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Introduction (1) 

 Diversity techniques are based on the assumption that the probability 
that multiple statistically independent fading channels simultaneously 
experience deep fading is very low.  

 The idea behind diversity is to send the same data over independent 
fading paths 
 

 Macro-diversity 
− Diversity to mitigate the effects of shadowing 
− is generally implemented by combining signals received by several 

base stations or access points 
− requires coordination among the different base stations, which is 

implemented as a part of networking protocols in infrastructure-
based wireless networks 
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Introduction (2) 
 Micro-diversity 

Diversity techniques that mitigate the effect of multipath fading 
− Space diversity: by using multiple transmit or receive antennas 
− Angle (or directional) diversity: with smart antennas which are 

antenna array with adjustable phase at each antenna element 
− Frequency diversity: by transmitting the same narrowband signal at 

different carrier frequencies  
− Path diversity: spread spectrum with RAKE receiver 
− Time diversity: by transmitting the same date at different time 

(coding or interleaving) 



Receiver Diversity 
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System model for Receiver Diversity (1) 
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  Co-phasing:  
   Removal of phase through  
    multiplication by 
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  Identical noise (one-sided) 
PSD N0 on each branch and 
pulse shaping such that BTs=1 



5 

System model for Receiver Diversity (2) 
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  Example (no fading, co-phasing:                    )  
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Diversity Gain 

 With fading, the combining of multiple independent fading path 
leads to a more favorable distribution for 

 Performance of a diversity system 
− Average symbol error probability 

■   
where          is a symbol error probability in AWGN channel with SNR  

− Outage probability 
■   

 Diversity Gain 
− Performance advantage in                   as a result of diversity 
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Selection Combining (1) 

 The combiner outputs the signal on the branch with the highest SNR  
 Cumulative distribution function (cdf) of    

−   

 For M-branch diversity with uncorrelated Rayleigh fading amplitude, 

− On ith branch: 

− Outage probability of the selection combiner for target         

■   

 

− pdf of      : differentiating               relative to 
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Selection Combining (2) 

Outage Probability 
in Rayleigh fading 
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Selection Combining (3) 

Average Pb of BPSK 
in Rayleigh fading 
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Threshold Combining (1) 

 The combiner scans each branch in sequential order and outputs 
the first signal whose SNR is above a given threshold  

 Co-phasing is not required because only one branch output is 
used at a time 

Tγ

 Switch-and-stay combining 
(SSC) 
− Once a branch is chosen, 

the combiner outputs that 
signal as long as the SNR 
on that branch remains the 
desired threshold.  

two branches 
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Threshold Combining (2) 
 Cdf of      , the SNR of the combiner output with two branches: 

 

 

 For Rayleigh fading of each branch with    
−   

 

 

− Outage probability for a given  

− Probability density function 
■   
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Maximal Ratio Combining (1) 

 Combiner output SNR:  

− Combiner output envelope:  
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 The goal is to choose the ai to maximize 
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Maximal Ratio Combining (2) 
Assume i.i.d Rayleigh fading on each branch with the same average SNR       

 Probability density function (pdf) of 
− M-stage Erlang distribution with mean 

 
■    

 
 Outage probability for a given 

−   
 

 
 

 Average symbol (bit) error probability for BPSK modulation  
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Maximal Ratio Combining (3) 

Outage Probability 
in Rayleigh fading 

Selection combining 
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Maximal Ratio Combining (4) 

Average Pb          
of BPSK in 
Rayleigh fading 
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Equal Gain Combining 
 Simple technique which co-phases the signal on each branch and then 

combines them with equal weighting,  
 Combiner output SNR      , assuming the same noise PSD in each branch 

−   

 For i.i.d. Rayleigh fading with two branches having average branch SNR 

−  Cdf of      : 

− Outage Probability: 

− Pdf of       : 

 
− Average bit error rate for BPSK 
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Transmit Diversity 
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Channel Known at Transmitter 
 A transmit diversity system with M transmit antennas and one receive antenna 

is considered 
 We assume that the path gain           of the ith antenna is known at transmitter.  
 The signal is multiplied by                    and then sent through the ith antenna. 

 Because the symbol energy Es in the transmitted signal s(t) is a constant, 

 Received signal: 
 The weights ai to achieve the maximum SNR: 

 

 The resulting SNR: 
 

− When the channel gains are known at transmitter, the transmit diversity is 
similar to the receiver diversity with MRC 

− If all antennas has the same gain ri = r,   
− There is an array gain of M corresponding to an M-fold increase in SNR 

over a single antenna transmitting with full power 
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Channel Unknown at Transmitter-Alamouti Scheme 

 The transmitter no longer knows the channel gain 
− If the transmit energy is divided equally among antenna, no performance 

advantage is obtained  
 Alamouti Scheme 

− This scheme is designed for a digital communication system with two 
antennas 

− The scheme to combine both space and time diversity (STTD) 
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STTD-Alamouti Scheme 

 Channel estimation with known data (x1, x2) 
 
 
 

 Diversity gain 
 
 
 

12
*
212

2
2

2
112

*
212

22
*
111

2
2

2
122

*
111

)(ˆ
)(ˆ

xnxnhxxxyxyh

xnxnhxxxyxyh

−++=−=

−++=−=

22
2

2
2

12

11
2

2
2

11

~)(

~)(

nshhz

nshhz

++=

++=



Multiple Input and Multiple Output 

 Narrowband MIMO Model 
− Parallel Decomposition 
− MIMO Multiplexing Gain 

 MIMO Channel Capacity 
 MIMO Diversity Gain 
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Narrowband MIMO Model  

y = Hx + n 
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Parallel Decomposition of MIMO Channel (1) 

 An MIMO channel with MrxMt channel gain matrix H that is known to both 
the transmitter and receiver 

 SVD (singular value decomposition) of the matrix H 
                     H = U∑VH 

− ∑: MrxMt diagonal matrix of singular values σ1,…, σRH of H,  where 
 
 
 
 

− U: MrxMr unitary matrix, i.e, UHU=I. =>  each column of U is orthonormal vector 
        V: MtxMt unitary matrix, VHV=I. =>  each column of V is an orthonormal vector 
− each column of U: left singular vector of  H (eigenvector of HHH) 

        each column of V: right singular vector of  H (eigenvector of HHH) 

 
 

H of eigenvaluelargest th   theis which for   HHiiii λλσ =

AH = (A*)T : Hermitian (i.e., conjugate transpose) of matrix A 
An eigenvalue of A: λ such that det(A-λI)=0 
An eigenvector z of A:  Az= λz 

Positive real number 

vuuv ii σσ == HH and   H
v1·v2=0 (orthogonal) & v1·v1=1 (i.e., ||v1||=1) (unit size) 
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Preliminary: Singular Value Decomposition 

A 

 v1·v2=0 (orthogonal)  
&  v1·v1=1 (unit size) 
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Parallel Decomposition of MIMO Channel (2) 
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Parallel Decomposition of MIMO Channel (2) 

 RH parallel SISO channel 
       By sending independent data 

across each of the parallel 
channel, the MIMO channel 
can support RH (=r) times the 
data rate 

       (Multiplexing gain) 
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MIMO Channel Capacity  
in Static Channels 
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Channel Known at Transmitter (1) 

 Notation 
− B: channel bandwidth 
− P: transmit power constraint 

 
 MIMO capacity with CSIT and CSIR 

 

−   
 

       where  Pi: the tx power allocated to the ith parallel channel 
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Channel Known at Transmitter (2) 

 Water-filling 
−   

 
    

 
    

 
 

− Water-filling power allocation for the MIMO channel: optimal 
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Channel Unknown at Transmitter 

 Uniform power allocation 
− Mutual information for MIMO channel 
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MIMO Diversity Gain: 
Beamforming 

Precoding vector 
Shaping vector 

* 

* 

* 
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MIMO Diversity Gain 
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