Optimal Design of Energy Systems (M2794.003400)

Chapter 3. ECONOMICS

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

3.1 Introduction

- Basis of engineering decision

Economics

- Minimum investment cost
- Minimum total lifetime cost

Non-economic factors

- Legal concerns
- Social concerns
- Environmental concerns
- Aesthetic concerns

3.2. Interest

- **Interest** is the rental charge of the use of money
- **Simple interest** is calculated only on the principal amount, or on the portion of the principal amount that remains.
- **Compound interest** includes interest earned on the interest which was previously accumulated.

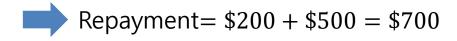
Example 3.1 : Simple interest, lump sum

Simple interest of 8% per year is charged on a 5-year loan of \$500. How much does the borrower pay to the lend?

(Solution)

Annual interest : (\$500)(0.08) = \$40

Total interest = $(Annual\ interest)(year) = (\$40)(5) = \$200$



Example 3.2 : Compound interest, lump sum

What amount must be repaid on the \$500 loan in Example 3.1, if the interest of 8% is compounded annually?

(Solution)

Repayment after n year = $(\$500)(1+i)^n$

$$i = 0.08$$
 $n = 5$

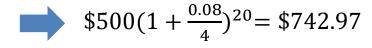
Example 3.3: Compounded more often than annually, lump sum

What amount must be repaid on a 5-year \$500 loan at 8% annual interest compounded quarterly?

(Solution)

Repayment =
$$P(1 + \frac{i}{m})^{m*n}$$

$$P = $500 \quad i = 0.08 \quad m = 4 \quad n = 5$$



$$S = P(1 + \frac{i}{m})^{m \times n}$$

Where i = nominal annual interest rate

n = number of years

m = number of compounding periods per year

3.5 Compound-Amount Factor (f/p) and Present-Worth Factor (p/f)

- Future worth and can be mutually converted
- Compund amount factor (CAF or f/p)

(Future worth
$$S$$
) = (Present worth P) \cdot (f/p) $\qquad \qquad f/p = (1 + \frac{i}{m})^{mn}$

$$f/p = (1 + \frac{\iota}{m})^{mn}$$

Present-worth factor (PWF or p/f)

$$p/f = \frac{1}{(1+i/m)^{mn}}$$

Where i = nominal annual interest rate

n = number of years

m = number of compounding periods per year

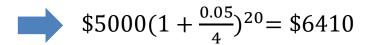
Example 3.4 : Compound-Amount Factor (f/p)

You invest \$5000 in a credit union which compounds 5% interest quarterly. What is the value of the investment after 5 years?

(Solution)

Future worth = (present worth, p/a)(f/p), f/p = $(1 + \frac{i}{m})^{m*n}$

$$p/a = $5000 i = 0.05 m = 4 n = 5$$



Example 3.5 : Present-Worth Factor (p/f)

You wish to invest a sum of money so that accumulated amount will be \$10,000 12 years later. The money can be invested at 8%, compounded semiannually. What amount must be invested?

(Solution)

Present worth = (Future worth, f/a)(p/f), p/f =
$$\frac{1}{(1+\frac{i}{m})^{n*m}}$$

 $f/a = \$10,000 \ i = 0.08 \ m = 2 \ n = 12$

$$(\$10,000) * \frac{1}{\left(1 + \frac{0.08}{2}\right)^{24}} = \$3901.20$$

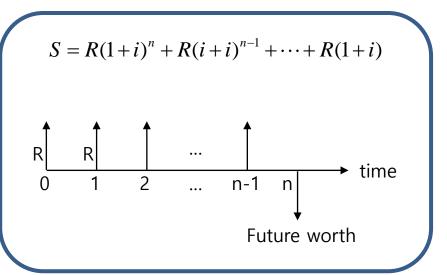
3.6 Future worth (f/a) of a uniform series of amounts

- Uniform amount is paid at each time period
- There are two types for a uniform series of amounts

$$S = R(1+i)^{n-1} + R(i+i)^{n-2} + \dots + R(1+i) + R$$

$$0 \quad 1 \quad 2 \quad \dots \quad n-1 \quad n$$
Future worth

First payment at the end of the first period



First payment at the start of the first period

- R : uniform amount at each time period
- S : Future worth

3.6 Future worth (f/a) of a uniform series of amounts

- If first payment is at the end of the first period
- **Series compound amount factor** (SCAF or f/a)

(Future worth S) = (Regular amount R) · (f/a)
$$f/a = \frac{(1+i)^n - 1}{i}$$

- **Sinking fund factor** (SFF or a/f)

(Regular amount
$$R$$
) = (future worth S) \cdot (a/f) $= \frac{i}{(1+i)^n-1}$

3.6 Future worth (f/a) of a uniform series of amounts

- If first payment is at the start of the first period
- **Series compound amount factor** (SCAF or f/a)

(Future worth
$$S$$
) = (Regular amount R) \cdot (f/a)_{shift} \leftarrow (f/a)_{shift} = $\frac{(1+i)^n-1}{i/(1+i)}$

- **Sinking fund factor** (SFF or a/f)

(Regular amount
$$R$$
) = (future worth S) \cdot (a/f)_{shift} $=$ $\frac{i/(1+i)}{(1+i)^n-1}$

Example 3.6

The management to set aside equal amounts of investment each year starting 1 year from now so that \$16,000 will be available in 10 years for the replacement of the machine. The compound interest is 8% annually. How much must be provided each year?

(Solution)

$$16000 = R[(1+0.08)^9 + (1+0.08)^8 + \dots + (1+0.08) + 1]$$

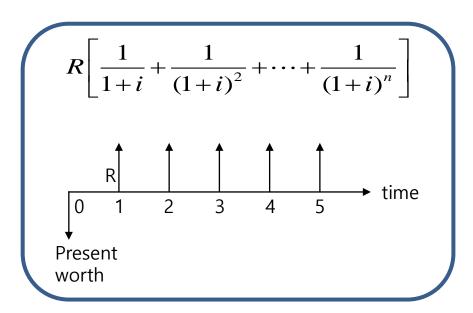
interest :
$$i = 0.08$$
 sum : $S = 16000$ year : $n = 10$

$$R = (\text{future worth})(\text{SFF}) = S \cdot a/f = S \frac{i}{(1+i)^n - 1} = 16000 \frac{0.08}{(1+0.08)^{10} - 1}$$

$$R = $1104.5$$

3.7 Present worth (p/a) of a uniform series of amounts

- The value of a series of uniform amounts R can be translated into the present worth



First payment at the end of the first period

3.7 Present worth (p/a) of a uniform series of amounts

- If first payment is at the end of the first payment
- **Series present worth factor** (SPWF or p/a)

$$p/a = \frac{(1+i)^n - 1}{i(1+i)^n}$$

- **Capital recovery factor** (CRF or a/p)

$$p/a = \frac{i(1+i)^n}{(1+i)^n-1}$$

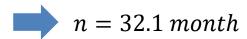
Example 3.7: Present worth (p/a) of a uniform series of amounts

You borrow \$1000 from a loan company that charges 15% nominal <u>annual interest compounded monthly</u>. How many month will it take to repay the loan if you pay off \$38 per month?

(Solution)

\$1000 = (\$38)(p/a), p/a =
$$\frac{\left(1 + \frac{i}{m}\right)^n - 1}{\frac{i}{m}(1 + \frac{i}{m})^n}$$

 $i = 0.15$ $m = 12$
 $1000 = 38 * \frac{(1.0125)^n - 1}{0.0125(1.0125)^n}$



3.8 Gradient present worth factor (GPWF)

- Non uniform amounts in the series (ex: maintenance cost is being increased)
- No cost during the first year
- cost G at the end of the 2nd year, and 2G at the end of the 3rd year...

$$(Present worth P) = \frac{G}{(1+i)^2} + \frac{2G}{(1+i)^3} + \dots + \frac{(n-1)G}{(1+i)^n}$$
$$= G\left\{\frac{1}{i}\left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n}\right]\right\}$$

$$\therefore GPWF = \left\{ \frac{1}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right] \right\}$$

3.10 Bonds

- Bond is an instrument of indebtedness of the bond issuer to the holders.
- Face value and its interest is paid by the issuers to holder.
- Interest is usually semiannual.
- It is possible to sell and buy the bond.

3.10 Bonds

$$P_b(1 + \frac{i_c}{2})^{2n} = FV + FV \frac{i_b}{2} \frac{(1 + i_c/2)^{2n} - 1}{i_c/2}$$

Future worth of investment

Future worth of uniform series of the **semiannual interest** payment on the bond

- FV : face value

- P_b : price to be paid for bond now

- i_c : current interest rate

- i_b : interest rate on bond

- n : years to maturity

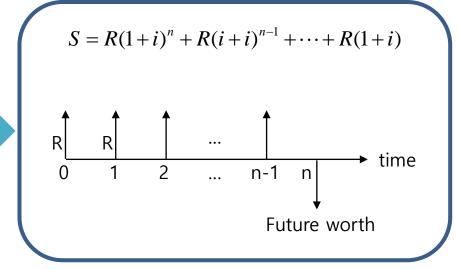
3.11 Shift in time of a series

- Unlike the previous examples, first payment is at the start of the first period

$$S = R(1+i)^{n-1} + R(i+i)^{n-2} + \dots + R(1+i) + R$$

$$0 \quad 1 \quad 2 \quad \dots \quad n-1 \quad n$$
Future worth

First payment at the end of the first period



First payment at the start of the first period

- R : uniform amount at each time period
- S : Future worth

3.11 Shift in time of a series

- If first payment is at the start of the first payment
- **Series compound amount factor** (SCAF or f/a)

(Future worth S) = (Regular amount R)
$$\cdot$$
 (f/a)_{shift} \longleftarrow (f/a)_{shift} = $\frac{(1+i)^n-1}{i/(1+i)}$

- **Sinking fund factor** (SFF or a/f)

(Regular amount
$$R$$
) = (future worth S) \cdot (a/f)_{shift} \leftarrow (a/f)_{shift} = $\frac{i/(1+i)}{(1+i)^n-1}$

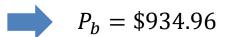
Example 3.9: Bonds

A \$1000 bond that has 10 years to maturity pays interest semiannually at a nominal annual rate of 8%. An investor wishes to earn 9% on investment. What price could investor pay for the bond to achieve this 9% interest rate?

(Solution)

$$P_b(1 + \frac{i_c}{2})^{2n} = FV + FV \frac{i_b}{2} \frac{(1 + i_c/2)^{2n} - 1}{i_c/2}$$

$$P_b = ?$$
 $i_c = 0.09$ $n = 10$ $FV = 1000 $i_b = 0.08$



3.14 Evaluating Potential Investments

- Four elements of consideration in **investment analysis**
 - ① first cost
 - 2 Income
 - ③ Operating expense
 - 4 Salvage value

Example 3.12 : Evaluating Potential Investments

You have a choice of buying building A of building B to operate the building for 5 years and then sell it. Building A's expected value is to be 20% higher in 5 years, while building B is expected to drop in value of 10% in 5 years. Other data are shown in Table below. What will be the rate of return on each building?

Economic data	Building A	Building B
First cost	\$800,000	\$600,000
Annual income from rent	160,000	155,000
Annual operating and maintenance cost	73,000	50,300
Anticipated selling price	960,000	540,000

(Solution)

First cost = (Annual income - Annual operating and maintenance cost)(p/a) + (Anticipated selling price)(p/f)

Recall
$$p/a = \frac{(1+i)^n - 1}{i(1+i)^n}$$
 $p/f = \frac{1}{(1+i)^n}$

Building A:
$$800,000 = (160,000 - 73,000) \left(\frac{(1+i)^5 - 1}{i(1+i)^5} \right) + (960,000) \left(\frac{1}{(1+i)^5} \right)$$

Building B:
$$600,000 = (155,000 - 50,300) \left(\frac{(1+i)^5 - 1}{i(1+i)^5} \right) + (540,000) \left(\frac{1}{(1+i)^5} \right)$$

$$i = \begin{cases} 13.9\% & building A \\ 16.0\% & building B \end{cases}$$

3.18 Continuous compounding

- High frequency of compounding is quite realistic in business operation.
- Businesses control their money more on a flow basis than on a batch basis.

3.18 Continuous compounding

if m approaches infinity,

$$f/p = (1 + \frac{i}{m})^{mn}$$
 $(f/p)_{const} = (1 + \frac{i}{m})^{mn} \Big|_{m \to \infty}$

by taking the logarithm and using tailor expansion,

$$\ln((f/p)_{const}) = mn \left[\ln(1 + \frac{i}{m}) \right] \Big|_{m \to \infty} = mn \left[0 + \frac{i}{m} + a_2 \frac{i^2}{m^2} \right] \Big|_{m \to \infty}$$

cancling m and letting m approaches infinity,

$$\ln((f/p)_{const}) = in \qquad (f/p)_{const} = e^{in}$$

Example 3.13: Continuous compounding

Compare the values of (f/p, 8%, 10) and [(f/p) $_{cont}$, 8%, 10]

(Solution)

$$(f/p, 8\%, 10) = (1 + 0.08)^{10} = 2.1589$$

$$[(f/p)_{cont}, 8\%, 10] = e^{0.8} = 2.2255$$