Capacity of Wireless Channels

Wha Sook Jeon

Fall 2021

Mobile Computing and Communications Lab.

Introduction

Channel capacity limit

- The maximum channel rates that can be transmitted over the wireless channel with asymptotically small error probability, assuming no constraints on the delay or complexity of the encoder/decoder
- Scope
 - Capacity of a single-user wireless channel where the transmitter and/or receiver has a single antenna
 - a time-invariant additive white Gaussian Noise (AWGN) channel
 - a flat fading channel
 - a frequency selective fading channel

Capacity of AWGN Channel

Capacity in AWGN

- Shannon Capacity
 - $C = B \log_2(1+\gamma)$
 - $\gamma = P / N_0 B$
 - Received signal-to-noise ratio (SNR)
 - *P* : the transmitted signal power
 - $N_0 B$: Noise power
 - Upper bound on the data rates that can be achieved under the real system constraints

Capacity of a discrete channel

Mutual information

BCD

4 8 8

C: 110 (3 bits) D: 110 (3 bits)

 $\log_2 P(E)$

(1 bit)

(2 bits)

2

A: 0

B: 10

- The average amount of information received over the channel per symbol
- I(X;Y) = H(X) H(X | Y)
 - H(X): the average amount of information transmitted per symbol (entropy)
 - H(X|Y): the average uncertainty about a transmitted symbol when a symbol is received, and the average amount of information lost over noisy channel per symbol

•
$$H(X) = \sum_{x \in S_X} p(x) \log \frac{1}{p(x)}, \quad H(X \mid Y) = \sum_{x \in S_X, y \in S_Y} p(x, y) \log \frac{1}{p(x \mid y)}$$

 $I(X; Y) = \sum_{x \in S_X} p(x) \log \frac{1}{p(x)} - \sum_{x \in S_X, y \in S_Y} p(x, y) \log \frac{1}{p(x \mid y)}$

Capacity of a discrete channel

I(X; Y) = H(X) - H(X | Y)

$$= \sum_{X} p(x) \log \frac{1}{p(x)} - \sum_{X} \sum_{Y} p(x, y) \log \frac{1}{p(x|y)}$$

$$= \sum_{X} \sum_{Y} p(x, y) \left(\log \frac{1}{p(x)} - \log \frac{1}{p(x|y)} \right)$$

$$= \sum_{X} \sum_{Y} p(x, y) \log \frac{p(x|y)}{p(x)} - \log \frac{p(x,y)}{p(x)p(y)} = \log \frac{p(y|x)}{p(y)}$$

$$= \sum_{X} \sum_{Y} p(x, y) \left(\log \frac{1}{p(y)} - \log \frac{1}{p(y|x)} \right)$$

$$= \sum_{Y} p(y) \log \frac{1}{p(y)} - \sum_{X} \sum_{Y} p(x, y) \log \frac{1}{p(y|x)}$$

$$= H(Y) - H(Y \mid X)$$

Capacity of a Continuous Channel

Entropy of X

$$H(X) = \int_{-\infty}^{\infty} p(x) \log \frac{1}{p(x)} dx$$

Mutual Information I(X;Y)

I(X; Y) = H(X) - H(X | Y)

$$= \int_{-\infty}^{\infty} p(x) \log \frac{1}{p(x)} dx - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log \frac{1}{p(x|y)} dx dy$$
$$= \int_{-\infty}^{\infty} p(y) \log \frac{1}{p(y)} dy - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log \frac{1}{p(y|x)} dx dy$$
$$= H(Y) - H(Y \mid X)$$

Capacity of a Band-limited AWGN Channel (1)

- Channel capacity
 - Maximum amount of mutual information I(X;Y) per second
 - Two steps
 - the maximum mutual information per sample
 - 2B samples per second (Nyquist's sampling theory)
- Maximum mutual information per sample
 - x, n, y: samples of the transmitted signal, noise, and received signal
 - H(y|x)

•
$$H(y \mid x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \log \frac{1}{p(y|x)} dx dy$$
$$= \int_{-\infty}^{\infty} p(x) \int_{-\infty}^{\infty} p(y \mid x) \log \frac{1}{p(y|x)} dy dx$$

- Because y=x+n, for a given x, y is equal to n plus a constant. The distribution of y is identical to that of n except for a translation by x
- $p(y | x) = p_n(y x)$, where $p_n(\cdot)$ is the PDF of noise sample

Capacity of a Band-limited AWGN Channel (1)

$$H(y \mid x) = \int_{-\infty}^{\infty} p(x) \int_{-\infty}^{\infty} p(y \mid x) \log \frac{1}{p(y|x)} dy dx$$

$$\int_{-\infty}^{\infty} p(y \mid x) \log \frac{1}{p(y|x)} dy$$

$$= \int_{-\infty}^{\infty} p_n(y - x) \log \frac{1}{p_n(y - x)} dy \quad [\text{since} \quad p(y \mid x) = p_n(y - x)]$$

$$= \int_{-\infty}^{\infty} p_n(z) \log \frac{1}{p_n(z)} dz = H(n)$$

$$H(y \mid x) = \int_{-\infty}^{\infty} H(n)p(x) dx$$

$$= H(n) \int_{-\infty}^{\infty} p(x) dx = H(n)$$

I(x;y)=H(y) - H(n)

Capacity of a Band-limited AWGN Channel (2)

- Entropy of a band-limited white Gaussian noise with PSD N₀
 - Noise power $: N_0B$

$$p(z) = \frac{1}{\sigma\sqrt{2\pi}} e^{-z^2/2\sigma^2}, \text{ where } \sigma^2 = \int_{-\infty}^{\infty} z^2 p(z) dz$$

-
$$H(n) = \int_{-\infty}^{\infty} P(n) \log \frac{1}{p(n)} dz = \frac{1}{2} \log(2\pi e\sigma^2)$$

- N is the noise power
$$(N = \sigma^2)$$

$$H(n) = \frac{1}{2}\log(2\pi eN)$$

Capacity of a Band-limited AWGN Channel (3)

- When the signal power is *S* and the noise power is *N*, and the signal s(t) and noise n(t) are independent, the mean square value of y is $E[y^2] = S + N$
- We should know the maximum of H(Y)
 - The maximum entropy is obtained when the distribution of Y is Gaussian for a given E[Y²]

$$- p(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-y^2/2\sigma^2}, \text{ where } \sigma^2 = \int_{-\infty}^{\infty} y^2 p(y) dy = E[Y^2]$$

$$- H_{\max}(Y) = \frac{1}{2}\log(2\pi e\sigma^2)$$

$$H_{\max}(Y) = \frac{1}{2}\log(2\pi e(S+N))$$

Capacity of a Band-limited AWGN Channel (4)

$$I_{\max}(x; y) = H_{\max}(y) - H(n)$$

= $\frac{1}{2} \log[2\pi e(S + N)] - \frac{1}{2} \log(2\pi eN)$
= $\frac{1}{2} \log(1 + \frac{S}{N})$

• Channel capacity: $2 \times B \times I_{max}(x; y)$

$$C = B \log(1 + \frac{S}{N})$$

Reference :B. P. Lathi, *Modern Digital and Analog Communication System*, 3rd Ed., Oxford. (Chapter 15)

Capacity of Flat-Fading Channels

Capacity of Flat-Fading Channels

- The channel capacity depends on the information about *g*[*i*]
 - Channel side information (the value of g[i]) known to the receiver
 - If the receiver reports CSI to the transmitter, the transmitter can know CSI

CSI at Transmitter and Receiver (1)

Figure 4.3: System Model with Transmitter and Receiver CSI.

- The transmitter may adjust the rate and/or power based on the reported CSI
- When the transmitter controls merely the rate with a fixed transmission power,

$$C = \int_0^\infty B \log_2(1+\gamma) f(\gamma) d\gamma$$

CSI at Transmitter and Receiver (2)

- Transmission power as well as rate can be adapted.
- Adaptation of transmission power $P_t(\gamma)$ to the received SNR γ subject to an average power constraint Φ
- average power constraint: $\int_{0}^{\infty} P_{t}(\gamma) f(\gamma) d\gamma \leq \Phi$
- The (time varying) fading channel capacity with average power constraint

$$C = \max_{P_t(\gamma): \int P_t(\gamma) f(\gamma) d\gamma = \Phi} \int_0^\infty B \log_2 \left(1 + \frac{P_t(\gamma)\gamma}{\Phi} \right) f(\gamma) d\gamma$$

* γ : the received SNR at transmission power Φ $\gamma = \frac{\Phi g}{N} \Rightarrow g = \frac{N\gamma}{\Phi}; \quad \frac{P_t(\gamma)g}{N} = \underbrace{P_t(\gamma)\gamma}{\Phi}$ SNR for tx power $P_t(\gamma)$ by reported γ

CSI at Transmitter and Receiver (3)

- The range of fading values is quantized to a finite set $\{\gamma_j : 1 \le j \le N\}$
- For each γ_j , an encoder-decoder pair for the AWGN channel with SNR $P_t(\gamma_j)\gamma_j/\Phi$
- The codeword from the corresponding encoder, x_j , is transmitted with power $P_t(\gamma_j)$ at data rate $C_j = B \log_2 (1 + P_t(\gamma_j) \gamma_j / \Phi)$

CSI at Transmitter and Receiver (4)

Optimal power allocation

– Lagrangian

$$\max \int_{0}^{\infty} B \log_{2} \left(1 + \frac{P_{t}(\gamma)\gamma}{\Phi} \right) f(\gamma) d\gamma$$

subject to
$$\int_{0}^{\infty} P_{t}(\gamma) f(\gamma) d\gamma \leq \Phi$$

Original problem

= 0

В

 $\lambda \ln 2 \Phi$

 γ_0

17

 $P_t(\gamma)$

Ф

$$J(P_t(\gamma),\lambda) = \int_0^\infty B \log_2\left(1 + \frac{P_t(\gamma)\gamma}{\Phi}\right) f(\gamma) \, d\gamma + \lambda \left[\Phi - \int_0^\infty P_t(\gamma) \, f(\gamma) \, d\gamma\right]$$

- Differentiate the Lagrangian and set the derivate to zero

$$\frac{\partial J(P_t(\gamma),\lambda)}{\partial P_t(\gamma)} \neq \left[\left(\frac{B/\ln 2}{1+\gamma P_t(\gamma)/\Phi} \right) \frac{\gamma}{\Phi} - \lambda \right] f(\gamma) = 0$$

- Solve for $P_t(\gamma)$ with the constraint that $P_t(\gamma) > 0$

$$\frac{P_t(\gamma)}{\Phi} = \begin{cases} 1/\gamma_0 - 1/\gamma & \gamma \ge \gamma_0 \\ 0 & \gamma < \gamma_0 \end{cases}$$

Mobile Computing and Communication Lab.

CSI at Transmitter and Receiver (5)

Capacity

$$1 + \frac{P_t(\gamma)\gamma}{\Phi} = 1 + \left(\frac{1}{\gamma_0} - \frac{1}{\gamma}\right)\gamma = \frac{\gamma}{\gamma_0}$$

$$C = \int_{\gamma_0}^{\infty} B \log_2\left(\frac{\gamma}{\gamma_0}\right) f(\gamma) d\gamma \qquad \dots (4.13)$$

- Time-varying data rate : the rate corresponding to the instantaneous SNR γ is $B \log_2(\gamma/\gamma_0)$
- Transmission power adaption
 - Optimal power allocation (Water filling)

$$\frac{P_t(\gamma)}{\Phi} = \begin{cases} 1/\gamma_0 - 1/\gamma & \gamma \ge \gamma_0 \\ 0 & \gamma < \gamma_0 \end{cases}$$

CSI at Transmitter and Receiver (6)

the better channel, the more power and the higher data rate

Mobile Computing and Communication Lab.

CSI at Transmitter and Receiver (7)

- Channel inversion and zero outage
 - The transmitter controls the transmission power using CSI so as to maintain a constant received power (inverts the channel fading)
 - The channel appears to the encoder and decoder as a timeinvariant AWGN channel
 - transmission power: $P_t(\gamma)/\Phi = \sigma/\gamma$

$$\sigma = \frac{1}{E[1/\gamma]} \text{ from } \int_0^\infty (\sigma/\gamma) f(\gamma) \, d\gamma = 1$$

$$P_{R} = gP_{t}(\gamma) = \frac{N\gamma}{\Phi}P_{t}(\gamma)$$
$$\frac{P_{t}(\gamma)}{\Phi} = \frac{\sigma}{N}\frac{1}{\gamma}$$

- Fading channel capacity with channel inversion is equal to the AWGN channel capacity with SNR $^{\sigma}$

$$C = B \log_2 \left(1 + \frac{P_t(\gamma)\gamma}{\Phi} \right)$$
$$= B \log_2 \left(1 + \frac{\sigma\gamma}{\gamma} \right)$$

$$C = B \log_2(1+\sigma) = B \log_2\left(1+\frac{1}{E[1/\gamma]}\right)$$
 (4.18)

CSI at Transmitter and Receiver (8)

- Channel inversion and zero outage
 - A fixed data rate regardless of channel condition
 - One pair of encoder and decoder is designed for an AWGN channel with SNR σ and Tx power is adjusted as $P_t(\gamma) = \sigma \Phi / \gamma$ => the simplest scheme to implement
 - zero outage:
 - Should maintain a constant data rate in all fading states
 - Zero outage capacity is significantly smaller than Shannon capacity on fading channel
 - In Rayleigh fading, the zero outage capacity is zero
 - Channel inversion is common in spread-spectrum system with near-far interference imbalances

CSI at Transmitter and Receiver (9)

- Truncated channel inversion
 - Suspending transmission in bad fading states
 - Truncated channel inversion
 - Power adaptation policy that compensates only for fading above a cutoff γ_0

•
$$\frac{P_t(\gamma)}{\Phi} = \begin{cases} \sigma/\gamma & \gamma \ge \gamma_0 \\ 0 & \gamma < \gamma_0 \end{cases} \quad \text{where } \sigma = \left(\mathbb{E}_{\gamma_0} [1/\gamma] \right)^{-1} = \left(\int_{\gamma_0}^{\infty} \frac{1}{\gamma} f(\gamma) d\gamma \right)^{-1}$$

• Outage probability
$$P_{out} = p(\gamma < \gamma_0)$$

• Outage capacity for a given P_{out} and corresponding cutoff γ_0

$$C(P_{out}) = B \log_2 \left(1 + \frac{1}{E_{\gamma_0}[1/\gamma]} \right) p(\gamma \ge \gamma_0)$$

Maximum outage capacity

$$C = \max_{\gamma_0} B \log_2 \left(1 + \frac{1}{E_{\gamma_0}[1/\gamma]} \right) p(\gamma \ge \gamma_0) \qquad (4.22)$$

Capacity Comparison

Zero-Outage Capacity: $C = \max_{\gamma_0} B \log_2(1 + 1/E_{\gamma_0}[1/\gamma]) p(\gamma \ge \gamma_0)$

Capacity of frequency-selective fading channel

Frequency Selective Fading Channel

Channel division into flat fading subchannel

Analysis is like that of flat fading subchannel with frequency axis

Time-invariant Channel (1)

- A time-invariant channel with frequency response *H*(*f*) that is known to both transmitter and receiver
- Block fading
 - Frequency is divided into subchannels of bandwidth B_c with constant frequency response H_j over each subchannel
 - P_j : Tx power on the *j*th subchannel
 - A set of AWGN channels in parallel with SNR $(|H_j|^2 P_j / N_0 B_c)$ on the *j*th channel
 - Total power constraint: $\sum_{j} P_{j} \leq P$

total transmission power

Time-invariant Channel (2)

Capacity under block fading

$$C = \sum_{\max P_j: \sum_j P_j \le P} B_c \log_2 \left(1 + \frac{\left| H_j \right|^2 P_j}{N_0 B_c} \right)$$

