Multicarrier Modulation

Wha Sook Jeon

Fall 2021

Mobile Computing & Communications Lab

Data Transmission Using Multiple Carriers (1)

- The simplest form of multicarrier modulation
 - divides the data stream into multiple substreams to be transmitted over different orthogonal subchannels centered at different frequencies (FDM)
- Consider a system with data rate *R* and bandwidth *B*
 - If coherence bandwidth (B_c) is assumed to be $B_c < B$, the signal experiences frequency-selective fading
 - With a wide bandwidth, because a symbol time is usually shorter than delay spread, the effect of ISI cannot be negligible
 - The wideband system is broken into *N* subsystems in parallel
 - Each with subchannel bandwidth $B_s = B / N$ and data rate $R_N = R / N$
 - For N sufficiently large, $B_s \ll B_c$,
 - relatively flat fading on each subchannel
 - The symbol time on each subchannel is much greater than the delay spread of the subchannel => experiences little ISI

Data Transmission Using Multiple Carriers (2)

Multicarrier transmitter

- The *i*th substream is modulated via QAM or PSK with the subcarrier frequency f_i
- The modulated signals associated with all the subcarriers are summed together

$$s(t) = \sum_{i=0}^{N-1} \operatorname{Re}\left\{s_{i}g(t)e^{j(2\pi f_{i}t + \phi_{i})}\right\}$$

where s_i is the complex symbol, ϕ_i is phase offset of the *i*th carrier, and g(t) is pulse shaper

- This system does not change the data rate or signal bandwidth relative to the original system but eliminates ISI for $B_s \ll B_c$

Multicarrier Modulation with Overlapping Subchannels

- The spectral efficiency of multicarrier modulation by overlapping the subchannel
 - The subcarrier must still be orthogonal so that they can be separated out by the demodulator in the receiver
- The subcarrier set: $\{\cos 2\pi (f_0 + i/T_s) | t, i = 0, 1, 2, \cdots\}$
 - Orthonormal basis set:

$$\int_{0}^{T_{s}} \cos 2\pi (f_{0} + i/T_{s}) t \times \cos 2\pi (f_{0} + j/T_{s}) t \, dt = 0 \quad \text{if } i \neq j$$

- Even if the subchannels overlap, the modulated signal transmitted in each subchannel can be separated out in the receiver
- The total system bandwidth

$$B \approx N \frac{1}{T_s} = N B_s$$
 for a large N

- Overlapping subcarriers

Multicarrier Modulation with Overlapping Subchannels

 $2\cos A \cos B = \cos(A - B) + \cos(A + B)$

$$\frac{2}{T_s} \int_0^{T_s} \cos 2\pi (f_0 + i/T_s) t \cos 2\pi (f_0 + j/T_s) t dt$$

$$= \frac{1}{T_s} \int_0^{T_s} \cos 2\pi \frac{(i-j)t}{T_s} dt + \frac{1}{T_s} \int_0^{T_s} \cos 2\pi \left(2f_0 + \frac{i+j}{T_s} \right) t dt$$

$$\approx \frac{1}{T_s} \int_0^{T_s} \cos 2\pi \frac{(i-j)t}{T_s} dt$$

$$= \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \implies \delta(j-i)$$

$$\hat{s}_{i} = \int_{0}^{T_{s}} \left(\sum_{j=0}^{N-1} s_{j} g(t) \cos 2\pi f_{j} t \right) g(t) \cos 2\pi f_{i} t \, dt$$

$$= \sum_{j=0}^{N-1} s_{j} \int_{0}^{T_{s}} g^{2}(t) \cos 2\pi (f_{0} + j/T_{s}) t \times \cos 2\pi (f_{0} + i/T_{s}) t \, dt$$

$$= \sum_{j=0}^{N-1} s_{j} \, \delta(j-i) = s_{i}$$

Multicarrier Modulation (1)

- Multicarrier modulation, which is invented in the 1950s, can be used widely by the development of the discrete Fourier transform and inverse DFT
- Multicarrier Modulation

each waveform is orthogonal with each other for a symbol interval (T_s)

Multicarrier Modulation (2)

Power spectrum of the transmitted signal

- Signal spectrum on each subcarrier has sinc function for a rectangular pulse shape
- ➡ Implementation via FFT/IFFT

Discrete Implementation of Multicarrier Modulation (1)

Implementation

Discrete Implementation of Multicarrier Modulation (3)

Discrete Implementation of Multicarrier Modulation (4)

 \implies " $M \leq N$ ": if M < N, X[M]=0, ... X[N-1]=0

Discrete Implementation of Multicarrier Modulation (5)

 \implies "*N* = power of two" : FFT/IFFT (fast processing)

Discrete Implementation of Multicarrier Modulation (6)

Circular convolution

- -h[n] with duration M1, x[n] with duration N
- DFT of N-point circular convolution of h[n] and x[n] is equal to the multiplication of DFT(h[n]) and DFT(x[n])

Discrete Implementation of Multicarrier Modulation (7)

Cyclic Prefix (CP) (1)

Cyclic Prefix is added so that the received signal can be N-point circular convolution of the transmitted signal and the channel impulse response

When the CP is longer than the length of channel impulse response

16

Cyclic Prefix (CP) (2)

When CP is shorter than the channel impulse response length.

 \Rightarrow To avoid ISI,

the CP length should be set to be longer than the channel impulse response length.

Transmitter and Receiver (OFDM)

Challenges in Multicarrier Systems (1)

Peak-to-Average Power Ratio

- PAR grows with the number of subcarriers
 - Average power

$$E\left[\left(\frac{1}{\sqrt{N}}\left|x_{0}+x_{1}+\cdots+x_{N-1}\right|^{2}\right]=\frac{1}{N}E\left[\left|x_{0}+x_{1}+\cdots+x_{N-1}\right|^{2}\right]=\frac{E\left[\left|x_{0}\right|^{2}\right]+E\left[\left|x_{1}\right|^{2}\right]+\cdots+E\left[\left|x_{N-1}\right|^{2}\right]}{N}=1$$

• Maximum power: when all the x_i add coherently

$$max\left[\left(\frac{1}{\sqrt{N}}|x_0 + x_1 + \dots + x_N|\right)^2\right] = \left|\frac{N}{\sqrt{N}}\right|^2 = N$$

The maximum PAR is *N* for *N* subcarriers

• The observed PAR is typically less than N because full coherent addition of all N symbols is highly improbable.

Challenges in Multicarrier Systems (2)

Frequency Offset

- Orthogonality is assured by the subcarrier separation $\Delta f = 1/T_N$
- In practice, the frequency separation of the subcarriers is imperfect
 - Due to mismatched oscillators, Doppler shifts, or timing sync error
- Intercarrier interference (ICI)
 - The received samples of the FFT will contain interference from adjacent subcarriers due to the degradation in the orthogonality of the subcarriers

Timing Offset

 The effect of timing error is less than that from the frequency offset due to guard time (cyclic prefix), that is, as long as a full N-sample OFDM symbol is used at the receiver without interference from previous or subsequent symbols

Multiuser OFDM

• OFDM-TDMA

- Channel time is divided into time slots with a fixed length
- Each user is assigned the time slot(s).
- The user uses all sub-carriers during its time slots

OFDMA

- The sub-carriers is grouped into subchannels
- Each user is assigned the subchannels
- The user uses its assigned subchannels until they are released

✓ OFDM-FDMA

- A subchannel is composed of a band of contiguous sub-carriers
- In frequency selective fading environment, each subchannel has a different channel quality
- Performance improvement with high reporting overhead (resource management)

✓ OFDM-Interleaved-FDMA

- A subchannel is composed of non-contiguous sub-carriers
- Most subchannels have almost the same quality
- Low CSI reporting overhead

OFMA-CDMA

Case Study I – IEEE 802.11a

- IEEE 802.11a, which occupies a bandwidth of 20 MHz in the 5GHz band, is based on OFDM
 - N = 64 subcarriers are generated, although only 48 are actually used for data transmission
 - The cyclic prefix length is 1/4 of OFDM symbol time
 - Possible coding rates are 1/2, 2/3, 3/4
 - The modulation types can be used are BPSK, QPSK, 16QAM, 64QAM
- The subcarrier bandwidth $B_s = 20 \text{ MHz}/64 = 312.5 \text{ kHz}$
- Symbol time per subcarrier is $T_s = 1/B_s \times 5/4 = 4 \ \mu s$

Maximum data rate is
$$R_{Max} = 48 \times \frac{3}{4} \times 6 \times \frac{1}{4 \times 10^{-6}} = 54 \text{ Mbps}$$