Space Diversity

Wha Sook Jeon

Fall 2021

Mobile Computing and Communications Lab.

Introduction (1)

- Diversity techniques are based on the assumption that the probability that multiple statistically independent fading channels simultaneously experience deep fading is very low.
- The idea behind diversity is to send the same data over independent fading paths
- Macro-diversity
 - Diversity to mitigate the effects of shadowing
 - is generally implemented by combining signals received by several base stations or access points
 - requires coordination among the different base stations, which is implemented as a part of networking protocols in infrastructurebased wireless networks

Introduction (2)

Micro-diversity

Diversity techniques that mitigate the effect of multipath fading

- Space diversity: by using multiple transmit or receive antennas
- Angle (or directional) diversity: with smart antennas which are antenna array with adjustable phase at each antenna element
- Frequency diversity: by transmitting the same narrowband signal at different carrier frequencies
- Path diversity: spread spectrum with RAKE receiver
- Time diversity: by transmitting the same date at different time (coding or interleaving)

Receiver Diversity

System model for Receiver Diversity (1)

• Co-phasing:

Removal of phase through multiplication by $\alpha_i = a_i e^{-j\theta_i}$

• Identical noise (one-sided) PSD N_0 on each branch and pulse shaping such that $BT_s=1$

System model for Receiver Diversity (2)

• Example (no fading, co-phasing: $r_i = 1$, $\theta_j = 0$)

Diversity Gain

- With fading, the combining of multiple independent fading path leads to a more favorable distribution for γ_{Σ}
- Performance of a diversity system
 - Average symbol error probability
 - $\overline{P}_s = \int_0^\infty P_s(\gamma) f_{\gamma_{\Sigma}}(\gamma) d\gamma$

where $P_s(\gamma)$ is a symbol error probability in AWGN channel with SNR γ

Outage probability

•
$$P_{out} = p(\gamma_{\Sigma} \le \gamma_0) = \int_0^{\gamma_0} f_{\gamma_{\Sigma}}(\gamma) d\gamma$$

- Diversity Gain
 - Performance advantage in \overline{P}_s and P_{out} as a result of diversity combining

Selection Combining (1)

- The combiner outputs the signal on the branch with the highest SNR
- Cumulative distribution function (cdf) of γ_{Σ}

$$- P_{\gamma_{\Sigma}}(\gamma) = p(\gamma_{\Sigma} < \gamma) = P(\max[\gamma_{1}, \gamma_{2}, ..., \gamma_{M}] < \gamma) = \prod_{i=1}^{M} p(\gamma_{i} < \gamma)$$

- For *M*-branch diversity with uncorrelated Rayleigh fading amplitude,
 - On *i*th branch: $f(\gamma_i) = \frac{1}{\gamma_i} e^{-\gamma_i/\overline{\gamma_i}}$, $P_{out,i}(\gamma_0) = 1 e^{-\gamma_0/\overline{\gamma_i}}$
 - Outage probability of the selection combiner for target γ_0

•
$$P_{out}(\gamma_0) = p(\gamma_{\Sigma} < \gamma_0) = \prod_{i=1}^{M} (1 - e^{-\gamma_0/\overline{\gamma_i}}) = [1 - e^{-\gamma_0/\overline{\gamma_i}}]^M$$

The average SNR for all branches are the same

- pdf of γ_{Σ} : differentiating $P_{out}(\gamma_0)$ relative to γ_0

•
$$f_{\gamma_{\Sigma}}(\gamma) = \frac{M}{\overline{\gamma}} [1 - e^{-\gamma/\overline{\gamma}}]^{M-1} e^{-\gamma/\overline{\gamma}}$$

Selection Combining (2)

Selection Combining (3)

Threshold Combining (1)

- The combiner scans each branch in sequential order and outputs the first signal whose SNR is above a given threshold γ_T
- Co-phasing is not required because only one branch output is used at a time
- Switch-and-stay combining (SSC)
 - Once a branch is chosen, the combiner outputs that signal as long as the SNR on that branch remains the desired threshold.

two branches

Threshold Combining (2)

• Cdf of γ_{Σ} , the SNR of the combiner output with two branches:

$$P_{\gamma_{\Sigma}}(\gamma) = \begin{cases} P_{\gamma_{1}}(\gamma_{T})P_{\gamma_{2}}(\gamma) & \gamma < \gamma_{T}, \\ p(\gamma_{T} \leq \gamma_{1} \leq \gamma) + P_{\gamma_{1}}(\gamma_{T})P_{\gamma_{2}}(\gamma) & \gamma \geq \gamma_{T} \end{cases}$$

• For Rayleigh fading of each branch with

$$P_{\gamma_{\Sigma}}(\gamma) = \begin{cases} (1 - e^{-\gamma_{T}/\bar{\gamma}})(1 - e^{-\gamma/\bar{\gamma}}) & \gamma < \gamma_{T}, \\ \{1 - e^{-\gamma/\bar{\gamma}} - (1 - e^{-\gamma_{T}/\bar{\gamma}})\} + (1 - e^{-\gamma_{T}/\bar{\gamma}})(1 - e^{-\gamma/\bar{\gamma}}) & \gamma \geq \gamma_{T}. \end{cases}$$

- Outage probability for a given γ_0 : $P_{out}(\gamma_0) = P_{\gamma_{\Sigma}}(\gamma_0)$
- Probability density function

$$f_{\gamma_{\Sigma}}(\gamma) = \begin{cases} (1 - e^{-\gamma_{T}/\bar{\gamma}})(1/\bar{\gamma})e^{-\gamma/\bar{\gamma}} & \gamma < \gamma_{T} \\ (2 - e^{-\gamma_{T}/\bar{\gamma}})(1/\bar{\gamma})e^{-\gamma/\bar{\gamma}} & \gamma \geq \gamma_{T} \end{cases}$$

Maximal Ratio Combining (1)

- Combiner output SNR: γ_{Σ}
 - Combiner output envelope: $r = \sum_{i=1}^{M} a_i r_i \sqrt{E_s}$

$$\sum_{i=1}^{M} \gamma_{\Sigma} = \frac{\left(\sum_{i=1}^{M} a_{i} r_{i} \sqrt{E_{s}}\right)^{2} / T_{s}}{\sum_{i=1}^{M} a_{i}^{2} N_{0} B} = \frac{\left(\sum_{i=1}^{M} a_{i} r_{i} \sqrt{E_{s}}\right)^{2}}{\sum_{i=1}^{M} a_{i}^{2} N_{0}} \le \frac{\sum_{i=1}^{M} a_{i}^{2} \sum_{i=1}^{M} r_{i}^{2} E_{s}}{\sum_{i=1}^{M} a_{i}^{2} N_{0}} = \sum_{i=1}^{M} \frac{r_{i}^{2} E_{s}}{N_{0}} = \sum_{i=1}^{M} \gamma_{i}$$

$$\text{since} \left(\sum_{i=1}^{M} a_{i} r_{i}\right)^{2} \le \sum_{i=1}^{M} a_{i}^{2} \sum_{i=1}^{M} r_{i}^{2}$$

• The goal is to choose the a_i to maximize γ_{Σ}

- when
$$a_i^2 = r_i^2 / N_0$$

$$-\gamma_{\Sigma} = \frac{1}{N_0} \frac{\left(\sum_{i=1}^{M} a_i r_i \sqrt{E_s}\right)^2}{\sum_{i=1}^{M} a_i^2} = \sum_{i=1}^{M} \frac{r_i^2 E_s}{N_0} = \sum_{i=1}^{M} \gamma_i$$

Maximal Ratio Combining (2)

Assume i.i.d Rayleigh fading on each branch with the same average SNR $\overline{\gamma}$

- Probability density function (pdf) of γ_{Σ} (= $\gamma_1 + \gamma_2 + \dots + \gamma_M$)
 - *M*-stage Erlang distribution with mean $M\bar{\gamma}$

$$f_{\gamma_{\Sigma}}(\gamma) = \frac{\gamma^{M-1} e^{-\gamma/\bar{\gamma}}}{\bar{\gamma}^{M} (M-1)!} \qquad \gamma \ge 0$$

• Outage probability for a given γ_0

$$P_{out} = p(\gamma_{\Sigma} < \gamma_{0})$$
$$= \int_{0}^{\gamma_{0}} f_{\gamma_{\Sigma}}(\gamma) d\gamma = 1 - e^{-\gamma/\overline{\gamma}} \sum_{k=1}^{M} \frac{(\gamma_{0}/\overline{\gamma})^{k-1}}{(k-1)!}$$

Average symbol (bit) error probability for BPSK modulation

$$- \overline{P}_b = \int_0^\infty Q(\sqrt{2\gamma}) f_{\gamma_{\Sigma}}(\gamma) d\gamma$$

Maximal Ratio Combining (3)

Maximal Ratio Combining (4)

Equal Gain Combining

- Simple technique which co-phases the signal on each branch and then combines them with equal weighting, $\alpha_i = e^{-j\theta_i}$
- Combiner output SNR γ_{Σ} , assuming the same noise PSD in each branch

$$- \gamma_{\Sigma} = \frac{1}{N_0 M} \left(\sum_{i=1}^M r_i \sqrt{E_s} \right)^2$$

For i.i.d. Rayleigh fading with two branches having average branch SNR $\overline{\gamma}$

- Cdf of
$$\gamma_{\Sigma}$$
: $P_{\gamma_{\Sigma}}(\gamma) = 1 - e^{-2\gamma/\bar{\gamma}} - \sqrt{\pi\gamma/\bar{\gamma}} e^{-\gamma/\bar{\gamma}} \left\{ 1 - 2Q\left(\sqrt{2\gamma/\bar{\gamma}}\right) \right\}$

- Outage Probability: $P_{out} = P_{\gamma_{\Sigma}} (\gamma_0)$

- Pdf of
$$\gamma_{\Sigma}$$
: $f_{\gamma_{\Sigma}}(\gamma) = \frac{1}{\bar{\gamma}} e^{-2\gamma/\bar{\gamma}} - \sqrt{\pi} e^{-\gamma/\bar{\gamma}} \left(\frac{1}{\sqrt{4\gamma\bar{\gamma}}} - \frac{1}{\bar{\gamma}} \sqrt{\frac{\gamma}{\bar{\gamma}}} \right) \left(1 - 2Q\left(\sqrt{\frac{2\gamma}{\bar{\gamma}}}\right) \right)$

- Average bit error rate for BPSK

$$\overline{P}_{b} = \int_{0}^{\infty} Q(\sqrt{2\gamma}) f_{\gamma_{\Sigma}}(\gamma) d\gamma = 0.5 \left(1 - \sqrt{1 - \left(1 + \overline{\gamma}\right)^{-2}}\right)$$

Transmit Diversity

Channel Known at Transmitter

- A transmit diversity system with *M* transmit antennas and one receive antenna is considered
- We assume that the path gain $r_i e^{j\theta_i}$ of the *i*th antenna is known at transmitter.
- The signal is multiplied by $\alpha_i = a_i e^{-j\theta_i}$ and then sent through the *i*th antenna.
- Because the symbol energy E_s in the transmitted signal s(t) is a constant, $\sum_{i=1}^{M} a_i^2 = 1$
- Received signal: $r(t) = \sum_{i=1}^{M} a_i r_i s(t)$
- The weights a_i to achieve the maximum SNR: a_i

$$u_i = \frac{r_i}{\sqrt{\sum_{i=1}^M r_i^2}}$$

• The resulting SNR:
$$\gamma_{\Sigma} = \frac{\left(\sum_{i=1}^{M} r_i a_i \sqrt{E_s}\right)^2 / T_s}{N_0 B} = \sum_{i=1}^{M} \frac{r_i^2 E_s}{N_0} = \sum_{i=1}^{M} \gamma_i$$

- When the channel gains are known at transmitter, the transmit diversity is similar to the receiver diversity with MRC
- If all antennas has the same gain $r_i = r$, $\gamma_{\Sigma} = Mr^2 E_s / N_0$
- There is an array gain of *M* corresponding to an *M*-fold increase in SNR over a single antenna transmitting with full power

Channel Unknown at Transmitter-Alamouti Scheme

- The transmitter no longer knows the channel gain
 - If the transmit energy is divided equally among antenna, no performance advantage is obtained
- Alamouti Scheme
 - This scheme is designed for a digital communication system with two antennas

The scheme to combine both space and time diversity (STTD)

STTD-Alamouti Scheme

• Channel estimation with known data (x_1, x_2)

$$\hat{h}_{1} = y_{1}x_{1}^{*} - y_{2}x_{2} = (|x_{1}|^{2} + |x_{2}|^{2})h_{1} + n_{1}x_{1}^{*} - n_{2}x_{2}$$
$$\hat{h}_{2} = y_{1}x_{2}^{*} - y_{2}x_{1} = (|x_{1}|^{2} + |x_{2}|^{2})h_{2} + n_{1}x_{2}^{*} - n_{2}x_{1}$$

Diversity gain

$$z_{1} \neq (|h_{1}|^{2} + |h_{2}|^{2})s_{1} + \tilde{n}_{1}$$
$$z_{2} = (|h_{1}|^{2} + |h_{2}|^{2})s_{2} + \tilde{n}_{2}$$

Multiple Input and Multiple Output

- Narrowband MIMO Model
 - Parallel Decomposition
 - MIMO Multiplexing Gain
- MIMO Channel Capacity
- MIMO Diversity Gain

Narrowband MIMO Model

Parallel Decomposition of MIMO Channel (1)

- An MIMO channel with $M_r \times M_t$ channel gain matrix **H** that is known to both the transmitter and receiver
- SVD (singular value decomposition) of the matrix **H**

$\mathbf{H} = \mathbf{U} {\textstyle \sum} \mathbf{V}^{\mathrm{H}}$

- $\sum M_r \times M_t$ diagonal matrix of singular values $\sigma_1, \dots, \sigma_{R^H}$ of **H**, where $\sigma_i = \sqrt{\lambda_i}$ for λ_i which is the *i*th largest eigenvalue of **HH**^H Positive real number

> $\mathbf{A}^{\mathrm{H}} = (\mathbf{A}^{*})^{\mathrm{T}}$: Hermitian (i.e., conjugate transpose) of matrix \mathbf{A} An eigenvalue of \mathbf{A} : λ such that det $(\mathbf{A} - \lambda \mathbf{I}) = 0$ An eigenvector \mathbf{z} of \mathbf{A} : $\mathbf{A}\mathbf{z} = \lambda \mathbf{z}$

- U: $M_r \times M_r$ unitary matrix, i.e, U^HU=I. => each column of U is orthonormal vector V: $M_t \times M_t$ unitary matrix, V^HV=I. => each column of V is an <u>orthonormal</u> vector each column of U: left singular vector of H (eigenvector of HH^H) each column of V: right singular vector of H (eigenvector of H^HH) $H_v = \sigma_i u$ and $H^H u = \sigma_i v$

 $v_1.v_2=0$ (orthogonal) & $v_1.v_1=1$ (i.e., $||v_1||=1$) (unit size)

Preliminary: Singular Value Decomposition

 $A\overrightarrow{v_i} = \sigma_i \overrightarrow{u_i}$: $(\overrightarrow{u_i}: \text{ left singular vector of A}, \overrightarrow{v_i}: \text{ right singular vector of A})$

Parallel Decomposition of MIMO Channel (2)

The transmit precoding $(x = V\tilde{x})$ and receiver shaping $(\tilde{y} = U^H y)$ transform the MIMO channel into R_H (the number of nonzero singular values σ_i of H) parallel single-input and single-output (SISO)

$$\widetilde{y} = U^{H}(Hx + n) = U^{H}(U\sum V^{H}x + n)$$
$$= U^{H}(U\sum V^{H}V\widetilde{x} + n)$$
$$= U^{H}U\sum V^{H}V\widetilde{x} + U^{H}n$$
$$= \sum \widetilde{x} + \widetilde{n}$$

$$\begin{bmatrix} \tilde{y}_{1} \\ \tilde{y}_{2} \\ \tilde{y}_{3} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & 0 & 0 & 0 \\ 0 & \sigma_{2} & 0 & 0 \\ 0 & 0 & \sigma_{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{x}_{1} \\ \tilde{x}_{2} \\ \tilde{x}_{3} \end{bmatrix} + \begin{bmatrix} \tilde{n}_{1} \\ \tilde{n}_{2} \\ \tilde{n}_{3} \end{bmatrix} \qquad \tilde{y}_{i} = \sigma_{i}\tilde{x}_{i} + \tilde{n}_{i}$$

Parallel Decomposition of MIMO Channel (2)

$R_{\rm H}$ parallel SISO channel

By sending independent data across each of the parallel channel, the MIMO channel can support $R_{\rm H}$ (=r) times the data rate

(Multiplexing gain)

MIMO Channel Capacity in Static Channels

Channel Known at Transmitter (1)

- Notation
 - B: channel bandwidth
 - *P*: transmit power constraint
- MIMO capacity with CSIT and CSIR

$$- C = \max_{P_i: \Sigma_i P_i = P} \sum_{i=1}^{R_{\rm H}} B \log_2 \left(1 + \frac{\sigma_i^2 P_i}{N_0 B} \right)$$

where P_i : the tx power allocated to the *i*th parallel channel

Channel Known at Transmitter (2)

Water-filling

- When $\gamma_i = \sigma_i^2 P/N_0 B$ is the SNR of *i*th channel at full power $\sigma^2 = \frac{\gamma_i N_0 B}{P} \leftarrow C = \max_{P_i: \Sigma_i P_i = P} \sum_{i=1}^{R_{\rm H}} B \log_2 \left(1 + \sigma_i^2 \frac{P_i}{N_0 B} \right)$ $= \max_{P_i: \Sigma_i P_i = P} \sum_{i=1}^{R_{\rm H}} B \log_2 \left(1 + \frac{P_i \gamma_i}{P} \right)$

- Water-filling power allocation for the MIMO channel: optimal

$$\frac{P_i}{P} = \begin{cases} 1/\gamma_0 - 1/\gamma_i & \gamma_i \ge \gamma_0 \\ 0 & \gamma_i < \gamma_0 \end{cases} \qquad C = \sum_{i:\gamma_i \ge \gamma_0}^{R_{\rm H}} B \log_2\left(\frac{\gamma_i}{\gamma_0}\right)$$

Channel Unknown at Transmitter

- Uniform power allocation
 - Mutual information for MIMO channel

$$C_{EqPw} = \sum_{i=1}^{R_{\rm H}} B \log_2 \left(1 + \sigma_i^2 \frac{P_i}{N_0 B} \right) = \sum_{i=1}^{R_{\rm H}} B \log_2 \left(1 + \frac{\sigma_i^2 P/M_t}{N_0 B} \right)$$
$$= \sum_{i=1}^{R_{\rm H}} B \log_2 \left(1 + \frac{\gamma_i}{M_t} \right)$$

where $\gamma_i = \sigma_i^2 P / N_0 B$ and M_t is the number of tx antennas

MIMO Diversity Gain: Beamforming

MIMO Diversity Gain

- The same symbol x is sent over the *i*th antenna with weight v_i and the signal received on the *j*th antenna of the receiver is weighted by u_j^*
- The resulting received signal: $y = u^H (Hvx + n)$
 - For the maximum singular value σ_{max} of H, u and v are the first columns of U and V, (principal left and right singular vector)

-
$$y = u^{H}Hvx + u^{H}n = u^{H}\sigma_{max}ux + u^{H}n$$

= $\sigma_{max}u^{H}ux + u^{H}n = \sigma_{max}x + u^{H}n$
= $\sigma_{max}x + n$

$$Hv = \sigma_{max}u$$
 and $H^{H}u = \sigma_{max}v$

When channel knowledge at both receiver and transmitter,

$$C = B \log_2 \left(1 + \frac{\sigma_{\max}^2 P}{N_0 B} \right)$$