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Signal Fading on Radio Channel

= Path Loss
— large-scale
= Shadowing
— medium-scale
— slow varying
= Multipath
— small-scale
— fast varying

Shadowing
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LOS Path vs. NLOS Path

No Line-of-sight (NLOS)

Line-of-gight (LOS)
——
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Path Loss & Shadowing

® Path Loss

— caused by dissipation of the power radiated by the
transmitter

— depends on the distance between transmitter and receiver
= Shadowing

— caused by obstacles between the transmitter and receiver
that absorb power.
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Path Loss Modeling

= Maxwell’s equations
— Complex and impractical

= Free space path loss model
— Too simple
= Ray tracing models
— Requires site-specific information
=  Empirical Models
— Don’t always generalize to other environments

= Simplified power falloff models
— Main characteristics: good for high-level analysis
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Preliminary

= QPSK(Quadrature PSK) modulation
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Complex Baseband Signal Representation

= Complex baseband representation
= The transmitted or received signals are actually real sinusoids cos(27 f.1)
= The complex representations are used to facilitate analysis

$i(1) ®
* Transmitted signal s(t)
= s(t) = Reju(t)e’ |=s, (t) cos(27f t) — s, (t) sin(2ft) B E

= So(t)
= Ut)=s,()+ JSo(t); ef2mfet = cos(2rf.t) + j sin(2rf.t) —sin(2z f.t)

= complex baseband signal with in-phase component s,(¢) and

quadrature component s,(?) —
u(t) e/#™et = g (t)cos(2mf.t) — sq (t) sin(2nf,t)

= Received 31gnal +j(s;(t)sin(2mf t) + so () cos(2mf.t) )
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Free Space Path Loss

= | OS channel

— no obstructions between the transmitter and receiver
— signal propagates along a straight line

« A wavelength, Gi: antenna gain, d: distance between transmitter and receiver

— Ratio of the received power to the transmit power:

2
== \/a A = @ 2d % —Path loss exponent
4rd 4

R
= power falls off in inverse proportion to the square of the distance
= As carrier frequency increases, the received power decreases
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Ray Tracing

= Two Ray Model

— predicts signal variation resulting from a ground reflection
Interfering with the LOS path

— when a single ground reflection dominates the multipath
effect

— characterizes signal propagation in isolated areas with few
reflectors (rural roads or highway)

Figure 2.4: Two-Ray Model.
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Two Ray Model

= Received signal

. r(t)R{ {\/ﬁu(t)e j2rd /A Rfu(t e 127I(X+X)//l}ejzﬂft}
dr

I X+ X
= R : ground reflection coefficient
» G=G,G,, G,=G .G,
= Received Power
— Narrowband signal: y(t) = u(t —r)

2n(x+x —1) _4zhh,

where A¢ =

. & [A]l5 G
P L4r

I X+ X
— Forlarged, x+x =l~d, 6~0, G ~G, Rx~-1 e*=1-x

- {\thhf} ~ /G, fd

A T Ad
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Empirical Path Loss Models (1)

= Empirical Path Loss for the given environment (e.g. city,
suburban)
— The average of local mean attenuation (LMA) measurements at
distance d averaged over all available measurements
= Okumura’s Model
— large urban macrocell, base station heights are 30-100 m

= Hata’s Model

— empirical formulation of the graphical path loss data provided by
Okumura

— closed form formula

= COST 231 Extension
— extended Hata model for higher frequency (2 GHz)

Mobile Computing and Communication Lab. 10



Empirical Path Loss Models (2)

" Piecewise Linear Model " |ndoor Attenuation Factors
— partition loss
Pr(de) Partition Type Partition Loss in dB
Cloth Partition 1.4
Double Plasterboard Wall 314
Foil Insulation 39
Concrete wall 13
Aluminum Siding 20.4
All Metal 26
; logldidg  log(d/dy  log(didy — floor loss
Figure 2.9: Piecewise Linear Model for Path Loss. — the bUI|dlng penetraﬁOn loss
— It is difficult to find generic
models
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Simplified Pass Loss Model
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without resorting to complicated path loss models.
— Free-space, two-ray, Hata, COST extension to Hata are all of the same form

— K : constant which depends on antenna characteristics and the average channel
attenuation

= Free space path gain at distance d, assuming omni-directional antennas
= Empirical measurements at d,
— d,: reference distance
= generally valid only at d > d,
= dy:1-10 m (indoor), 10-100 m (outdoor)
— y : path loss exponent

=« at higher frequencies tend to be higher and at higher antenna heights tend
to be lower
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Shadowing (1)

Statistical models

— The transmitted signal experiences random variation due to blockage
from objects in the signal path and changes in reflecting surfaces and
scattering objects.

" Log-normal shadowing: v =P, /P,

— Distribution of y, (the dB Value of l//) is Gaussian with mean 1, and

Jag = 1 01 08 1
standard deviation o, = e 10
T In lli
= ,UWdB ) :| normal Iog normal

t (v e
{UZS) ZM—GGXP{— 257 dpgp 10 1
Vas Vas dy In lUJ

— Ratio of transmit-to-receive power , ¥, is a random variable with a

log-normal distribution Fas)as = [
2
fly) = 10+1n10 exp{— (1O|Oglol//2_ﬂ i) } f@h) = f@as) df[fB
\/_G‘// Bl// 20'de 10 1
= 1oy Was)
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Shadowing (2)

= Justification for the Gaussian model as the distribution of g
— when shadowing is dominated by the attenuation from blocking object
— afttenuation of a signal as traveling through an obstacle with depth d

= s(d)=e™, where ¢ isan attenuation constant.
— attenuation of a signal as it propagates through the region d, =>"d,

= d: = — —
[ ] S(dt)- — e az (- e Oldt ﬁ (ft = %lns(dr) = mlogw S(df)
— d, : Gussian r.v. (by the Central Limit Theorem)

— log,, s(d,) : Gussian r.v.

= Decorrelation distance:

— the distance at which autocovariance equals 1/e of its maximum value
— on the order of the size of the blocking objects or clusters of objects
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Combined Path Loss and Shadowing (1)

B Combined model : B. = Gp; Gsy Py
— average path loss: from the path loss model (Gp; = K(d/d,)7Y)

— shadow fading with mean of 0 dB : variations about the path loss

® Simplified path loss with log-normal shadowing

t

=) d
= (dB) =10log,, K —10y log,, 4 Ve

0

— Vg . a Guassian r.v. with mean zero and varianceo,,

i d():l

10log, K Slow
\ery slow
P./P,
(dB)
—10y
logy, d
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Combined Path Loss and Shadowing (2)

= Qutage Probability under the path loss and shadowing
— P, : the minimum received power level

— outage probability: p,, (P.d)

=« the probability that the received power at a given distance d
falls below P, (dB)

u pout(Pmin’d) = p(Pr (d) in dB < I:)min)
= for the combined path loss and shadowing

p(P.(d)<P..) :1_Q£ Puwin — (P +10l0g,, K -10y log,,(d /dO)J

O-V/dB

— A how
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Multipath fading

short-term fluctuation of the received signal caused by
multipath propagation

=  when mobile is moving
=  Fading becomes fast as a mobile moves faster

Path Loss Alone
.......... Shadowing and Path Loss

K(dB) |==~\- _ A
e —---e————- Multipath, Shadowing, and Path Loss

(dB)

9| o

-

log (d)
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Doppler Shift

When the transmitter is
moving, the received signal
has a Doppler shift

b _LA_¢ZXCO5Q
2r At A
¢y =271,

Doppler effect is on the order
of 100 Hz for typical vehicle
speed (75km/hr) and
frequencies (about 1GHz)

Transmitted
Sigmal

,
.
.....
i,
L]
-

Direction

of Motion
ET— ."\t (ETR—-
AG = 2 Ad — vAt cosf
ST =T
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Multipath Component

/\xioc1,~:p1,‘f1) (a’o,(p Ty)
ot NG e
‘/ ol (o 0’ (PU d TU. ) A . |
™ s il %
\ R I A || \
(0, 192,12)
System at t, System at t,

Figure 3.2: System Multipath at Two Different Measurement Times.
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Transmit & Recelive Signal Models (1)

= Complex baseband representation
— The transmitted or received signals are actually real sinusoids
— The complex representations are used to facilitate analysis
=  Transmitted signal
— s(t)= Re{u (t)e?* }= s, (t) cos(27f t) — s, (t) sin(2f t)
— u®)=s,(t)+ Jsq(t)
= complex baseband signal with in-phase component s,(t) and quadrature
component sy(t)

= Received signal
N (1)

r(t) = Re{ D a,ut—r, (t))e! “”} where N (t) is the number of NLOS paths

n=0

N () =
Re{ > a, tu(t -7, (t))e!? e 14 (t»}

n=0

n=0

Re{N (t)an t)e *Ou(t -7, (t))j ejz”fct} where ¢ (t) = 24f 7. (t) — ¢, (t)
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Transmit & Recelive Signal Models (2)

= |n order to characterize the random scale factor caused by the
multipath, u(t)=1

— Received signal: channel characteristic

r(t) = Re{ [%t)a (t)e J¢n(t)] ej27rft}

.
®e ]
.......

.
...........

= nth path component at time t: a,(t), ¢,(t),7,(t)

= Delay power profile : characteristics of multipath channel

Average

oower (dB) A Narrowband

fading — Rayleigh distribution

Wideband fading

> delay

Mobile Computing and Communication Lab. 21



Resolvable/Nonresolvable Multipath Component

Nonresolvable components:
Rgrluesc;g:r if the delay difference
between two components is
smaller than the inverse
. signal bandwidth.

(N ~" These are combined into a
I u;;j;yh@ single component.
S

Single //

Reflector

Resolvable components:

if the delay difference .
between two components

significantly exceeds the

inverse signal bandwidth

Figure 3.1: A Single Reflector and A Retlector Cluster.
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Intersymbol Interference

Two multipath components with delay z, and ¢, are resolvable

if |r,—7,|>>1/B,

Narrowband fading:
delay spread T <<T

- There is little interference
with a subsequently
transmitted pulse.

Wideband fading: T_>>T

- The resolvable multipath
components interfere with
subsequently transmitted

pulses:
intersymbol interference (1SI)

Pulze 1 Pulsa 2

T

"%
e E{inﬂ[T—T At))

o
1
a,

7,(t) 7,(t)

Figure 3.11: Multipath Resolution.
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Narrowband Fading Model (1)

= Narrowband fading assumption
— Delay spread: T, << 1/
— The LOS and all multipath components are typically nonresolvable.
= |n order to characterize the random scale factor caused by the
multipath, u(t)=1
— Transmitted signal: g(t) = Re{eJZﬂfct }: cos2r f.t

— Recevedsignal: . - nonresolvable

.
...
o®

r(t) = Re{ (Nz(t‘ja (t)e % “’j e’z””}

NG et N (t)

= Za (t)cos ¢, (t)cos2xf, t+Za (t)sing (t)sin 2z f t

=1, (t) cos2zf t+1r,(t)sin 27zfct
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Narrowband Fading Model (2)

= Received Signal
— rt)=r()cos2xft+r,(t)sin2zft

N (1)

— in-phase component: 1, (t) = > a,(t)cosg, (t)
n=0
N (t)

— quadrature component: ry(t) =) a,(t)sing,(t)

n=0

" r,(t) and ry(t) can be approximated as independent Gaussian
process with the same autocorrelation, a mean of zero, and a
crosscorrelation of zero

Mobile Computing and Communication Lab.
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Narrowband Fading:
Envelope & Power Distribution of NLOS Multipath

_______________________________________

N

B Signal envelope r(t) =r,(t)cos 2z f t+ 1, (t)sin 2z f t

— 2(t) =|r(®)] =1’ O + 1, 1)

— rrand r, are Gaussian random variables with mean zero

i = Jr,z(t) + 19%(t)cos(2mf .t + 0) i

________________________________________

and variance o°
— z(t) 1s Rayleigh distributed

ZZ

O =
fZ(Z):ize 20°  7>0
o
" Power X =7 > fy(x)Ax = f;(2)Az
— 7°(t) = \r(t)\z () = f(2) = = f,(2) —

— The received signal power is exponentially distributed with mean 252
X

fzz(x) :%ew, x>0
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Narrowband Fading:
Signal Envelope over Channel having a LOS

= Signal envelope

— The received signal equals the superposition of a LOS component
and a complex Gaussian component

— The signal envelope z(t) has a Rician distribution. vy — /s, 53,2+ (s, + X,)2
(2°+5%)
f,(2) =ize = Io(z—ij, z2>0
(o2 (o2

= Average received power

* 1,: the modified Bessel function

LOS component power

— Fading parameter : K =
. K =0 Rayleigh fadin§®
« K =o0:no fading (only a LOS component)
= the smaller K, the severer fading

2
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Combined PL, Shadowing, and Rayleigh Fading

= Combined model ¢..c,,
P (d) PK(d ij/

r ot AO
— G is a composite lognormal-exponential r.v , which is a lognormal r.v.

— G, =10log,, G - Gaussian r.v. with mean z and variance 52

—

= =g 5-25 and 52 =g2, o +5.57% ,wherey o and o, , @are mean and sd

of lognormal shadowing gain in dB
— P e(d) =P g + Ky —10y10g,,(d/d;) + Gy
= Qutage Probability
— P(R(d) <PFyy) = P(P 4 (d) < Pinge)
= p(Gys < Poinas — Pos — Ky +10y l0g,,(d/d, ))
= Q(ﬁ—(Pmm,dB ~Pn ~Kig +107 Ioglo(d/do))]

O

A0
AT
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