Optimal Design of Energy Systems (M2794.003400)

Chapter 1. Engineering Design

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Course Introduction

성명 : 김 민 수 (KIM, Min Soo) 홈페이지 : http://reflab.snu.ac.kr E-mail : minskim@snu.ac.kr 전화번호: 02-880-8362 **휴대전화**: 010-6207-8362 면담 시간 : 강의 직후(Right after the class) 면담 장소: 강의실 **강의 조교: 최 성 훈** (314-308) / 02-880-7127

1.1 Introduction

- It is hard to adjust flow rate of the water in case of type (a)
- Type (b) is more convenient to adjust flow rate of the water

1.1 Introduction

Fig. Activities of Engineers

1.1 Introduction

- Major concern of this lecture is **system design**. Especially for **thermal system**.
- System is defined as a collection of components with interrelated performance.

Fig. How the system is organized

1.2 Decision in an Engineering Undertaking

- Analyzing the decision process leads to the more logical coordination of the individual efforts.
- The flow diagram shows typical steps followed in the **conception**, **evaluation**, and **execution** of the plan

Fig. Flow chart for decision process

1.3 Need or Opportunity (Step 1)

- The word '**opportunity**' has positive connotations, whereas '**need**' suggests a defensive action.
- But, sometimes the two words cannot be distinguished.

A pharmaceutical company releases new drug product

If the company does not, business is likely to decline

1.3 Need or Opportunity (Step 1)

- Possible solutions can be precluded by 'not stating the need properly at the beginning'.

1.3 Need or Opportunity (Step 1)

- Three situations that opportunity arises :
 - ① Innovation or expansion of facilities to distribute a current product
 - ② The sale of a product, not made by the firm, is rising.
 - ③ Research and development within the organization

1.4 Criteria of Success (Step 2)

- The expected earning power of a proposed commercial project is a dominating influence on the decision to proceed with the project
- In commercial enterprises, the criterion of success is showing a profit. (ex : providing a certain rate of return on investment (ROI))
- But, in public projects the criterion of success is the degree to which the need is satisfied in relation to the cost, monetary or otherwise.

1.5 Probability of Success (step 3)

- Plans are always directed toward the future. Thus, only probability, not certainty, is applicable.

1.5 Probability of Success (step 3)

Fig. Probability distribution curve

1.5 Probability of Success (step 3)

Equation for Probability distribution curve :

Fig. Probability distribution curve

1.5 Probability of Success (step 3)

- Example) Suppose that a new product or facility is proposed and that the criterion for success is a 10 percent rate of return on the investment for a 5-year life of the plant.

1.5 Probability of Success (step 3)

- After a **preliminary design**, Since rough figures were used throughout the evaluation, the distribution curve is flat, indicating low confidence in an expected percent of ROI, e.g., about 18%.
- If the probable ROI after **complete design** were, e.g., 16%, the confidence would be greater than the confidence in 18% figure. This is because costs have been analyzed more carefully.

1.5 Probability of Success (step 3)

- The distribution curves **after 1 year of operation** and **after construction**, show progressively greater degrees of confidence than the confidence at the design stages.
- After 5 years, when its life cycle coming, the ROI is known exactly. The distribution curve degenerates into a curve (almost linear) that is infinitesimally thin and infinitely high.

1.6 Market Analysis (step 4)

- With an increase in price, the potential volume of sales decreases until no sales can be made, and vice versa.
- The sales-volume to price relationship affects the size of the plant or process because the unit price is often lower in a large plant.
- Thus the market and plant capabilities must be evaluated.

1.7 Product or System Design and Cost Estimates (step 5)

- System design lies between the study and analysis of individual processes or components and the larger decisions.
- Design is applied to the act of selecting a single part (ex : the size of a tube in heat exchanger) to a larger component (ex : the entire heat exchanger products).
- Our concentration will be on thermal systems.

1.8 Feasibility Study (step 6)

- The **feasibility study** refers to whether the project is possible.
- Infeasibility may result from unavailability of **investment capital**, **land**, **labor**, or **favorable zoning regulations**.
- If an undertaking is shown to be infeasible, either alternatives must be found or the project must be dropped.

1.9 Research and Development (step 7)

- Research efforts provide the origin or improvement of the basic idea.
- Development work may supply working models or a pilot plant, depending upon the nature of the undertaking.
- Placing R&D in a late stage of decision suggests that an idea originates somewhere among the stages and is placed at the doorstep of R&D for transformation into a workable idea.

1.10 Optimization of Operation

- The facility was designed on the basis of certain design parameters which almost inevitably change by the time the facility is in operation.
- Thus, The next challenge is to operate the facility in the best manner in the light of such factors as actual costs and prices.

1.11 Summary

- The main topic of this lecture is **designing thermal systems** where energy is transferred and converted.
- The purpose of the study is to emphasize the **advantage of systematic planning**.
- the **flow diagram of decision making** is presented and represents 7 steps of the decision in engineering undertaking.