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Chapter 16. Calculus Methods of Optimization

16.1 Continued exploration of calculus methods

- A major portion of this chapter deals with principles of calculus method
- Substantiation for the Largrange multiplier equations will be provided

- Physical interpretation of A, and test for maxima-minima are also provided
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Chapter 16. Calculus Methods of Optimization

16.1 Continued exploration of calculus methods

- Lagrange multipliers (from Chap.8)
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Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector (Vy)

1. normal to the surface of constant y

For arbitrary vector : Xmlp1 + dx, fz + dX3IA3

To be tangent to the surface : dy = oy dx, + =2 oy dx, + =2 oy dx. =0
OX, X, X,
gy —— (oy / ox,)dx, + (oy / 0X;)dXx,
' oy 1 X,

oy | 0x,)dx, + (oy / 0x,)dx,
oy | Ox,

Tangent vector : T :{ ( } + dX, 1, + dX,l,

Gradient vector : Vy—ﬂ| +ﬂf +ﬂf
OX, OX, OX,

T-vy=0 ~ gradient vector is normal to all tangent vectors

— gradient vector normal to the surface
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Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector (Vy)

2. indicate direction of maximum rate of change of y with respect to x

9,
to find maximum dy : dy = ﬂd)(l +—de2 +---+ﬂdxn
OX, OX, OX,
: 2 2 2 2
constraints :  (dXx)* +(dx,)" +---+(dx ) =r
Circle
*3
)_ X3 The constraint indicates a circle of
. radious for 2 dimensions, and a
(a) ) sphere for 3 dimensions
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Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector (Vy)

using Lagrange multipliers : ﬂ—Z}LdX. -0 — dx :iﬂ
OX. ' ' 240X

In vector form :

7 VY

dx, b, +dx 1, +---+dx 1 — {63/ 8y 8y n} 1

Al OX 6x2 6x 22

n

— VY indicates the direction of maximum change for a given distance in the space
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Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector (Vy)

3. points in the direction of increasing y

oy 5y
small move in the x,-x, space : dy = dx, + —
17X SP Y= 8X1 Xy 6X
If the move is made in the direction of vy:
dx.
L =Cc — dx,=c(oy/ox,), dx, =c / OX
oy 1 ox X, =c(oy/0x,), dx, =c(ay/oX,)

o= (3 J=

— dy is equal or greater than zero

— y always increase in the direction of VY
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Chapter 16. Calculus Methods of Optimization

16.5 Two variables and one constraint (prove Lagrange multiplier method)

Optimize Y(X;, X,) subject to ¢(X;,X,) =0
Taylor expansion : Ay ~ ( % JAX1 +( % jAX2

d¢ = [ ¢j +(%JAX2:O > AX1:_8¢/8X2 AX,
0%y
substituting the result for Ax,

O | OX,
Ay =| - oy O¢lox, N oy AX,
oX, Ol ox,  OX,
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Chapter 16. Calculus Methods of Optimization

16.5 Two variables and one constraint (prove Lagrange multiplier method)

In order for no improvements of Ay,

dy d¢/dx d dy d¢ /0 0
=_)’¢/ 2 4 yAx2=O‘—y¢/x2+ 3’20
0x,0¢/0x; 0x, dx,0¢p/0x; 0x,

If A is defined as dy
(9x1
29
axl

- Y0 o ¥ 00
OX, OX, OX, OX,
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Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

As a same manner with 2 variables, y(xq,x2,x3) 1s need to be optimized
subject to the constraint, ¢(xq, x5, x3)

The first degree terms in the Taylor seriers are

dy dy
<6x1>A +<0x2>A +( )Ax3

o9 09 09
(52 ) o + (52 ) x4 (o0
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Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

Any two of the three variables can be moved independently, but the motion

of the third variables must abide by the constraint. Arbitraily choosing x, as a
dependant one,

0 dy |0¢/0x a 0x 9]
Ay = yAxl_ y |09/ L Ax, ¢/ 00/0%3 yAxg_O
axl axz a¢/ax2 a¢/a X9 0 X3

In order for no improvement to be possible

¢ 99
ay_ayaxl_o ay_ayaxS_
dx; 0x, 6_(/5 B dx3 0x; a_¢ B

axz axz
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Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

Define 4 as P
9y
0%y
99
axl
Then oy 09 _ oy 09 _ oy 09 _
d0x4 d0x4 dx, dx, 0x3 0xs
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Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

Define 4 as P
9y
0%y
99
axl
Then oy 09 _ oy 09 _ oy 09 _
d0x4 d0x4 dx, dx, 0x3 0xs
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Chapter 16. Calculus Methods of Optimization

16.8 Alternate expression of constrained optimization problem
optimize  Y(X, X,)

subject to  #(X,X,) =D

unconstrained function L(X.,X,) = Yy(X,,X,)—A[o(X, X,) —Db]

optimum occurs where VL =0

ox % 0%

oL oy ol

ox, | ox, ox, find optimum point
P(%, %) =b=0

o
LV,

e
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Chapter 16. Calculus Methods of Optimization

16.9 Interpretation A of as the sensitivity coefficient

sensitivity coefficient (SC) :

*

oy ay* OX, ay OX,
, SC = (1
Yo, %) = ob  ox, ob  ox, b 0
(x,x)=b — ZL_9PX 00 F% 1_0 .(2)

ob  ox, ob | ox, ob

ey 1ox) _ (ay"10x;)
~(0p10%) (8] 0x))

Q)i > N X,
ox, &b ox, ob

1) — SC=21
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