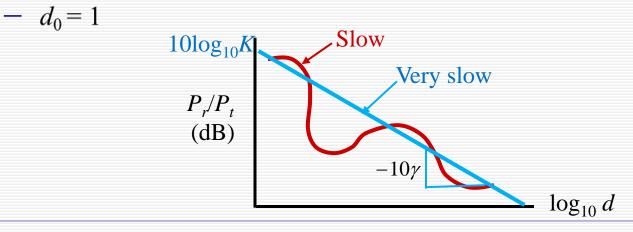
- Decorrelation distance:
 - the distance at which autocovariance equals 1/e of its maximum value
 - on the order of the size of the blocking objects or clusters of objects

Combined Path Loss and Shadowing (1)

- Combined model : $P_r = G_{PL}G_{SH}P_t$
 - average path loss: from the path loss model $(G_{PL} = K(d/d_0)^{-\gamma})$
 - shadow fading with mean of 0 dB : variations about the path loss
- Simplified path loss with log-normal shadowing

$$\frac{P_r}{P_t}(dB) = 10\log_{10} K - 10\gamma \log_{10} \frac{d}{d_0} + \psi_{dB}$$

 $- \psi_{dB}$: a Guassian r.v. with mean zero and variance $\sigma_{\psi_{dB}}$



Combined Path Loss and Shadowing (2)

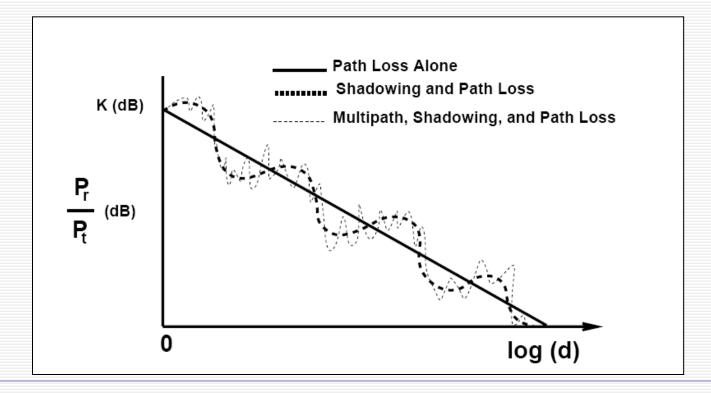
- Outage Probability under the path loss and shadowing
 - P_{\min} : the minimum received power level
 - outage probability: $p_{out}(P_{\min}, d)$
 - the probability that the received power at a given distance d falls below $P_{\min}(dB)$
 - $p_{out}(P_{\min}, d) = p(P_r(d) \text{ in } dB < P_{\min})$
 - for the combined path loss and shadowing

$$p(P_r(d) < P_{\min}) = 1 - Q \left(\frac{P_{\min} - (P_t + 10\log_{10} K - 10\gamma \log_{10} (d/d_0))}{\sigma_{\psi_{dB}}} \right)$$

$$P_{r,dB} = P_{t,dB} + 10 \log_{10} K - 10\gamma \log_{10} (d/d_0) + \psi_{dB} < P_{\min}$$

Multipath fading

- short-term fluctuation of the received signal caused by multipath propagation
- when mobile is moving
- Fading becomes fast as a mobile moves faster

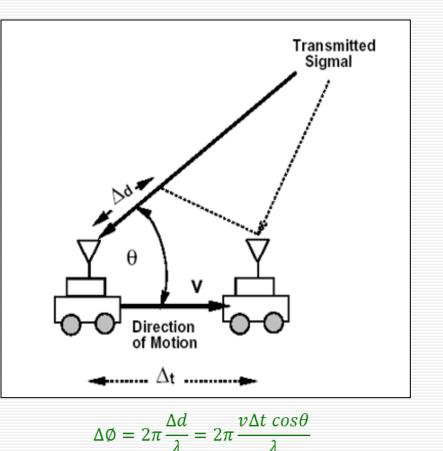


Doppler Shift

 When the transmitter is moving, the received signal has a Doppler shift

$$f_D = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} \cos \theta$$
$$\phi_D = 2\pi f_D$$

 Doppler effect is on the order of 100 Hz for typical vehicle speed (75km/hr) and frequencies (about 1GHz)



Multipath Component

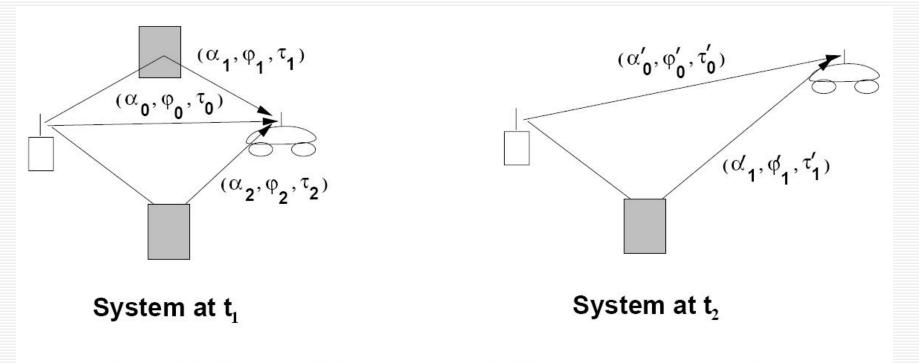


Figure 3.2: System Multipath at Two Different Measurement Times.

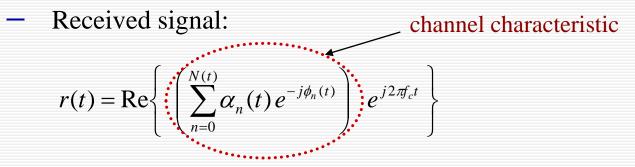
Transmit & Receive Signal Models (1)

- Complex baseband representation
 - The transmitted or received signals are actually real sinusoids
 - The complex representations are used to facilitate analysis
- Transmitted signal
 - $s(t) = \operatorname{Re}\left\{u(t)e^{j2\pi f_{c}t}\right\} = s_{I}(t)\cos(2\pi f_{c}t) s_{Q}(t)\sin(2\pi f_{c}t)$
 - $u(t) = s_I(t) + j s_Q(t)$
 - complex baseband signal with in-phase component $s_I(t)$ and quadrature component $s_Q(t)$
- Received signal

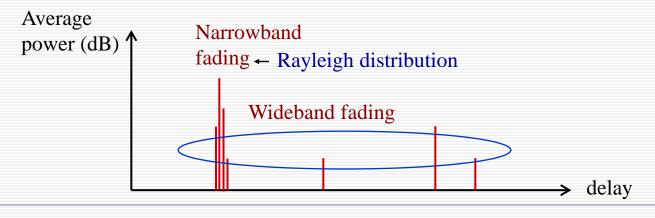
$$r(t) = \operatorname{Re}\left\{\sum_{n=0}^{N(t)} \alpha_{n}(t) u(t - \tau_{n}(t)) e^{j(2\pi f_{c}(t - \tau_{n}(t)) + \phi_{D}(t))}\right\} \text{ where } N(t) \text{ is the number of NLOS paths}$$
$$= \operatorname{Re}\left\{\sum_{n=0}^{N(t)} \alpha_{n}(t) u(t - \tau_{n}(t)) e^{j2\pi f_{c}t} e^{-j(2\pi f_{c}\tau_{n}(t) - \phi_{D}(t))}\right\}$$
$$= \operatorname{Re}\left\{\left(\sum_{n=0}^{N(t)} \alpha_{n}(t) e^{-j\phi_{n}(t)} u(t - \tau_{n}(t))\right) e^{j2\pi f_{c}t}\right\} \text{ where } \phi_{n}(t) = 2\pi f_{c}\tau_{n}(t) - \phi_{D}(t)$$

Transmit & Receive Signal Models (2)

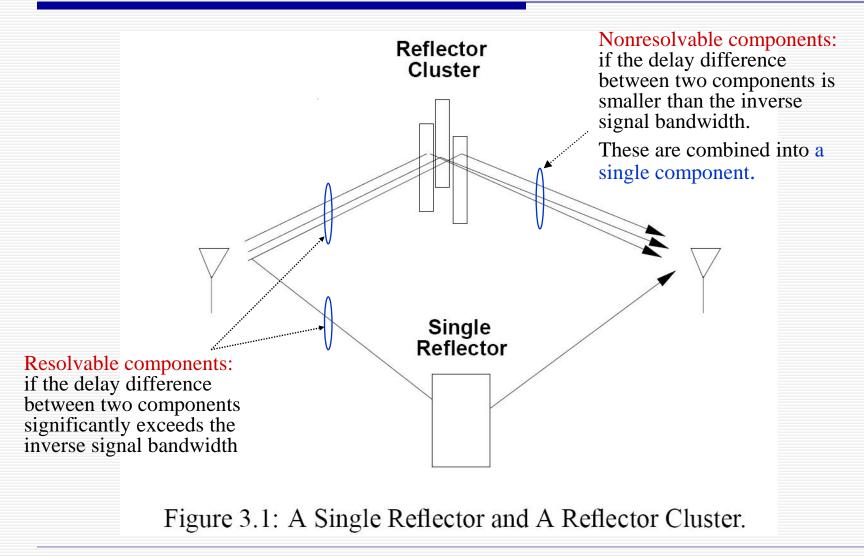
In order to characterize the random scale factor caused by the multipath, u(t)=1



- *n*th path component at time $t : \alpha_n(t), \phi_n(t), \tau_n(t)$
- Delay power profile : characteristics of multipath channel



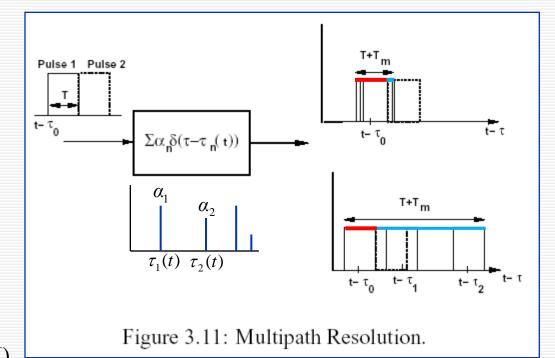
Resolvable/Nonresolvable Multipath Component



Intersymbol Interference

- Two multipath components with delay τ_1 and τ_2 are resolvable if $|\tau_1 - \tau_2| >> 1/B_u$
- Narrowband fading:
 delay spread $T_m \ll T$
 - There is little interference with a subsequently transmitted pulse.
- Wideband fading: T_m >> T
 The resolvable multipath components interfere with subsequently transmitted pulses:

intersymbol interference (ISI)



Narrowband Fading Model (1)

- Narrowband fading assumption
 - Delay spread: $T_m \ll \frac{1}{B}$
 - The LOS and all multipath components are typically nonresolvable.
- In order to characterize the random scale factor caused by the multipath, u(t)=1
 - Transmitted signal: $s(t) = \operatorname{Re}\left\{e^{j2\pi f_c t}\right\} = \cos 2\pi f_c t$
 - Received signal: $r(t) = \operatorname{Re}\left\{ \begin{array}{c} \sum_{n=0}^{N(t)} \alpha_n(t) e^{-j\phi_n(t)} & e^{j2\pi f_c t} \\ \\ = \sum_{n=0}^{N(t)} \alpha_n(t) \cos \phi_n(t) \cos 2\pi f_c t + \sum_{n=0}^{N(t)} \alpha_n(t) \sin \phi_n(t) \sin 2\pi f_c t \\ \\ = r_1(t) \cos 2\pi f_c t + r_0(t) \sin 2\pi f_c t \end{array} \right\}$

Narrowband Fading Model (2)

Received Signal

$$r(t) = r_I(t)\cos 2\pi f_c t + r_Q(t)\sin 2\pi f_c t$$

- in-phase component: $r_I(t) = \sum_{i=1}^{N(t)} \alpha_n(t) \cos \phi_n(t)$

• quadrature component:
$$r_Q(t) = \sum_{n=0}^{N(t)} \alpha_n(t) \sin \phi_n(t)$$

 $r_I(t)$ and $r_Q(t)$ can be approximated as independent Gaussian process with the same autocorrelation, a mean of zero, and a crosscorrelation of zero

Narrowband Fading: Envelope & Power Distribution of NLOS Multipath

Signal envelope

$$- z(t) = |r(t)| = \sqrt{r_I^2(t) + r_Q^2(t)}$$

$$r(t) = r_{I}(t)\cos 2\pi f_{c}t + r_{Q}(t)\sin 2\pi f_{c}t$$
$$= \sqrt{r_{I}^{2}(t) + r_{Q}^{2}(t)}\cos(2\pi f_{c}t + \theta)$$

- r_I and r_Q are Gaussian random variables with mean zero and variance σ^2

- z(t) is Rayleigh distributed

$$f_Z(z) = \frac{z}{\sigma^2} e^{-\frac{z^2}{2\sigma^2}}, \quad z \ge 0$$

Power

 $- z^{2}(t) = |r(t)|^{2}$

$$X = Z^{2} \rightarrow f_{X}(x)\Delta x = f_{Z}(z)\Delta z$$
$$f_{X}(x) = f_{Z}(z)\frac{dz}{dx} = f_{Z}(z)\frac{1}{2z}$$

- The received signal power is exponentially distributed with mean $2\sigma^2$

•
$$f_{Z^2}(x) = \frac{1}{2\sigma^2} e^{-\frac{x}{2\sigma^2}}, \quad x \ge 0$$

Narrowband Fading: Signal Envelope over Channel having a LOS

- Signal envelope
 - The received signal equals the superposition of a LOS component and a complex Gaussian component
 - The signal envelope z(t) has a Rician distribution. $Y = \sqrt{(s_1 + X_1)^2 + (s_2 + X_2)^2}$

$$f_Z(z) = \frac{z}{\sigma^2} e^{-\frac{(z^2 + s^2)}{2\sigma^2}} I_0\left(\frac{zs}{\sigma^2}\right), \quad z \ge 0$$

* I_0 : the modified Bessel function

Average received power

- $\frac{1}{P_r} = \int_0^\infty x^2 f_Z(x) dx = (s^2 + 2\sigma^2)$ NLOS component power
- Fading parameter : $K = \frac{s^2}{2\sigma^2}$ K = 0: Rayleigh fading

 - $K = \infty$: no fading (only a LOS component)
 - the smaller K, the severer fading

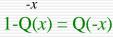
Combined PL, Shadowing, and Rayleigh Fading

- Combined model $- P_r(d) = P_t K \left(\frac{d}{d_0}\right)^{-\gamma} G$
 - G is a composite lognormal-exponential r.v , which is a lognormal r.v.
 - $G_{dB} = 10 \log_{10} G$: Gaussian r.v. with mean $\breve{\mu}$ and variance $\breve{\sigma}^2$
 - $\breve{\mu} = \mu_{SH,dB} 2.5$ and $\breve{\sigma}^2 = \sigma_{SH,dB}^2 + 5.57^2$, where $\mu_{SH,dB}$ and $\sigma_{SH,dB}$ are mean and sd of lognormal shadowing gain in dB
 - $P_{r,dB}(d) = P_{t,dB} + K_{dB} 10\gamma \log_{10}(d/d_0) + G_{dB}$
- Outage Probability

$$-p(P_{r}(d) < P_{\min}) = p(P_{r,dB}(d) < P_{\min,dB})$$

$$= p(G_{dB} < P_{\min,dB} - P_{t,dB} - K_{dB} + 10\gamma \log_{10}(d/d_{0}))$$

$$= Q\left(\frac{\breve{\mu} - (P_{\min,dB} - P_{t,dB} - K_{dB} + 10\gamma \log_{10}(d/d_{0}))}{\breve{\sigma}}\right)$$



Mobile Computing and Communication Lab.