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Introduction (1)

= Diversity techniques are based on the assumption that the probability
that multiple statistically independent fading channels simultaneously
experience deep fading is very low.

= The idea behind diversity is to send the same data over independent
fading paths

= Macro-diversity
— Diversity to mitigate the effects of shadowing
— is generally implemented by combining signals received by several
base stations or access points

— requires coordination among the different base stations, which is
Implemented as a part of networking protocols in infrastructure-
based wireless networks




Introduction (2)

= Micro-diversity
Diversity techniques that mitigate the effect of multipath fading
— Space diversity: by using multiple transmit or receive antennas

— Angle (or directional) diversity: with smart antennas which are
antenna array with adjustable phase at each antenna element

— Frequency diversity: by transmitting the same narrowband signal at
different carrier frequencies

— Path diversity: spread spectrum with RAKE receiver

— Time diversity: by transmitting the same date at different time
(coding or interleaving)




Recelver Diversity




System model for Receiver Diversity (1)
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System model for Receiver Diversity (2)

= Example (no fading, co-phasing: =1 6,=0)
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Diversity Gain

= With fading, the combining of multiple independent fading path
leads to a more favorable distribution for y,

= Performance of a diversity system
— Average symbol error probability
= Po=[ PO, (dy

where P,(y) is a symbol error probability in AWGN channel with SNR
— QOutage probability

= P =P <7)=[ f,()dy
= Diversity Gain

— Performance advantage in P, and P,, as a result of diversity
combining




Selection Combining (1)

= The combiner outputs the signal on the branch with the highest SNR
=  Cumulative distribution function (cdf) of »,

— P () =p(rs <y)=P(max[y, 7, ¥m1<%) =H P(y <7)

i=1

= For M-branch diversity with uncorrelated Rayleigh fading amplitude,

— Onith branch: f(y,) = %e‘y‘/ﬂ : Pouti(yo) = 1 — e Yo/¥i

— Qutage probability of the selection combiner for target ),
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Selection Combining (2)

Outage Probability
In Rayleigh fading
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Selection Combining (3)
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Threshold Combining (1)

= The combiner scans each branch in sequential order and outputs
the first signal whose SNR is above a given threshold y;

= Co-phasing is not required because only one branch output is

used at a time

= Switch-and-stay combining
(SSC)

— Once a branch is chosen,
the combiner outputs that
signal as long as the SNR
on that branch remains the
desired threshold.

= SNR of SSC
------ SNR of Branch One
== SNR of Branch Two

two branches




Threshold Combining (2)

= Cdfof y,_, the SNR of the combiner output with two branches:
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Maximal Ratio Combining (1)

= Combiner output SNR: 7=
— Combiner output envelope: r=>" ar JE
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- No(zii.ﬂz $re 3,




Maximal Ratio Combining (2)

Assume i.i.d Rayleigh fading on each branch with the same average SNR Y

= Probability density function (pdf) of 7z (=y1 +y2+ - +vu)

— M-stage Erlang distribution with mean My
7M 1e_7/77

fyz(?/)__M(M D)1 y =0

= Qutage probability for a given 7
— Ru=p0:<r)

= jo”’ i, (n)dy=1-e7” Z (y(f(/yi),_

= Average symbol (bit) error probability for BPSK modulation

— Po=[QW2y) T, ()dy




Maximal Ratio Combining (3)

Outage Probability
In Rayleigh fading
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Selection combining
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Maximal Ratio Combining (4)
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Equal Gain Combining

= Simple technique which co-phases the signal on each branch and then
combines them with equal weighting, o =e=i*

= Combiner output SNR 7=, assuming the same noise PSD in each branch

1 M )2
= = - I4/E

= Fori.i.d. Rayleigh fading with two branches having average branch SNR 7

— Cdfof 7x: P_(y)=1-e" —[zy/7e 7" {1-2Ql{/2,]7 |
— Outage Probability: p = P, ()

— Pdf of y,: L | L _1F — [\@)
Vst £, () = Jre [\/W - 7]( Q .

— Average bit error rate for BPSK
Po=[7Q27) 1, ()dy =05 1-y1-(1+7)"




Transmit Diversity




Channel Known at Transmitter

= A transmit diversity system with M transmit antennas and one receive antenna
IS considered

= We assume that the path gain riej‘gi of the ith antenna is known at transmitter.

= The signal is multiplied by «; =ae™'* and then sent through the ith antenna.

= Because the symbol energy E. in the transmitted signal s(t) is a constant, Z_la. =1
" Received signal: r(t) = Z ~arns(t) =

= The weights a, to achieve the maximum SNR: & = —

sl

" The resulting SNR: Yy = (Z; 1ra[\/E_S) /Ts Zylrﬁfﬁz[ Vi

— When the channel gains are known at transmitter, the transmit diversity is
similar to the receiver diversity with MRC

— If all antennas has the same gainr,=r, y, =Mr°E_/N,

— There is an array gain of M corresponding to an M-fold increase in SNR
over a single antenna transmitting with full power




Channel Unknown at Transmitter-Alamouti Scheme

= The transmitter no longer knows the channel gain

— If the transmit energy is divided equally among antenna, no performance
advantage is obtained

= Alamouti Scheme

— This scheme is designed for a digital communication system with two
antennas

— The scheme to combine both space and time diversity (STTD)
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STTD-Alamouti Scheme

= Channel estimation with known data (X, X,)

r']\1 = yle — Y, X, = (|X1|2 +|X2|2)h1 == nle — N, X,

I’A‘z = y1X§ — Y% = (|X1|2 +|X2|2)hz =E n1XZ — N, %

. Dlver5|ty galn
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Multiple Input and Multiple Output

= Narrowband MIMO Model
— Parallel Decomposition
—  MIMO Multiplexing Gain

= MIMO Channel Capacity
= MIMO Diversity Gain



Narrowband MIMO Model
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Parallel Decomposition of MIMO Channel (1)

= An MIMO channel with M xM, channel gain matrix H that is known to both
the transmitter and receiver

= SVD (singular value decomposition) of the matrix H
H=U)V"H
— Y MxM, diagonal matrix of singular values o,..., og, 0f H, where
o, = \/Z for 4. which is the ith largest eigenvalue of HHHk Positive real number

AP = (A*)T : Hermitian (i.e., conjugate transpose) of matrix A
An eigenvalue of A: A such that det(A-A1)=0
An eigenvector z of A: Az=\z

— U: MxM, unitary matrix, i.e, UHU=I. => each column of U is orthonormal vector
V: MxM, unitary matrix, VHV=I. => each column of V is an orthonormal vector
— each column of U: left singular vector of H (eigenvector of HH")
each column of V: right singular vector of H (eigenvector of H?H)
Hv=cu and H'u=0ov

v,.V,=0 (orthogonal) & v, v,=1 (i.e., ||v{||=1) (unit size)
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Preliminary: Singular Value Decomposition

unitary matrix V = [v; v,] =

72"\()/—* -
1%
1 ﬁ

v,.V,=0 (orthogonal) Av,
& v;.v,=1 (unit size)
AV = [Av] Avy]

AV = UT unitary matrix U = [u; uy]
—— T _Jor O
AVVT = UsV 2=|% o)

Since V is an orthogonal matrix, VVT = |

A=UsvT |

UL = [o1u; oyu; ]

— : — . : 24
AF{ =0 iﬁi) . (u; : left singular vector of A, v; : right singular vector of A)



Parallel Decomposition of MIMO Channel (2)

k The transmit precoding (x = VX) and receiver shaping ( = U y)
transform the MIMO channel into Ry (the number of nonzero singular

values o, of H) parallel single-input and single-output (SISO)

y=U"(Hx+n) =U"(UXV"x+n)

=U"(UXV"VX+n)
=U"UXVVX+U"n
=Y X+n

= _01 0 O __)~(_ =

Xl 0 o, 0 ~1 ~1 = = =

y2 = X2 + n2 yi = Gixl + nl

~ 0 0 o, = =
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Parallel Decomposition of MIMO Channel (2)
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MIMO Channel Capacity
In Static Channels
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Channel Known at Transmitter (1)

= Notation
— B: channel bandwidth
— P: transmit power constraint

= MIMO capacity with CSIT and CSIR

o; P
= C—P@%XPZBIog [1+ g Bj

0

where P;: the tx power allocated to the ith parallel channel
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Channel Known at Transmitter (2)

= Water-filling
— Wheny, =c’P/N,B isthe SNR of ith channel at full power
g% = YiNoB «— R
P H , P
= max ) Blog, 1+0] ——
RLiR=Pig N,B
Ry y
= _i7i
_Hg]i%)EP;Blog 2[1+ S

Water-filling power allocation for the MIMO channel: optimal
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Channel Unknown at Transmitter

= Uniform power allocation
— Mutual information for MIMO channel

where 7, =o?P/N,B and M, is the number of tx antennas
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MIMO Diversity Gain;
Beamforming

Shaping vector

Fuusmunn
=
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MIMO Diversity Gain

The same symbol x 1s sent over the ith antenna with weight v,
and the signal received on the jth antenna of the receiver is
weighted by ;"

The resulting received signal: y = u” (Hvx + n)

— For the maximum singular value o,,0f H, u and v are the first
columns of U and V, (principal left and right singular vector)

\HV:GmaXu and HHU:O-maXV

— y=u"Hvwx+u"n=u"o__ux+u"n
H H H
=0 Uu'ux+u"n=c_ x+u"n
=0, X+N

When channel knowledge at both receiver and transmitter,

o’ P
C=Blog,| 1+ M
gz[ NB]

0
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