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Equation
Development

• Performance 
characteristics of 
equipment

• Behavior of processes

• Thermodynamic 
properties of 
substances

Key elements

• To facilitate the 
process of system 
simulation

• To develop a 
mathematical 
statement for 
optimization

Purposes

Chapter 4. Equation fitting

4.1 Mathematical modeling
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4.2 Matrices



• Multiplying two matrices

# of columns of the left matrix = # of rows of the right matrix
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4.2 Matrices



• Simultaneous linear equations
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4.2 Matrices



• Determinant (scalar)
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4.2 Matrices

= 𝑎11𝐴11 + 𝑎21𝐴21 + 𝑎31𝐴31



Example 4.1 : Matrices

Evaluate

(Solution)

Find row which has many zeros if possible => second row! 

det
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= 𝑎21𝐴21 + 𝑎22𝐴22 + 𝑎23𝐴23 + 𝑎24𝐴24

= 0 𝐴21 + 1 −1 2+2
1 −1 0
3 1 2
4 1 5

+ 2 −1 2+3
1 2 0
3 −1 2
4 2 5

+ (0)𝐴24

= 0 + 10 + 46 + 0 = 56
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✓ Simultaneous linear equations

✓ Matrix form
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4.3 Solution of simultaneous equation
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• Crammer’s rule
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4.3 Solution of simultaneous equation

Example 4.2

Using Cramer’s rule, get 𝑥2

2 1 −1
1 −2 2
−1 0 3

𝑥1
𝑥2
𝑥3

=
3
9
0

(Solution)



Coefficient matrix [A]
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Triangular matrix

Back substitution

• Gaussian elimination
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4.3 Solution of simultaneous equation
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• degree of the eq = highest exponent of x

• # of data point = degree + 1  →   exact expression

>        →   best fit
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4.4 Polynomial representations



✓ Points are equally spaced

✓ Derive 4th degree polynomial

✓ n=4
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(next page)

Eq. (4.16)
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4.6 Simplifications when the independent variable is uniformly spaced
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✓ if substitute (x1,y1)

✓ Substitute all the points to Equation (4.16)
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4.6 Simplifications when the independent variable is uniformly spaced
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4.6 Simplifications when the independent variable is uniformly spaced
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4.7 Lagrange interpolation
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4.8 Function of two variables



Example 4.3 : Function of two variables

The range is the difference between the inlet and outlet temperatures of the
water. In table below, for example, when the wet-bulb temperature is 20℃
and the range is 10℃, inlet and outlet temperature are 35.9℃ and 25.9℃
each. Express the outlet temperature 𝒕 in Table below as a function of the
wet-bulb temperature (WBT) and the range R
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Wet-bulb temperature, ℃

Range, ℃ 20 23 26

10 25.9 27.5 29.4

16 27.0 28.4 30.2

22 28.4 29.6 31.3

(Solution)
For 3 WBTs, get parabola that represents (R,t)

i) For WBT = 20℃

(R,t) : (10,25.9), (16,27.0), (22,28.4)

⇒ 𝑡 = 24.733 + 0.075006𝑅 + 0.004146𝑅2

ii) For WBT = 23℃

⇒ 𝑡 = 26.667 + 0.041659𝑅 + 0.0041469𝑅2

iii) For WBT = 26℃

⇒ 𝑡 = 28.733 + 0.024999𝑅 + 0.0041467𝑅2



Example 4.3 : Function of two variables
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(Solution)

Set 2nd degree equation (constant terms(C) , WBT) ∶ 24.733,20 , 26.667,23 , 28.733,26

⇒ 𝐶 = 15.247 + 0.32637𝑊𝐵𝑇 + 0.007380𝑊𝐵𝑇2

Set 2nd degree equation (coefficient of 𝑅 , WBT) and (coefficient of 𝑅2 , WBT) as well

𝑡 = 15.247 + 0.32637𝑊𝐵𝑇 + 0.007380𝑊𝐵𝑇2 +
0.72375 − 0.050978𝑊𝐵𝑇 + 0.000927𝑊𝐵𝑇2 𝑅 +

(0.004147 + 0𝑊𝐵𝑇 + 0𝑊𝐵𝑇2)𝑅2
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4.9 Exponential forms

ln ln ln

my bx

y b m x

=
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✓

Log-log plot (y=bxm)



If y approaches some value b, as            orx → x →−

Estimate b

Calculate m with log-log plot (y-b vs. x)

Fitting (y vs. xm)

Correct value of b

Curve y=b+axm

✓
my b ax= +
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4.9 Exponential forms



Misuse of least square method

Example of least square method

✓ Misuses of least square method

(a) Questionable correlation

(b) Applying too low degree
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4.10 Best fit : Method of least squares

The sum of the squares of the deviation is a minimum
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4.10 Best fit : Method of least squares

• Method of least square for



Example 4.4 : Best fit : Method of least squares

Determine 𝑎0 and 𝑎1 in the equation 𝑦 = 𝑎0 + 𝑎1𝑥 to provide a best fit in
the sense of least-squares deviation to the data points (1, 4.9), (3, 11.2), (4,
13.7), and (6, 20.1)

(Solution)
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𝑥𝑖 𝑦𝑖 𝑥𝑖
2 𝑥𝑖𝑦𝑖

1 4.9 1 4.9

3 11.2 9 33.6

4 13.7 16 54.8

6 20.1 36 120.6

∑ 14 49.9 62 213.9

𝑚 = 4
4𝑎0 + 14𝑎1 = 49.9
14𝑎0 + 62𝑎1 = 213.9

i ima b x y+ = 
2

i i i ia x b x x y+ =  

𝑦 = 1.908 + 3.019𝑥



4.10 Best fit : Method of Least Squares

• Method of least squares for
2y a bx cx= + +
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4.11 Method of Least Squares Applied to Nonpolynomial Forms

• Method of least squares

→ apply to equation with constant coefficients

cf) sin 2 cy ax bx= +
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4.12 The art of equation fitting

• Choice of the form of the equation

Polynomials with negative exponent(1)

Exponential eq.(2)

Gompertz eq(3)

combination

, 1
xcy ab where b c= 

(1) (2) (3)
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