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Introduction 

 Channel capacity limit 
− The maximum channel rates that can be transmitted over the 

wireless channel with asymptotically small error probability, 
assuming no constraints on the delay or complexity of the 
encoder/decoder 

 Scope  
− Capacity of a single-user wireless channel where the transmitter 

and/or receiver has a single antenna 
■ a time-invariant additive white Gaussian Noise (AWGN) channel 
■ a flat fading channel 
■ a frequency selective fading channel 
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Capacity of  AWGN Channel  
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 Shannon Capacity  

−    
−   

■ Received signal-to-noise ratio (SNR) 
■ P : the transmitted signal power 
■ N0B: Noise power 

− Upper bound on the data rates that can be achieved under the real system 
constraints 
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Capacity of a discrete channel 

 Mutual information 
− The average amount of information received over the channel 

per symbol  
−   

■ H(X): the average amount of information transmitted per 
symbol (entropy) 

■ H(X|Y): the average uncertainty about a transmitted 
symbol when a symbol is received, and the average 
amount of information lost over noisy channel per symbol 
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Capacity of a discrete channel 
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Capacity of a Continuous Channel 

 Entropy of X 
 
 

 Mutual Information I(X;Y) 
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Capacity of a Band-limited AWGN Channel (1) 

 Channel capacity   
− Maximum amount of mutual information I(X;Y) per second 
− Two steps 

■ the maximum mutual information per sample 
■ 2B samples per second (Nyquist’s sampling theory) 

 Maximum mutual information per sample  
− x, n, y: samples of the transmitted signal, noise, and received signal 
− H(y|x) 

■   
 
 
 

■ Because y=x+n, for a given x, y is equal to n plus a constant. The 
distribution of y is identical to that of n except for a translation by x 

■    
 

sample noise of PDF  theis )(  e      wher),()|( ⋅−= nn pxypxyp

dydxxypxypxp

dxdyxypyxp

)|(
1

log)|()(             

)|(
1

log),(x)|H(y

∫∫

∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

=

=

Mobile Computing and Communication Lab. 



8 

Capacity of a Band-limited AWGN Channel (1) 
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Capacity of a Band-limited AWGN Channel (2) 
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Capacity of a Band-limited AWGN Channel (3) 
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Capacity of a Band-limited AWGN Channel (4) 

   
 
 
 

 

 Channel capacity: 
 
 
 

 Reference :B. P. Lathi, Modern Digital and Analog 
Communication System, 3rd Ed., Oxford. (Chapter 15) 
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Capacity of  Flat-Fading Channels  
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Capacity of  Flat-Fading Channels 

 The channel capacity depends on the information about g[i]  
− Channel side information (the value of g[i]) known to the receiver 
− If the receiver reports CSI to the transmitter, the transmitter can know CSI 
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CSI at Transmitter and Receiver (1) 
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CSI at Transmitter and Receiver (2) 

 Transmission power as well as rate can be adapted. 
 Adaptation of transmission power        to the received 

SNR      subject to an average power constraint 
 average power constraint:  
 The (time varying) fading channel capacity with average 

power constraint 
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CSI at Transmitter and Receiver (3) 

 The range of fading values is quantized to a finite set 
 For each     , an encoder-decoder pair for the AWGN channel with SNR 
 The codeword from the corresponding encoder, xj , is transmitted with power  

at data rate 
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CSI at Transmitter and Receiver (4) 

 Optimal power allocation  
− Lagrangian 

 
 

− Differentiate the Lagrangian and set the derivate to zero 
 
 
 

− Solve for          with the constraint  that 
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CSI at Transmitter and Receiver (5) 

 Capacity 
 

                                                     … (4.13) 

 
− Time-varying data rate : the rate corresponding to the 

instantaneous SNR     is 
− Transmission power adaption 

■ Optimal power allocation (Water filling) 
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CSI at Transmitter and Receiver (6) 
 Water filling 
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CSI at Transmitter and Receiver (7) 

 Channel inversion and zero outage 
− The transmitter controls the transmission power using CSI so 

as to maintain a constant received power (inverts the channel 
fading) 

− The channel appears to the encoder and decoder as a time-
invariant AWGN channel 

− transmission power: 
■    

 

− Fading channel capacity with channel inversion is equal to    
the AWGN channel capacity with SNR 
 

                                                                                    …. (4.18) 
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CSI at Transmitter and Receiver (8) 

 Channel inversion and zero outage 
− A fixed data rate regardless of channel condition 
− One pair of encoder and decoder is designed for an AWGN 

channel with SNR      and Tx power is adjusted as 
       => the simplest scheme to implement 
− zero outage:  

■ Should maintain a constant data rate in all fading states  
■ Zero outage capacity is significantly smaller than Shannon 

capacity on fading channel  
− In Rayleigh fading, the zero outage capacity is zero 

− Channel inversion is common in spread-spectrum system with 
near-far interference imbalances 

 
 

σ
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CSI at Transmitter and Receiver (9) 
 Truncated channel inversion 

− Suspending transmission in bad fading states 
− Truncated channel inversion 

■ Power adaptation policy that compensates only for fading above a 
cutoff 

■   
 

■     
■ Outage capacity for a given       and corresponding cutoff 

 
−   
 

■ Maximum outage capacity   

                                                                                  ….  (4.22) 
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Capacity Comparison 
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Frequency Selective Fading Channel 

  Analysis is like that of flat fading subchannel with frequency axis 

  Channel division into flat fading subchannel 

frequency 

frequency response 
at time t 

flat fading 
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Time-invariant Channel (1) 

 A time-invariant channel with 
frequency response H(f ) that is 
known to both transmitter and 
receiver 

 Block fading 
− Frequency is divided into 

subchannels of bandwidth Bc with 
constant frequency response Hj over 
each subchannel 

− Pj: Tx power on the jth subchannel  
− A set of AWGN channels in parallel 

with SNR (|Hj|2Pj/N0 Bc ) on the jth 
channel 

− Total power constraint: ∑ ≤
j j PP

total transmission power 

 Bc 
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Time-invariant Channel (2) 

 Capacity under block fading 
−   
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