Optimal Design of Energy Systems (M2794.003400)

Chapter 10. Dynamic Programming

Min Soo KIM

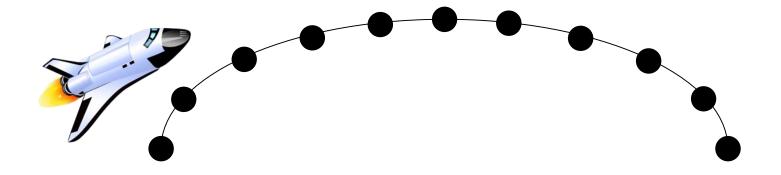
Department of Mechanical and Aerospace Engineering Seoul National University

10.1 Uniqueness of Dynamic Programming Problems

- One of optimization method, applicable either to
 - 1. Staged processes
 - 2. Continuous function, approximated by staged processes.
- "Dynamic" : No connection with the frequent use of the word (e.g. "동적인")
- Related with the calculus of variations, whose result is an **optimal function**
- Finite-step of dynamic programming = Approximation of the calculus of variation

10.1 Uniqueness of Dynamic Programming Problems

- For example, when determining the trajectory of a spacecraft in minimum fuel cost in terms of dynamic programming
 - 1. Divide the total path into a number of segments
 - 2. Then, consider **the continuous function** as a series of stages.



10.2 Symbolic Description of Dynamic Programming

- The result is **optimized summation**, denoted as $\sum_{i=1}^{n} r_i$, while the result of the calculus of variation is expressed in an integral.
 - S : Input to each stage
 - S' : Output from each stage

- r : Return from a stage
- d : Decision variable

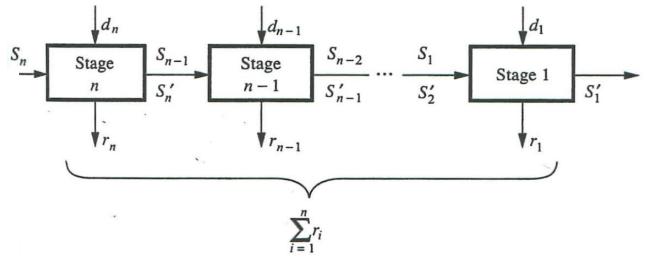


Fig. Pictorial representation of problem that can be solved by dynamic programming.

10.3 Characteristics of The Dynamic Programming Solution

- Establishing optimal plans for subsections of the problem is the trademark of dynamic programming.
- The mechanics (or feature) is illustrated by the optimal route problem as in Example 10.1

Example 10.1 : Minimize the Cost using Dynamic Programming

- A pipeline is to be built between A and E, passing through one node of each B, C, and D. Find the optimal route in the minimum total cost.

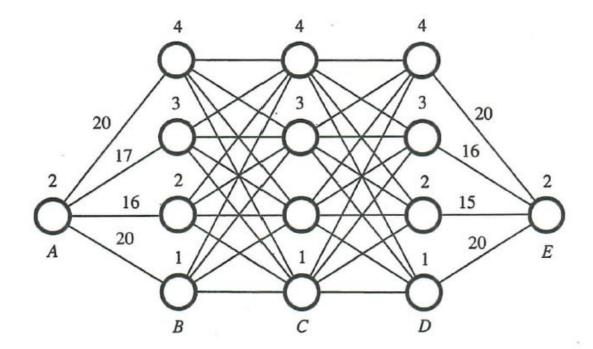


Fig. Dynamic programming used to minimize the cost between points A and E.

Example 10.1 : Minimize the Cost using Dynamic Programming

(Given)

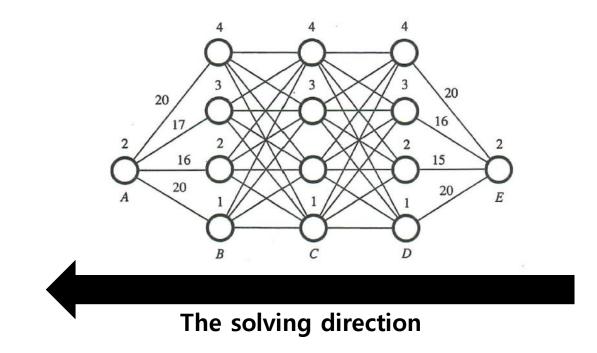
- The costs of A B and D E are given in figure
- The costs of B C and C D are given in table

_			То	
From	1	2	3	4
1	12	15	21	28
2	15	16	17	24
3	21	17	16	15
4	28	24	15	12

Table Costs from B to C and C to D in Fig.

Example 10.1 : Minimize the Cost using Dynamic Programming (Solution)

- We start at the right end to left, that is, from **point E to A**.
- So, the last table takes the totally optimized cost of the entire system.



Example 10.1 : Minimize the Cost using Dynamic Programming

(Solution)

Table Example 10.1, C to E

Table Example 10.1, B to E

Fuers	Thursday	Cost		France	Fuerra Thurson		Cost				
From	Through	C to D	D to E	Total	Optimum	From	Through	B to C	C to E	Total	Optimum
C4	D4	12	20	32		B4	C4	12	31	43	V
	D3	15	16	31	\checkmark		C3	15	32	47	
	D2	24	15	39			C2	24	31	55	
	D1	28	20	48			C1	28	30	58	
C3	D4	15	20	35		B3	C4	15	31	46	\checkmark
	D3	16	16	32	\checkmark		C3	16	32	48	
	D2	17	15	32	\checkmark		C2	17	31	48	
	D1	21	20	41			C1	21	30	51	
C2	D4	24	20	44		B2	C4	24	31	55	
	D3	17	16	33			C3	17	32	49	
	D2	16	15	31	\checkmark		C2	16	31	47	
	D1	15	20	35			C1	15	30	45	\checkmark
C1	D4	28	20	48		B1	C4	28	31	59	
	D3	21	16	37			C3	21	32	53	
	D2	15	15	30	\checkmark		C2	15	31	46	
	D1	12	20	32			C1	12	30	42	\checkmark

Example 10.1 : Minimize the Cost using Dynamic Programming

(Answer)

- The optimum route : $A2 \rightarrow B2 \rightarrow C1 \rightarrow D2 \rightarrow E2$

Table Example 10.1, A to E

To E from	Through	Cost				
		A to B	B to E	Total	Optimum	
A2	B4	20	43	63		
	B3	17	46	63		
	B2	16	45	61	\checkmark	
	B1	20	42	62		

10.3 Characteristics of The Dynamic Programming Solution

- Key feature :

After an optimal way is determined from intermediate to final state, future calculations, passing through that state, use only the optimal way.

10.4 Efficiency of Dynamic Programming

- Dynamic programming is **efficient**, particularly in **large problems**.
- For example, consider previous an exercise problem Ex. 10.1, if one more stage is added to the problem.

Dynamic Programming : **40** routes (# of the presented in table) Exhaustive examination : **64** routes $(1 \times 4 \times 4 \times 4, A-B2-C-D-E)$

Dynamic Programming : **56** routes (+16, one table added) Exhaustive examination : **256** routes (×4)

Example 10.2 : Find the Concentrations in Minimum Cost

- A series of ultrafilters separate the protein and lactose. Use dynamic programming to solve for the concentrations leaving each stage in the minimum total cost.

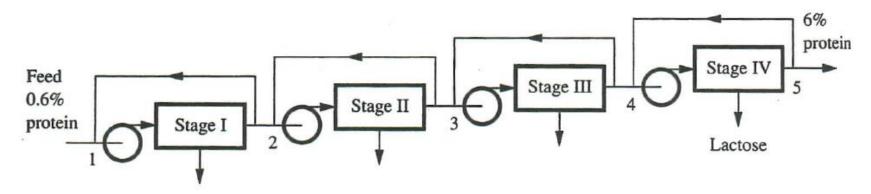


Fig. Chain of ultrafilters to separate protein from lactose in whey.

Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Given)

Table Operating cost of one stage in a protein-lactose separator, dollars

Entering protein		Leaving protein concentration, %								
concen- tration	0.9	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0
0.6	5.53	10.77	20.24	28.38	35.20	40.70	44.88	47.74	49.28	49.50
0.9		3.73	10.77	17.23	23.10	28.38	33.07	37.18	40.70	43.63
1.2			5.54	10.78	15.67	20.24	24.47	28.38	31.95	35.20
1.8				3.74	7.33	10.79	14.00	17.23	20.24	23.10
2.4					2.82	5.55	8.21	10.80	13.27	15.67
3.0						2.26	4.47	6.63	8.73	10.81
3.6							1.89	3.75	5.56	7.33
4.2								1.62	3.21	4.78
4.8									1.42	2.82
5.4										1.26
6.0										

Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Solution)

Feed

0.6%

protein

- The calculations start at the stage IV, and proceed back until the final table.
- The minimum concentration entered in stage IV is 1.8%, because at least 0.3% of protein is added each stage. That is, $0.6 \rightarrow 0.9 \rightarrow 1.2 \rightarrow 1.8$ (%)

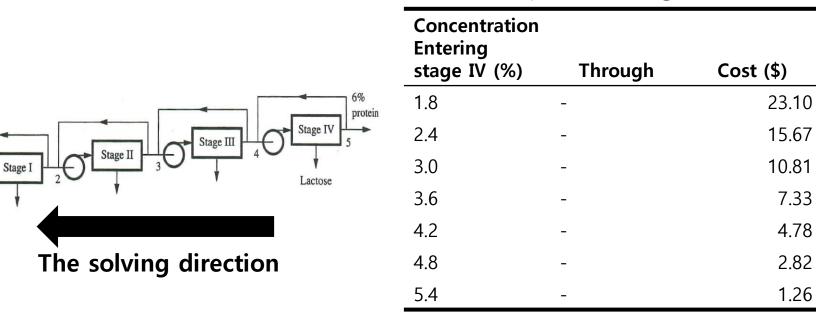


 Table
 Example
 10.2, stage
 IV

Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Solution)

Table Example 10.2, stage Ⅲ and IV

Concentration entering Ⅲ (%)	Through	Cost (\$)	Concentration entering Ⅲ (%)	Through	Cost (\$)
1.2	1.8	5.54+23.10=28.64	2.4	3.0	2.82+10.81=13.63
	2.4	10.78+15.67=26.45*		3.6	5.55+7.33=12.88*
	3.0	15.67+10.81=26.48		4.2	8.21+4.78=12.99
	3.6	20.24+7.33=27.57		4.8	10.80+2.82=13.62
	4.2	24.47+4.78=29.25		5.4	13.27+1.26=14.53
	4.8	28.38+2.82=31.20	3.0	3.6	2.26+7.33=9.59
	5.4	31.95+1.26=33.21		4.2	4.47+4.78=9.25*
1.8	2.4	3.74+15.67=19.41		4.8	6.63+2.82=9.45
	3.0	7.33+10.81=18.14		5.4	8.73+1.26=9.99
	3.6	10.79+7.33=18.12*	3.6	4.2	1.89+4.78=6.67
	4.2	14.00+4.78=18.78		4.8	3.75+2.82=6.57*
	4.8	17.23+2.82=20.05		5.4	5.56+1.26=6.82
	5.4	20.24+1.26=21.50	4.2	4.8	1.62+2.82=4.44*
				5.4	3.21+1.26=4.47
			4.8	5.4	1.42+1.26=2.68

Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Solution)

Table Example 10.2, stage ${\rm I\!I}, \, {\rm I\!I}$ and IV

Concentration entering II (%)	Through	Cost (\$)	Concentration entering II (%)	Through	Cost (\$)
0.9	1.2	3.73+26.45=30.18	1.8	2.4	3.74+12.88=16.62
	1.8	10.77+18.12=28.89*		3.0	7.33+9.25=16.58*
	2.4	17.23+12.88=30.11		3.6	10.79+6.57=17.36
	3.0	23.10+9.25=32.35		4.2	14.00+4.44=18.44
	3.6	28.38+6.57=34.95		4.8	17.23+2.68=19.91
	4.2	33.07+4.44=37.51	2.4	3.0	2.82+9.25=12.07*
	4.8	37.18+2.68=39.86		3.6	5.55+6.57=12.12
1.2	2.4	5.57+18.12=23.66*		4.2	8.21+4.44=12.65
	3.0	10.78+12.88=23.66*		4.8	10.80+2.68=13.48
	3.6	15.67+9.25=24.92	3.0	3.6	2.26+6.57=8.83*
	4.2	20.24+6.57=26.81		4.2	4.47+4.44=8.91
	4.8	24.47+4.44=28.91		4.8	6.63+2.68=9.31
	5.4	28.38+2.68=31.06	3.6	4.2	1.89+4.44=6.33*
				4.8	3.75+2.68=6.43
			4.2	4.8	1.62+2.68=4.30*

Example 10.2 : Find the Concentrations Leaving in Minimum Cost

(Answer)

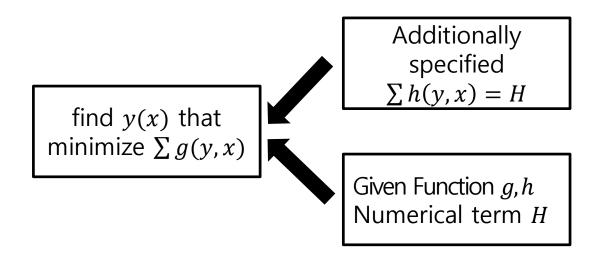
- The system has the minimum cost at $0.6 \rightarrow 0.9 \rightarrow 1.8 \rightarrow 3.6 \rightarrow 6$ (%)

Concentration entering I (%)	Through	Cost (\$)
0.6	0.9	5.53+28.89=34.42*
	1.2	10.77+23.66=34.43
	1.8	20.24+16.58=36.82
	2.4	28.38+12.07=40.45
	3.0	35.20+8.83=44.03
	3.6	40.70+6.33=47.03
	4.2	44.88+4.30=49.18

 Table
 Example
 10.2, stage
 I
 and IV

10.6 Apparently Constrained Problems

- Constrained optimization : Optimization problem + Constrained condition
- Constrained problem can be converted to unconstrained case, that will be covered in Example 10.3.



Example 10.3 : Decide the distribution of tubes to minimize pressure drop

- An evaporator which boils liquid inside tubes consists of 4 banks of tubes. Determine the distribution of the 40 tubes so that the total pressure drop in the evaporator is minimum using dynamic programming.

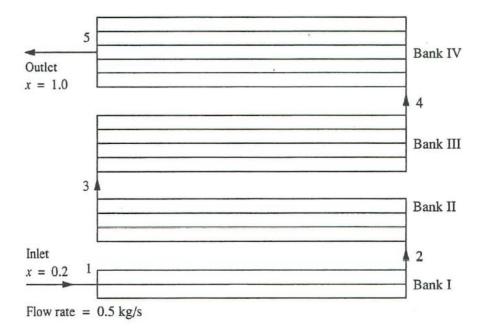


Fig. Evaporator in Example 10.3.

Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Given)

- The flow rate : $\dot{m}_{in} = 0.5 \ kg/s$, $\dot{m}_{vaporizing} = 0.01 \ kg/s$ (each tube)
- A fraction of vapor : $x_{in} = 0.2$, $x_{out} = 1$ increasing x by 0.02
- The pressure drop : $\Delta p = 720 \left(\frac{x_i}{n}\right)^2$ [kPa]

n: number of tubes in bank, x_i : vapor fraction entering bank

Example 10.3 : Decide the distribution of tubes to minimize pressure drop (Solution)

- Choose the state variable **cumulative(누적량) tubes** as shown in figure below.
- Before stage I, no tubes have been committed, and following stage IV, all of tubes, 40, have been committed.
- Entering stage I, vapor fraction : x = 0.2, pressure drop : $\Delta p = 720 \left(\frac{x_i}{n}\right)^2$ [kPa]

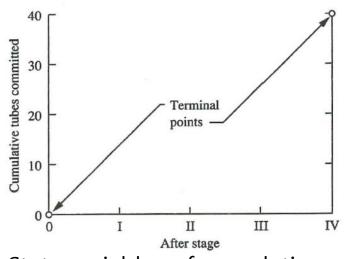


Fig. State variables of cumulative number of tubes committed in Example 10.3.

Table Exam	Table Example 10.3, stage I					
Total tubes committed	Tubes in Stage I(n)	Total ∆ p (kPa)				
2	2	7.20				
3	3	3.20				
4	4	1.80				
5	5	1.15				
6	6	0.80				

Example 10.3 : Decide the distribution of tubes to minimize pressure drop (Solution)

- Entering stage II, vapor fraction : $x_i = 0.2 + 0.02 \times (number \ of \ tubes \ in \ I)$

Total tubes committed	Tubes in StageⅡ (n)	Total $\Delta oldsymbol{p}$ (kPa)	Total tubes committed	Tubes in StageⅡ (n)	Total $\Delta oldsymbol{p}$ (kPa)
11	5	0.80+2.95=3.75	13	7	0.80+1.50=2.30
	6	1.15+1.80=2.95*		8	1.15+1.01=2.16*
	7	1.80+1.15=2.95*		9	1.80+0.73=2.53
	8	3.20+0.76=3.96		10	3.20+0.49=3.69
	9	7.20+0.51=7.70	14	7	0.59+1.70=2.29
12	6	0.80+2.05=2.85		8	0.80+1.15=1.95*
	7	1.15+1.32=2.47*		9	1.15+0.80=1.95*
	8	1.80+0.88=2.68		10	1.80+0.56=2.36
	9	3.20+0.60=3.68	15	8	0.59+1.30=1.89
				9	1.15+0.80=1.71*
				10	1.15+0.65=1.80

Table Example 10.3, stage I and II

Example 10.3 : Decide the distribution of tubes to minimize pressure drop (Solution)

- Entering stage III, vapor fraction : $x_i = 0.2 + 0.02 \times (number of tubes cumulated)$

Total tubes committed	Tubes in StageⅢ (n)	Total $\Delta oldsymbol{p}$ (kPa)	Total tubes committed	Tubes in StageⅢ (n)	Total $\Delta oldsymbol{p}$ (kPa)
22	9	2.16+1.88=4.04	25	10	1.71+1.80=3.51
	10	2.47+1.39=3.86*		11	1.95+1.37=3.32
	11	2.95+1.05=4.00		12	2.16+1.06=3.22*
23	9	1.95+2.05=4.00		13	2.47+0.82=3.29
	10	2.16+1.52=3.68	26	11	1.71+1.49=3.20
	11	2.47+1.15=3.62*		12	1.95+1.15=3.00*
	12	2.95+0.88=3.83		13	2.16+0.90=3.06
24	10	1.95+1.66=3.61			
	11	2.16+1.26=3.42*			
	12	2.49+0.97=3.44			
	13	2.95+0.75=3.70			

Table Example 10.3, stage I and Ⅲ

Example 10.3 : Decide the distribution of tubes to minimize pressure drop

(Answer)

- The optimal distribution of tubes is **5**, **7**, **11**, **17** at stage I, II, III, IV, respectively.
- The total pressure drop is 4.71 kPa

Total tubes committed	Tubes in Stage IV(n)	Total $\Delta oldsymbol{p}$ (kPa)
40	13	2.93+2.33=5.26
	14	3.00+1.90=4.90
	15	3.22+1.57=4.79
	16	3.42+1.30=4.72
	17	3.62+1.09=4.71*
	18	3.86+0.91=4.77

Table Example 10.3, stage I to IV

10.7 Summary

- It is suitable to optimize a system that consists of a chain of components where the **output, from a unit, forms the input to next**.
- It can be more efficient when calculating in large systems.
- Challenge appears in setting up tables and identifying the state variables.