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Chapter 9. SEARCH METHODS



- The major effort in the optimization was determining the values of the 
independent variables that provide the optimum.

- Search methods generally fall into categories; 

9.1 Overview of search methods
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elimination

hill-climbing

 no one systematic procedure

 ultimate approach if other optimization methods fail
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9.1 Overview of search methods

Chapter 9. SEARCH METHODS

/ 273

a. Exhaustive

b. Efficient

a. Lattice

b. Univariate

c. Steepest ascent

a. Penalty functions

b. Search along a constraint

Single variable

Multivariable, unconstrained

Multivariable, constrained



- In search methods, the precise point at which the optimum occurs will 
never be known 

- The best that can be achieved is to specify the interval of uncertainty

9.2 Interval of uncertainty
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9.3 Exhaustive search (linear search)
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𝐼0

- The exhaustive search is most widely used

- Interval of interest is uniformly devided by (number of observation + 1)

𝐼 =
2

(𝑛 + 1)
𝐼0 =

2

8
𝐼0

Right next 2 sides of maximum y
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𝑦 𝑥A < 𝑦max < 𝑦(𝑥B)Maximum lies :

𝑛 = 7number of observation:

devided interval:
1

𝑛 + 1
𝐼0

Interval of uncertainty:



- Only one peak (or valley) in the interval of interest

9.4 Unimodal functions
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dichotomous search method

Fibonacci search method
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- It can be eliminated one side at two different position of an unimodal 
function.

9.5 Eliminating a section based on two tests
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Can be eliminated

𝑦 𝑥A < 𝑦(𝑥B)
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9.6 Dichotomous search
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𝐼 =
𝐼0 + 𝜀

2
1st trial remaining interval :

2nd trial remaining interval : 𝐼 =

𝐼0 + 𝜀
2

+ 𝜀

2
=
𝐼0
4
+ 𝜀 −

1

4
𝜀

3rd trial remaining interval :
𝐼 =

𝐼0 + 𝜀
2

+ 𝜀

2
+ 𝜀

2
=
𝐼0
8
+ 𝜀 −

1

8
𝜀

n trial points (n=2,4,6,…)   : 𝐼 =
𝐼0
2𝑛/2

+ 𝜀 1 −
1

2𝑛/2

𝐼 : interval of uncertainty
𝐼0 : interval of interest
𝜀 : space between two points
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- Searching from the middle of the interval with a range, ε

- Comparing  𝑥𝐴, 𝑥𝐵, smaller part of the interval is eliminated



9.7 Fibonacci search
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- What is Fibonacci series? 

𝐹𝑖 = 𝐹𝑖−2 + 𝐹𝑖−1 (𝑖 ≥ 2)𝐹1 = 1, 𝐹2 = 1,

𝐹 = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,⋯

- Fibonacci series in nature

Fig. Number of flower petals and 
Fibonacci series**

**http://developeriq.in/articles/2014,20170421*https://en.wikipedia.org/wiki/Golden_spiral,20170421

Fig. Fibonacci spiral and shell*



9.7 Fibonacci search
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- Applying Fibonacci series to search method 

① Decide how many observations(n)

② Place the first observation in 𝐼0 at a distance of 𝐼0
𝐹𝑛−1

𝐹𝑛
from both ends

③ Place the next observation in the interval of uncertainty at a position 
that is symmetric to the existing observation

④ Interval reduces according to Fibonacci series

𝐼1 = 𝐼0
𝐹𝑛−1
𝐹𝑛

𝐼2 = 𝐼1
𝐹𝑛−2
𝐹𝑛−1

= 𝐼0
𝐹𝑛−2
𝐹𝑛

𝐼3 = 𝐼2
𝐹𝑛−3
𝐹𝑛−2

= 𝐼0
𝐹𝑛−3
𝐹𝑛

⋯



Interval of uncertainty

Find the maximum of the function 𝑦 = −𝑥2 + 4𝑥 + 2

in the interval 0 < 𝑥 < 5

1st : 

2nd : symmetric  0 ~ 5

3rd : symmetric  0 ~ 3

Final : 2x  

2 3x   0 0

5 n

I I

F
   

0

5

I


eliminate 3<x<5

eliminate 0<x<1

Example 9.1
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𝑥1 = 𝐼0
𝐹3
𝐹4

=
3

5
𝐼0 = 3

𝑛 = 4,Arbitrarily choose: 𝐼0 = 5

1 2 3 4 5 60 x

y

𝐼0

𝜀

𝐼 eliminated

1st

2nd

3rd

last

⋮

𝑥2 = 2

𝑥3 = 1

⋮

/ 2711



9.8 Comparative effectiveness of search methods
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0

n

I

I
1

2

n

22
n

nF

exhaustive

dichotomous

Fibonacci

O.K.

good

good

single variable search
Reduction Ratio (RR) =

=
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9.10 Multivariable, unconstrained optimization

dichotomous

exhaustive

 Single variable

Calculus

Finonacci

elimination

 Multivariable, unconstrained

Univariate

Lattice

hill-climbing
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- Start at on point in the region of interest 

- Check a number of points in a grid surrounding the central point

- Move the central point to maximum value of a grid

- If the central point is greater than other surrounding point:  

9.11 Lattice search
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coarse grid

fine grid
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- Optimization with respect to one variable at a time

9.12 Univariate search
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Large intervalRidge

- Failure occurs
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9.13 Steepest-ascent method
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gradient vector (at A) is normal to 

the contour line (at A)

𝛻𝑦 =
𝜕𝑦

𝜕𝑥1
 𝑖1 +

𝜕𝑦

𝜕𝑥2
 𝑖2

 𝑖1,  𝑖2 : unit vector in the 𝑥1 and 𝑥2

- Decide in which direction to move along the gradient

- Decide how far to move and then move that distance
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9.13 Steepest-ascent method
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① trial point as near to the optimum as possible (otherwise, arbitrarily chosen)

② Gradient vector is normal to the contour line or surface and therefore indicates
the direction of maximum rate of change

③ in the direction of gradient, move until optimum is reached

∆𝑥1
𝜕𝑦/𝜕𝑥1

= ⋯ =
∆𝑥𝑛

𝜕𝑦/𝜕𝑥𝑛

𝑥2

𝑥1
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𝜕𝑦

𝜕𝑥1
:
𝜕𝑦

𝜕𝑥2
: ⋯ :

𝜕𝑦

𝜕𝑥𝑛
= 𝑥1: 𝑥2:⋯ : 𝑥𝑛



- Contours should be as spherical as possible to accelerate the convergence

9.14 Scales of the independent variables
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𝑥2
′ = 𝑐𝑥2

0 < 𝑥2 < 100

0 < 𝑥1 < 400

0 < 𝑥2
′ < 400

0 < 𝑥1 < 400
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9.15 Constrained optimization
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1) Conversion to unconstrained by use of penalty functions

2) Searching along the constraint

→ equality constraints only

- The most frequent and most important ones encountered in the design of 
thermal systems
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9.16 Penalty functions
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1 2( , , )ny y x x x → maximum

Subject to

1 1 2

1 2

( , , ) 0

( , , ) 0

n

m n

y x x x

y x x x





 

 

New unconstrained function
2 2

1 1 m mY y P P    

if minimum

2 2

1 1 m mY y P P    

iP Relative weighting

too high – move very slowly

too small – terminate without satisfying the constraints
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- Choose a trial point

- Driving toward the constraint(s)  (fixed x1 or x2)

- On constraint(s), optimize along the constraint(s) (tangential move)

9.17 Optimization by searching along a constraint-hemstitching
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9.18 Driving toward the constraint(s)

𝑚 < 𝑛
𝑚 : the number of constraints

𝑛 : the number of variables

𝑛 −𝑚 : the number of remaining variables which should be solved 
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9.19 Hemstitching search when n-m=1
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# of constraints = m

# of variables = n
n – m = 1

𝑥1
2𝑥2 = 8 𝜙(𝑥2, 𝑥2) = 0 hemstitching
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9.19 Hemstitching search when n-m=1
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1 2( , ) 0x x 

1 2

1 2

0x x
x x

 


 
     

 

1 1

2 2

/

/

x x

x x





  
 

  

1 2

1 2

2
2 2

1 1 2

/

/

y y
y x x

x x

xy y
x G x

x x x





 
    

 

   
      

    

In minimization,     if G>0,   Δx2<0
if G<0,   Δx2>0

In maximization,     if G>0,   Δx2>0
if G<0,   Δx2<0

• constraint

• objective function

/ 2723



9.19 Hemstitching search when n-m=1
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1 2 3( , , )y y x x xoptimize

subject to 1 1 2 3

2 1 2 3

( , , ) 0

( , , ) 0

x x x

x x x









On the constraints, (tangential move)

1 1 1
1 1 2 3

1 2 3

2 2 2
2 1 2 3

1 2 3

1 2 3

1 2 3

3

0

0

x x x
x x x

x x x
x x x

y y y
y x x x

x x x

G x

  


  


  
       

  

  
       

  

  
      

  

 

In minimization,    if G>0,  Δx3<0
if G<0,  Δx3>0

In maximization,    if G>0,  Δx3>0
if G<0,  Δx3<0

Eliminate Δx1, Δx2

Three-variable problem where n=3, m=2
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9.20 Moving tangent to a constraint in three dimensions
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n=3, m=1

1 2 3

1 2 3

y y y
y x x x

x x x

  
      

  

1 2 3

1 2 3

0x x x
x x x

  


  
       

  

2 2 2 2

1 2 3 .x x x r const    

- direction (tangent to a constraint)

- distance

?y 

- maximum

- maximum change of y
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Lagrange Multiplier Method

1 1 2

1 1

1 2 2

2 2

1 3 2

3 3

(2 ) 0

(2 ) 0

(2 ) 0

y
x

x x

y
x

x x

y
x

x x


 


 


 

 
   

 

 
   

 

 
   

 

1 2 3x x x

    
    
  

① ② ③

22 2

2

1 1 2 2 3 3 1 2 3

0
y y y

x x x x x x x x x

     

             
          

               

2

⋯ ①

⋯ ②

⋯ ③

9.20 Moving tangent to a constraint in three dimensions
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31 2

1
2 2 2

1 1 2 2 3 3

1

2

xx x

y y y

x x x x x x

     

 
  
     

  
     

ix  step size of on variable in the move

9.20 Moving tangent to a constraint in three dimensions
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9.21 Summary
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1. Single variable

a. Exhaustive

b. Efficient

2. Multivariable, unconstrained

a. Lattice

b. Univariate

c. Steepest ascent

3. Multivariable, constrained

a. Penalty functions

b. Search along a constraint

Dichotomous

Finonacci
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