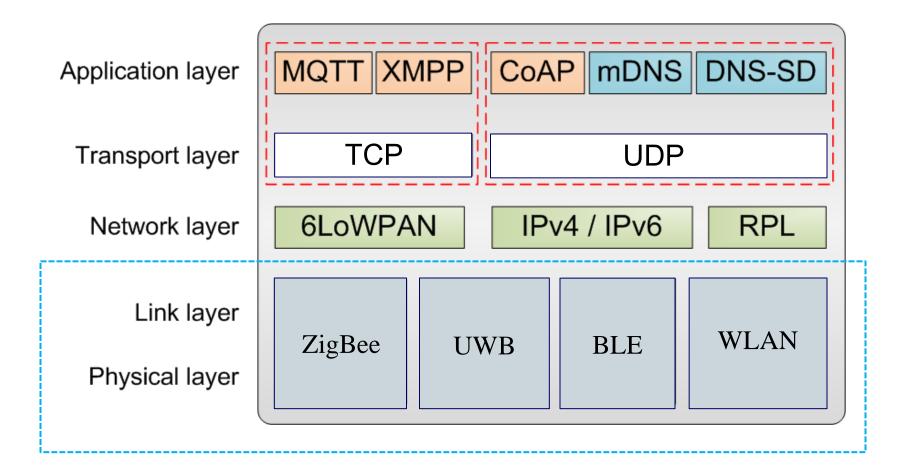

Protocol Stack for IoT

WiCon/IoT Radios

Blue: > billion units/year now Red: emerging


WPAN: Wireless Personal Area Network WHAN: Wireless Home Area WFAN: Wireless Field (or Factory) Area WLAN: Wireless Local Area WNAN: Wireless Neighbourhood Area WWAN: Wireless Wide Area LPWAN: Low Power Wide Area Network

KEYSIGHT TECHNOLOGIES

Trends:

WiFi: Keep evolving. Complementary/competitive for cellular/5G? **IoT:** Market still very segmented. Issues for business models are regional. No equivalent business model. Vertical market is key to success.

Protocol stack for Short Range IoT

6LoWPAN

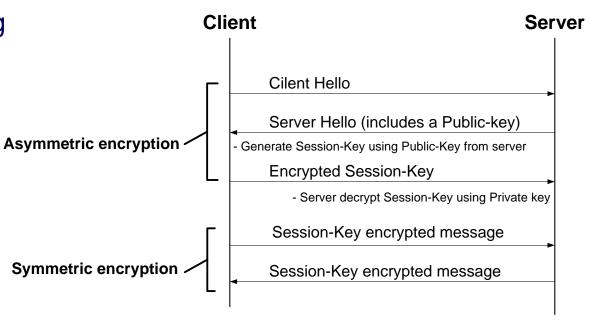
IPv6 over Low power Wireless Personal Area Networks

LowPAN comprises IEEE 802.15.4 devices or BLE devices which are characterized by short range, low bit rate, low power, and low cost

Functions defined in 6LoWPAN

- Header compression
 - To transmit IPv6 packets over an IEEE 802.15.4 or BLE frame
- Packet fragmentation
 - Upper layer PDUs should be fragmented/reassembled properly in order to be sent/received through LoWPAN
- Layer 2 forwarding

RPL


IPv6 Routing Protocol for Low-power and Lossy Networks

- A routing protocol for wireless networks with low power consumption and generally susceptible to packet loss
- Proactive protocol based on distance vector
- operates on IEEE 802.15.4
- Information exchanges between nodes occur based on DAG (directed acyclic graph) computation and ICMPv6
- optimized for a multi-hop mesh network

DTLS (Datagram Transport Layer Security)

TLS provides a secure data communication over TCP

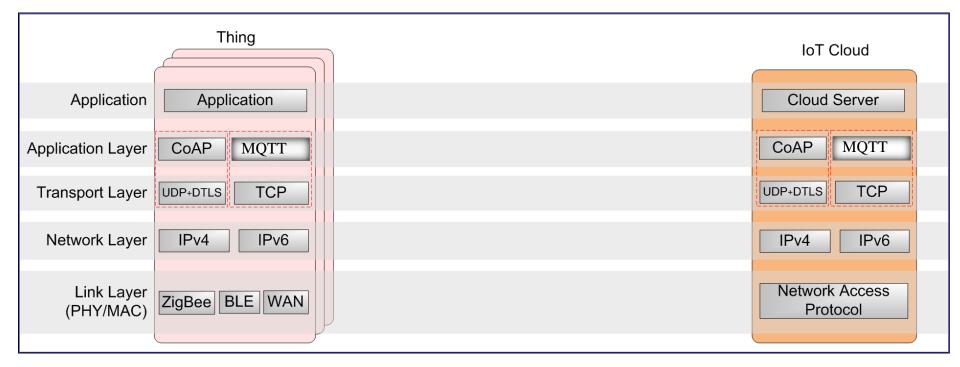
- To support secure communication over UDP (datagram environment) packet loss or reordering must be addressed
- Main functions of DTLS
 - Packet retransmission
 - Packet reordering
 - TLS operation

[Simplified TLS operation]

DNS, DNS-SD (1)

- A protocol for advertisement and discovery of network services and presence information
- based on the Internet protocol suite

- Preliminary: Two types of discovery
 - Advertisement
 - An end device advertises its presence and related information via multicast channel
 - If a control app listens to the multicast channel, it discovers the end device
 - Request search
 - A control app sends search request and end devices response to the request

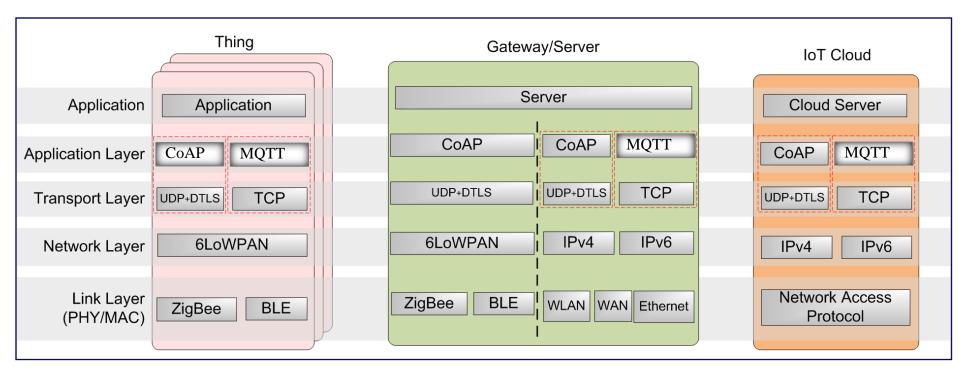


DNS, DNS-SD (2)

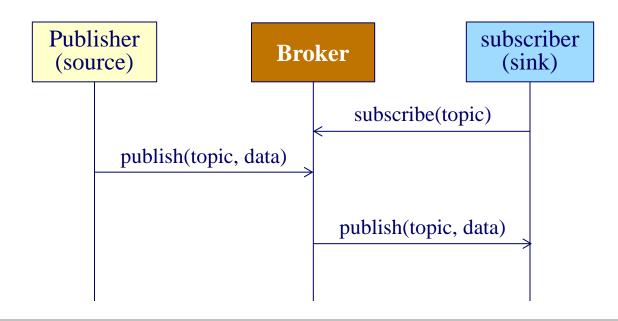
- DNS (multicast Domain Name System)
 - It resolves host names to IP addresses within small networks that do not include a local name server
 - It is a zero-configuration service
 - When an mDNS client want to know host name of another client, it transmits a multicast query message
 - This message includes its own host name and IP address
 - Other hosts listen the message and update their mDNS cash
- DNS-SD (Domain Name System Service Discovery)
 - It can discover another device providing a specific service
 - ✤ e.g., print server or audio device

Case 1

- Conventional internet protocols are implemented
- Thing has internet access capability
- M2M gateway is not needed

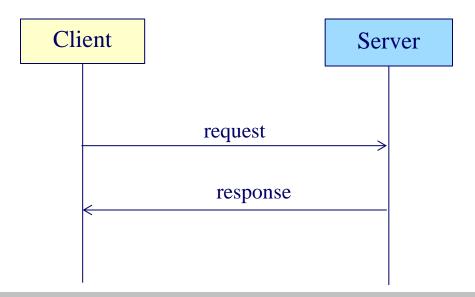

Case 2

Gateway only forwards network layer packets to IoT cloud


Case 3

- Gateway has the application to communicate with IoT cloud
- Gateway has a role of controlling the network of things

MQTT (Message Queuing Telemetry Transfer)


- Lightweight publish/subscribe messaging protocol, designed for M2M connectivity
- Features
 - Data producer publishes a message on a topic and consumer subscribes on the topic
 - Wildcards (+ and #) can be used for simplicity, in descripting a topic
 - Broker (in server) forwards message(s) to corresponding subscribers

CoAP (Constrained Application Protocol)

- A simple application layer protocol that enables web service even for resource-constrained devices (e.g., WSN node)
- Features
 - Translation to HTTP packet can be done easily → Simple integration with web
 - Confirmable: ACK for better reliability over UDP

Nonconfirmable: No Ack

	MQTT	СоАР
Comm. Model	Publish-Subscribe	Request-Response
Transport Protocol	TCP	UDP
Transport Security	TLS	DTLS
QoS	0: fire and forgot1: repeat until ack reception2: exactly once	Confirmable Non-confirmable
RESTful	No	Yes

MQTT vs. CoAP

Example of messaging

Assumption: All rooms in building 302 have a thermometer and a hygrometer

Scenario 1:

A device want to know the temperature of building 302 room 309

Using MQTT → Subscribe this topic: /KOR/Seoul/Gwanak/151-742/302/309/temperature Using CoAP

→ Request to this URI (using GET method): coap://snu.ac.kr (5683)302/309/temperature

default CoAP port

MQTT vs. CoAP

Scenario 2

A device want to know the temperature of all rooms in building 302

MQTT vs. CoAP

Scenario 3

A device want to know the temperature and humidity of all rooms in building 302

Using MQTT → Subscribe this topic using wildcard # (multi-level wildcard): /KOR/Seoul/Gwanak/151-742/302/# Using CoAP → Request to multiple URIs (using GET method): coap://snu.ac.kr:5683/302/101/temperature coap://snu.ac.kr:5683/302/101/humidity . coap://snu.ac.kr:5683/302/720/temperature coap://snu.ac.kr:5683/302/720/temperature