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Chapter 10. Dynamic Programming

- One of optimization method, applicable either to

1. Staged processes

2. Continuous function, approximated by staged processes.

- “Dynamic” : No connection with the frequent use of the word (e.g. “동적인”)

- Related with the calculus of variations, whose result is an optimal function

- Finite-step of dynamic programming = Approximation of the calculus of variation

10.1 Uniqueness of Dynamic Programming Problems
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- For example, when determining the trajectory of a spacecraft in minimum fuel cost
in terms of dynamic programming

1. Divide the total path into a number of segments

2. Then, consider the continuous function as a series of stages.

10.1 Uniqueness of Dynamic Programming Problems
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10.2 Symbolic Description of Dynamic Programming

Fig. Pictorial representation of problem that can be solved by 
dynamic programming.

- The result is optimized summation, denoted as  𝑖=1
𝑛 𝑟𝑖 , while the result of

the calculus of variation is expressed in an integral.

S : Input to each stage r : Return from a stage

S’ : Output from each stage d : Decision variable



Chapter 10. Dynamic Programming

- Establishing optimal plans for subsections of the problem is the trademark
of dynamic programming.

- The mechanics (or feature) is illustrated by the optimal route problem as in
Example 10.1

10.3 Characteristics of The Dynamic Programming Solution
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- A pipeline is to be built between A and E, passing through one node of each
B, C, and D. Find the optimal route in the minimum total cost.

Example 10.1 : Minimize the Cost using Dynamic Programming

Fig. Dynamic programming used to minimize the cost between points A and E.
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Example 10.1 : Minimize the Cost using Dynamic Programming

Table Costs from B to C and C to D in Fig.

(Given)

- The costs of A - B and D - E are given in figure

- The costs of B – C and C - D are given in table

From
To

1 2 3 4

1 12 15 21 28

2 15 16 17 24

3 21 17 16 15

4 28 24 15 12
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Example 10.1 : Minimize the Cost using Dynamic Programming

(Solution)

- We start at the right end to left, that is, from point E to A.

- So, the last table takes the totally optimized cost of the entire system.

The solving direction
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Example 10.1 : Minimize the Cost using Dynamic Programming

Table Example 10.1, C to E

(Solution)

From Through
Cost

C to D D to E Total Optimum

C4 D4 12 20 32

D3 15 16 31 √

D2 24 15 39

D1 28 20 48

C3 D4 15 20 35

D3 16 16 32 √

D2 17 15 32 √

D1 21 20 41

C2 D4 24 20 44

D3 17 16 33

D2 16 15 31 √

D1 15 20 35

C1 D4 28 20 48

D3 21 16 37

D2 15 15 30 √

D1 12 20 32

Table Example 10.1, B to E

From Through
Cost

B to C C to E Total Optimum

B4 C4 12 31 43 √

C3 15 32 47

C2 24 31 55

C1 28 30 58

B3 C4 15 31 46 √

C3 16 32 48

C2 17 31 48

C1 21 30 51

B2 C4 24 31 55

C3 17 32 49

C2 16 31 47

C1 15 30 45 √

B1 C4 28 31 59

C3 21 32 53

C2 15 31 46

C1 12 30 42 √
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Example 10.1 : Minimize the Cost using Dynamic Programming

Table Example 10.1, A to E

To E from Through
Cost

A to B B to E Total Optimum

A2 B4 20 43 63

B3 17 46 63

B2 16 45 61 √

B1 20 42 62

(Answer)

- The optimum route : A2 → B2 → C1 → D2 → E2
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- Key feature :

After an optimal way is determined from intermediate to final state,

future calculations, passing through that state, use only the optimal way.

10.3 Characteristics of The Dynamic Programming Solution
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- Dynamic programming is efficient, particularly in large problems.

- For example, consider previous an exercise problem Ex. 10.1,
if one more stage is added to the problem.

Dynamic Programming : 40 routes (# of the presented in table)

Exhaustive examination : 64 routes (1×4×4×4, A-B2-C-D-E)

Dynamic Programming : 56 routes (+16, one table added )

Exhaustive examination : 256 routes (×4)

10.4 Efficiency of Dynamic Programming
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- A series of ultrafilters separate the protein and lactose. Use dynamic programming
to solve for the concentrations leaving each stage in the minimum total cost.

Example 10.2 : Find the Concentrations in Minimum Cost

Fig. Chain of ultrafilters to separate protein from lactose in whey.
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

Table Operating cost of one stage in a protein-lactose separator, dollars

(Given)

Entering
protein 
concen-
tration

Leaving protein concentration, %

0.9 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

0.6 5.53 10.77 20.24 28.38 35.20 40.70 44.88 47.74 49.28 49.50

0.9 3.73 10.77 17.23 23.10 28.38 33.07 37.18 40.70 43.63

1.2 5.54 10.78 15.67 20.24 24.47 28.38 31.95 35.20

1.8 3.74 7.33 10.79 14.00 17.23 20.24 23.10

2.4 2.82 5.55 8.21 10.80 13.27 15.67

3.0 2.26 4.47 6.63 8.73 10.81

3.6 1.89 3.75 5.56 7.33

4.2 1.62 3.21 4.78

4.8 1.42 2.82

5.4 1.26

6.0
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

Table Example 10.2, stage Ⅳ

(Solution)

- The calculations start at the stage Ⅳ, and proceed back until the final table.

- The minimum concentration entered in stage Ⅳ is 1.8%, because at least
0.3% of protein is added each stage. That is, 0.6 → 0.9 → 1.2 → 1.8 (%)

Concentration
Entering
stage Ⅳ (%) Through Cost ($)

1.8 - 23.10

2.4 - 15.67

3.0 - 10.81

3.6 - 7.33

4.2 - 4.78

4.8 - 2.82

5.4 - 1.26

The solving direction
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

Table Example 10.2, stage Ⅲ and Ⅳ
(Solution)

Concentration 
entering Ⅲ (%) Through Cost ($)

Concentration 
entering Ⅲ (%) Through Cost ($)

1.2 1.8 5.54+23.10=28.64 2.4 3.0 2.82+10.81=13.63

2.4 10.78+15.67=26.45* 3.6 5.55+7.33=12.88*

3.0 15.67+10.81=26.48 4.2 8.21+4.78=12.99

3.6 20.24+7.33=27.57 4.8 10.80+2.82=13.62

4.2 24.47+4.78=29.25 5.4 13.27+1.26=14.53

4.8 28.38+2.82=31.20 3.0 3.6 2.26+7.33=9.59

5.4 31.95+1.26=33.21 4.2 4.47+4.78=9.25*

1.8 2.4 3.74+15.67=19.41 4.8 6.63+2.82=9.45

3.0 7.33+10.81=18.14 5.4 8.73+1.26=9.99

3.6 10.79+7.33=18.12* 3.6 4.2 1.89+4.78=6.67

4.2 14.00+4.78=18.78 4.8 3.75+2.82=6.57*

4.8 17.23+2.82=20.05 5.4 5.56+1.26=6.82

5.4 20.24+1.26=21.50 4.2 4.8 1.62+2.82=4.44*

5.4 3.21+1.26=4.47

4.8 5.4 1.42+1.26=2.68
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

Table Example 10.2, stage Ⅱ, Ⅲ and Ⅳ
(Solution)

Concentration 
entering Ⅱ (%) Through Cost ($)

Concentration 
entering Ⅱ (%) Through Cost ($)

0.9 1.2 3.73+26.45=30.18 1.8 2.4 3.74+12.88=16.62

1.8 10.77+18.12=28.89* 3.0 7.33+9.25=16.58*

2.4 17.23+12.88=30.11 3.6 10.79+6.57=17.36

3.0 23.10+9.25=32.35 4.2 14.00+4.44=18.44

3.6 28.38+6.57=34.95 4.8 17.23+2.68=19.91

4.2 33.07+4.44=37.51 2.4 3.0 2.82+9.25=12.07*

4.8 37.18+2.68=39.86 3.6 5.55+6.57=12.12

1.2 2.4 5.57+18.12=23.66* 4.2 8.21+4.44=12.65

3.0 10.78+12.88=23.66* 4.8 10.80+2.68=13.48

3.6 15.67+9.25=24.92 3.0 3.6 2.26+6.57=8.83*

4.2 20.24+6.57=26.81 4.2 4.47+4.44=8.91

4.8 24.47+4.44=28.91 4.8 6.63+2.68=9.31

5.4 28.38+2.68=31.06 3.6 4.2 1.89+4.44=6.33*

4.8 3.75+2.68=6.43

4.2 4.8 1.62+2.68=4.30*
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Example 10.2 : Find the Concentrations Leaving in Minimum Cost

Table Example 10.2, stage Ⅰ and Ⅳ

Concentration
entering Ⅰ (%) Through Cost ($)

0.6 0.9 5.53+28.89=34.42*

1.2 10.77+23.66=34.43

1.8 20.24+16.58=36.82

2.4 28.38+12.07=40.45

3.0 35.20+8.83=44.03

3.6 40.70+6.33=47.03

4.2 44.88+4.30=49.18

(Answer)

- The system has the minimum cost at 0.6 → 0.9 → 1.8 → 3.6 → 6 (%)
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- Constrained optimization : Optimization problem + Constrained condition

- Constrained problem can be converted to unconstrained case, that will be
covered in Example 10.3.

10.6 Apparently Constrained Problems

find 𝑦(𝑥) that
minimize  𝑔(𝑦, 𝑥)

Additionally 
specified 

 ℎ 𝑦, 𝑥 = 𝐻

Given Function 𝑔,ℎ
Numerical term 𝐻
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- An evaporator which boils liquid inside tubes consists of 4 banks of tubes.
Determine the distribution of the 40 tubes so that the total pressure drop in the
evaporator is minimum using dynamic programming.

Example 10.3 : Decide the distribution of tubes to minimize pressure drop

Fig. Evaporator in Example 10.3.
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Given)

- The flow rate :  𝑚𝑖𝑛 = 0.5𝑘𝑔/𝑠 ,  𝑚𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑖𝑛𝑔 = 0.01𝑘𝑔/𝑠 (each tube)

- A fraction of vapor : 𝑥𝑖𝑛 = 0.2 , 𝑥𝑜𝑢𝑡 = 1

increasing 𝑥 by 0.02

- The pressure drop : ∆𝑝 = 720(
𝑥𝑖

𝑛
)2 [kPa]

𝑛 : number of tubes in bank, 𝑥𝑖 : vapor fraction entering bank
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Solution)

- Choose the state variable cumulative(누적량) tubes as shown in figure below.

- Before stage Ⅰ, no tubes have been committed, and following stage Ⅳ, all of
tubes, 40, have been committed.

- Entering stage Ⅰ, vapor fraction : 𝑥 = 0.2, pressure drop : ∆𝑝 = 720(
𝑥𝑖

𝑛
)2 [kPa]

Fig. State variables of cumulative number 
of tubes committed in Example 10.3.

Total tubes
committed

Tubes in
Stage Ⅰ(n)

Total ∆𝒑
(kPa)

2 2 7.20

3 3 3.20

4 4 1.80

5 5 1.15

6 6 0.80

Table Example 10.3, stage Ⅰ
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Solution)

- Entering stage Ⅱ, vapor fraction : 𝑥𝑖 = 0.2 + 0.02 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑏𝑒𝑠 𝑖𝑛Ⅰ)

Total tubes
committed

Tubes in
StageⅡ (n) Total ∆𝒑 (kPa)

Total tubes
committed

Tubes in
StageⅡ (n) Total ∆𝒑 (kPa)

11 5 0.80+2.95=3.75 13 7 0.80+1.50=2.30

6 1.15+1.80=2.95* 8 1.15+1.01=2.16*

7 1.80+1.15=2.95* 9 1.80+0.73=2.53

8 3.20+0.76=3.96 10 3.20+0.49=3.69

9 7.20+0.51=7.70 14 7 0.59+1.70=2.29

12 6 0.80+2.05=2.85 8 0.80+1.15=1.95*

7 1.15+1.32=2.47* 9 1.15+0.80=1.95*

8 1.80+0.88=2.68 10 1.80+0.56=2.36

9 3.20+0.60=3.68 15 8 0.59+1.30=1.89

9 1.15+0.80=1.71*

10 1.15+0.65=1.80

Table Example 10.3, stage Ⅰ and Ⅱ
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Solution)

- Entering stage Ⅲ, vapor fraction : 𝑥𝑖 = 0.2+0.02× (𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑢𝑏𝑒𝑠𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

Total tubes
committed

Tubes in
StageⅢ (n) Total ∆𝒑 (kPa)

Total tubes
committed

Tubes in
StageⅢ (n) Total ∆𝒑 (kPa)

22 9 2.16+1.88=4.04 25 10 1.71+1.80=3.51

10 2.47+1.39=3.86* 11 1.95+1.37=3.32

11 2.95+1.05=4.00 12 2.16+1.06=3.22*

23 9 1.95+2.05=4.00 13 2.47+0.82=3.29

10 2.16+1.52=3.68 26 11 1.71+1.49=3.20

11 2.47+1.15=3.62* 12 1.95+1.15=3.00*

12 2.95+0.88=3.83 13 2.16+0.90=3.06

24 10 1.95+1.66=3.61

11 2.16+1.26=3.42*

12 2.49+0.97=3.44

13 2.95+0.75=3.70

Table Example 10.3, stage Ⅰ and Ⅲ
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Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Answer)

- The optimal distribution of tubes is 5, 7, 11, 17 at stage Ⅰ, Ⅱ, Ⅲ, Ⅳ, respectively.

- The total pressure drop is 4.71 kPa

Table Example 10.3, stage Ⅰ to Ⅳ

Total tubes
committed

Tubes in
Stage Ⅳ(n) Total ∆𝒑 (kPa)

40 13 2.93+2.33=5.26

14 3.00+1.90=4.90

15 3.22+1.57=4.79

16 3.42+1.30=4.72

17 3.62+1.09=4.71*

18 3.86+0.91=4.77
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- It is suitable to optimize a system that consists of a chain of components
where the output, from a unit, forms the input to next.

- It can be more efficient when calculating in large systems.

- Challenge appears in setting up tables and identifying the state variables.

10.7 Summary


