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Chapter 10. Dynamic Programming

10.1 Uniqueness of Dynamic Programming Problems

- One of optimization method, applicable either to

1. Staged processes

2. Continuous function, approximated by staged processes.
- "Dynamic” : No connection with the frequent use of the word (e.g. "&% ¢1")
- Related with the calculus of variations, whose result is an optimal function

- Finite-step of dynamic programming = Approximation of the calculus of variation
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10.1 Uniqueness of Dynamic Programming Problems

- For example, when determining the trajectory of a spacecraft in minimum fuel cost
in terms of dynamic programming

1. Divide the total path into a number of segments

2. Then, consider the continuous function as a series of stages.
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10.2 Symbolic Description of Dynamic Programming

- The result is optimized summation, denoted as }i*, r; , while the result of
the calculus of variation is expressed in an integral.

S : Input to each stage r . Return from a stage
S" : Output from each stage d : Decision variable
ldn {dn—l ldl
Sy Stage Sn-1 Stage Sn-2 1
— S »{ Stagel p——»
n S, n—1 Bl s 82 5!
3 b '
S ‘ -
s
n
2
i=1

Fig. Pictorial representation of problem that can be solved by
dynamic programming.
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10.3 Characteristics of The Dynamic Programming Solution

- Establishing optimal plans for subsections of the problem is the trademark
of dynamic programming.

- The mechanics (or feature) is illustrated by the optimal route problem as in
Example 10.1
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Example 10.1 : Minimize the Cost using Dynamic Programming

- A pipeline is to be built between A and E, passing through one node of each
B, C, and D. Find the optimal route in the minimum total cost.
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Fig. Dynamic programming used to minimize the cost between points A and E.
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Example 10.1 : Minimize the Cost using Dynamic Programming
(Given)
- The costs of A - B and D - E are given in figure

- The costs of B—C and C - D are given in table

Table Costs from B to C and C to D in Fig.

To
From 1 5 3 4
1 12 15 21 28
2 15 16 17 24
3 21 17 16 15
4 28 24 15 12
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Example 10.1 : Minimize the Cost using Dynamic Programming

(Solution)
- We start at the right end to left, that is, from point E to A.

- So, the last table takes the totally optimized cost of the entire system.

KNS
SO

@vr-® ®
NTANEE

The solving direction

.}‘\y{f‘.‘ktff




Chapter 10. Dynamic Programming

Example 10.1 : Minimize the Cost using Dynamic Programming

(Solution)
Table Example 10.1, Cto E Table Example 10.1, B to E
Cost Cost
From Through From Through
CtoD DtoE Total Optimum BtoC CtoE Total Optimum
Cc4 D4 12 20 32 B4 c4 12 31 43 v
D3 15 16 31 v C3 15 32 47
D2 24 15 39 c2 24 31 55
D1 28 20 48 C1 28 30 58
C3 D4 15 20 35 B3 C4 15 31 46 v
D3 16 16 32 v C3 16 32 48
D2 17 15 32 v c2 17 31 48
D1 21 20 41 C1 21 30 51
c2 D4 24 20 44 B2 c4 24 31 55
D3 17 16 33 C3 17 32 49
D2 16 15 31 v c2 16 31 47
D1 15 20 35 Cc1 15 30 45 v
C1 D4 28 20 48 B1 c4 28 31 59
D3 21 16 37 C3 21 32 53
D2 15 15 30 v c2 15 31 46

D1 12 20 32 Cc1 12 30 42 v
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Example 10.1 : Minimize the Cost using Dynamic Programming

(Answer)

- The optimum route : A2 - B2 - C1 - D2 — E2

Table Example 10.1, Ato E

Cost
To E from  Through 5
AtoB BtoE Total Optimum
A2 B4 20 43 63
B3 17 46 63
B2 16 45 61 '

B1 20 42 62
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10.3 Characteristics of The Dynamic Programming Solution

- Key feature :
After an optimal way is determined from intermediate to final state,

future calculations, passing through that state, use only the optimal way.
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10.4 Efficiency of Dynamic Programming

- Dynamic programming is efficient, particularly in large problems.

- For example, consider previous an exercise problem Ex. 101,
if one more stage is added to the problem.

Dynamic Programming : 40 routes (# of the presented in table)

Exhaustive examination : 64 routes (1x4x4x4, A-B2-C-D-E)

l

Dynamic Programming : 56 routes (+16, one table added )

Exhaustive examination : 256 routes (x4)
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Example 10.2 : Find the Concentrations in Minimum Cost

- A series of ultrafilters separate the protein and lactose. Use dynamic programming
to solve for the concentrations leaving each stage in the minimum total cost.

~ 6%
- protein

-
Stage IV =
Feed = Stage T L s 5
0'6%. Stage I1 { ; 4 ‘
protein Stage I < ; 3 *
_{‘@. { 2 ; Lactose

Fig. Chain of ultrafilters to separate protein from lactose in whey.
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Given)

Table Operating cost of one stage in a protein-lactose separator, dollars

Enteri.ng Leaving protein concentration, %

protein

:rc;r:ic:: ) 0.9 1.2 1.8 24 3.0 3.6 4.2 4.8 5.4 6.0
0.6 5.53 10.77 20.24 28.38 35.20 40.70 44.88 47.74 49.28 49.50
0.9 3.73 10.77 17.23 23.10 28.38 33.07 37.18 40.70 43.63
1.2 5.54 10.78 15.67 20.24 2447 28.38 31.95 35.20
1.8 3.74 7.33 10.79 14.00 17.23 20.24 23.10
2.4 2.82 5.55 8.21 10.80 13.27 15.67
3.0 2.26 447 6.63 8.73 10.81
3.6 1.89 3.75 5.56 7.33
4.2 1.62 3.21 478
4.8 1.42 2.82
5.4 1.26

6.0
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Solution)
- The calculations start at the stage IV, and proceed back until the final table.

- The minimum concentration entered in stage IV is 1.8%, because at least
0.3% of protein is added each stage. Thatis, 0.6 = 0.9 — 1.2 = 1.8 (%)

Table Example 10.2, stage IV

Concentration

Entering

stage IV (%) Through Cost ($)
. . 18 - 23.10
ge;;o - Stage II U = 46 e s 24 ) 1567

) age ‘

prolem_-g Stage I 26. 3 ¢ i 30 - 1081
'~ ‘ 36 . 7.33
— 4.2 - 478
The solving direction 4.8 - 2.82

54 - 1.26
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Solution)
Table Example 10.2, stage I and IV
Concentration Concentration

entering II (%) Through Cost (3$) entering I (%) Through Cost ($)
12 1.8 5.54+23.10=28.64 | 2.4 3.0 2.82+10.81=13.63
2.4 10.78+15.67=26.45* 36 5.55+7.33=12.88*
3.0 15.67+10.81=26.48 42 8.21+4.78=12.99
36 20.24+7.33=27.57 48 10.80+2.82=13.62
42 2447 +4.78=29.25 5.4 13.27+1.26=14.53
438 28.38+2.82=31.20 | 3.0 36 2.26+7.33=9.59
5.4 31.95+1.26=33.21 42 4.47+4.78=9.25*
1.8 2.4 3.74+15.67=19.41 438 6.63+2.82=9.45
3.0 7.33+10.81=18.14 5.4 8.73+1.26=9.99
36 10.79+7.33=18.12* | 36 42 1.89+4.78=6.67
42 14.00+4.78=18.78 48 3.75+2.82=6.57*
438 17.23+2.82=20.05 5.4 5.56+1.26=6.82
5.4 20.24+1.26=21.50 | 4.2 48 1.62+2.82=4.44*
5.4 3.21+1.26=4.47
48 5.4 1.42+1.26=2.68
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Solution)
Table Example 10.2, stage I, Il and IV
Concentration Concentration

entering I (%) Through Cost ($) entering I (%) Through Cost (%)
0.9 1.2 3.73+26.45=30.18 | 1.8 24 3.74+12.88=16.62
1.8 10.77+18.12=28.89* 3.0 7.33+9.25=16.58*
24 17.23+12.88=30.11 3.6 10.79+6.57=17.36
3.0 23.10+9.25=32.35 4.2 14.00+4.44=18.44
3.6 28.38+6.57=34.95 4.8 17.23+2.68=19.91
4.2 33.07+4.44=37.51 | 24 3.0 2.82+9.25=12.07*
4.8 37.18+2.68=39.86 3.6 5.55+6.57=12.12
1.2 24 5.57+18.12=23.66* 4.2 8.21+4.44=12.65
3.0 10.78+12.88=23.66* 4.8 10.80+2.68=13.48
3.6 15.67+9.25=2492 | 3.0 3.6 2.26+6.57=8.83*
4.2 20.24+6.57=26.81 4.2 4.47+4.44=891
4.8 24.47+4.44=28.91 4.8 6.63+2.68=9.31
54 28.38+2.68=31.06 | 3.6 42 1.89+4.44=6.33*
4.8 3.75+2.68=6.43
4.2 4.8 1.62+2.68=4.30*
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Answer)

- The system has the minimum cost at 0.6 - 0.9 - 1.8 — 3.6 — 6 (%)

Table Example 10.2, stage I and IV

Concentration

entering I (%) Through Cost (%)

0.6 0.9 5.53+28.89=34.42*
1.2 10.77+23.66=34.43
1.8 20.24+16.58=36.82
24 28.38+12.07=40.45
3.0 35.20+8.83=44.03
3.6 40.70+6.33=47.03

4.2 44.88+4.30=49.18
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10.6 Apparently Constrained Problems

- Constrained optimization : Optimization problem + Constrained condition

- Constrained problem can be converted to unconstrained case, that will be
covered in Example 10.3.

Additionally
specified
Lhy.x)=H

find y(x) that

minimize Y, g(y, x) \

Given Function g, h
Numerical term H
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

- An evaporator which boils liquid inside tubes consists of 4 banks of tubes.
Determine the distribution of the 40 tubes so that the total pressure drop in the
evaporator is minimum using dynamic programming.

5

e Bank IV
Qutlet
x=10

A4

Bank III

34

Bank II

Inlet A2
x=02 1
- Bank I

Flow rate = 0.5 kg/s

Fig. Evaporator in Example 10.3.
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop
(Given)
- The flow rate : iy, = 0.5kg/s , Myaporizing = 0.01kg/s (each tube)
- A fraction of vapor : x;, =02 , xp =1
increasing x by 0.02
- The pressure drop : Ap =720 () [kPa]

n : number of tubes in bank, x; : vapor fraction entering bank
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Solution)
- Choose the state variable cumulative(+% &) tubes as shown in figure below.

- Before stage I, no tubes have been committed, and following stage IV, all of
tubes, 40, have been committed.

- Entering stage I, vapor fraction : x = 0.2, pressure drop : Ap = 720 (%)2 [kPa]

40 P

- Table Example 10.3, stage 1

g 30 - . Total tubes  Tubes in Total Ap

S committed Stage I(n) (kPa)

E — Te'rminal o

2 points 2 2 7.20

z 3 3 3.20

210 [- A

3 4 4 1.80
4 = 5 5 1.5

After stage 6 6 0.80

Fig. State variables of cumulative number
of tubes committed in Example 10.3.
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Solution)

- Entering stage II, vapor fraction : x; = 0.2 + 0.02 X (number of tubes in 1)

Table Example 10.3, stage I and II

Total tubes  Tubes in Total tubes  Tubes in

committed  StageIl (n) Total Ap (kPa) committed StageIl (n) Total Ap (kPa)

11 5 0.80+2.95=3.75 13 7 0.80+1.50=2.30
6 1.15+1.80=2.95* 8 1.15+1.01=2.16*
7 1.80+1.15=2.95* 9 1.80+0.73=2.53
8 3.20+0.76=3.96 10 3.20+0.49=3.69
9 7.20+0.51=7.70 14 7 0.59+1.70=2.29

12 6 0.80+2.05=2.85 8 0.80+1.15=1.95*
7 1.15+1.32=2.47* 9 1.15+0.80=1.95*
8 1.80+0.88=2.68 10 1.80+0.56=2.36
9 3.20+0.60=3.68 15 8 0.59+1.30=1.89

9 1.15+0.80=1.71*

10 1.15+0.65=1.80
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop
(Solution)

- Entering stage I, vapor fraction : x; = 0.2 + 0.02 X (number of tubes cumulated)

Table Example 10.3, stage I and I

Total tubes  Tubes in Total tubes  Tubes in

committed  Stagelll (n) Total Ap (kPa) committed Stagelll (n) Total Ap (kPa)

22 9 2.16+1.88=4.04 25 10 1.71+1.80=3.51
10 2.47+1.39=3.86* 11 1.95+1.37=3.32
11 2.95+1.05=4.00 12 2.16+1.06=3.22*

23 9 1.95+2.05=4.00 13 2.47+0.82=3.29
10 2.16+1.52=3.68 26 11 1.71+1.49=3.20
11 2.47+1.15=3.62* 12 1.95+1.15=3.00*
12 2.95+0.88=3.83 13 2.16+0.90=3.06

24 10 1.95+1.66=3.61
11 2.16+1.26=3.42*
12 2.49+0.97=3.44

13 2.95+0.75=3.70
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Answer)
- The optimal distribution of tubes is 5, 7, 11, 17 atstage I, II, II, IV, respectively.
- The total pressure drop is 4.71 kPa

Table Example 10.3, stage I to IV

Total tubes  Tubes in
committed  Stage IV(n) Total Ap (kPa)

40 13 2.93+2.33=5.26
14 3.00+1.90=4.90
15 3.22+1.57=4.79
16 3.42+1.30=4.72
17 3.62+1.09=4.71*

18 3.86+0.91=4.77
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10.7 Summary

- It is suitable to optimize a system that consists of a chain of components
where the output, from a unit, forms the input to next.

- It can be more efficient when calculating in large systems.

- Challenge appears in setting up tables and identifying the state variables.



