Optimal Design of Energy Systems (M2794.003400)

Chapter 9. SEARCH METHODS

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

9.1 Overview of search methods

- The major effort in the **optimization** was determining the values of the independent variables that provide the optimum.
- Search methods generally fall into categories;
 - elimination
 - hill-climbing
 - no one systematic procedure
 - ultimate approach if other optimization methods fail

9.1 Overview of search methods

Single variable	a. Exhaustive
	b. Efficient

	a. Lattice
Multivariable, unconstrained	b. Univariate
	c. Steepest ascent

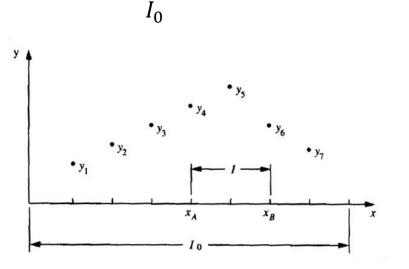
Multivariable, constrained	a. Penalty functions
	b. Search along a constraint

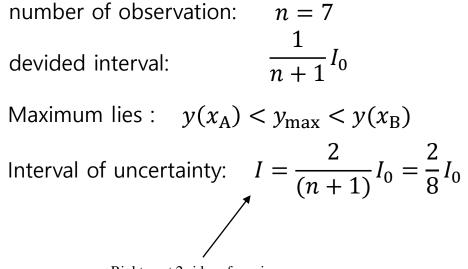
9.2 Interval of uncertainty

- In search methods, the **precise point** at which the optimum occurs **will never be known**
- The best that can be achieved is to specify the interval of uncertainty

9.3 Exhaustive search (linear search)

- The exhaustive search is most widely used
- Interval of interest is uniformly devided by (number of observation + 1)

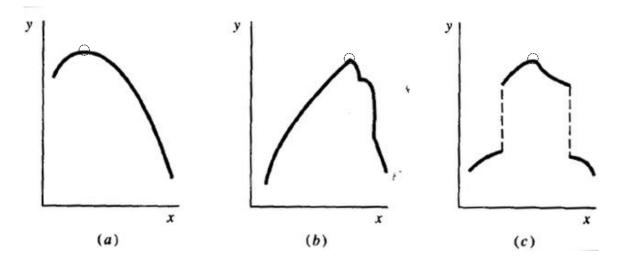




Right next 2 sides of maximum y

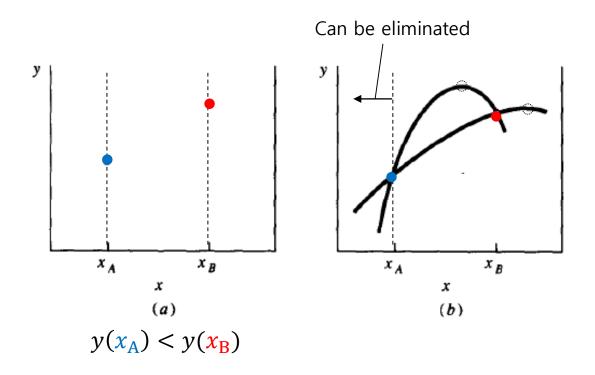
9.4 Unimodal functions

- Only one peak (or valley) in the interval of interest
 - dichotomous search method
 - Fibonacci search method



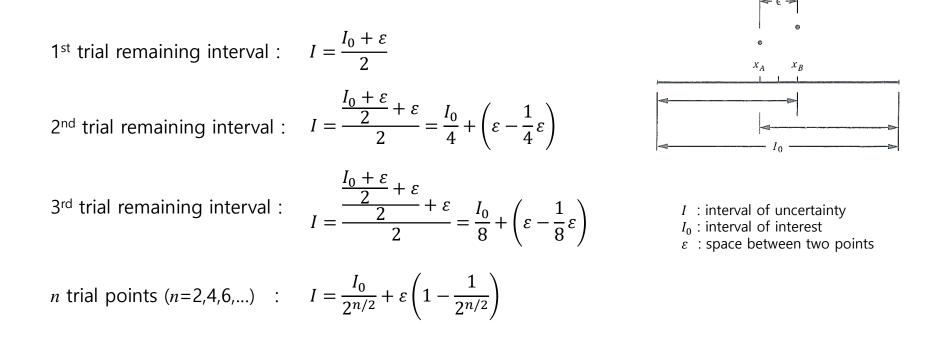
9.5 Eliminating a section based on two tests

- It can be eliminated one side at two different position of an unimodal function.



9.6 Dichotomous search

- Searching from the middle of the interval with a range, ϵ
- Comparing x_A, x_B , smaller part of the interval is eliminated



9.7 Fibonacci search

- What is Fibonacci series?

$$F_1 = 1$$
, $F_2 = 1$, $F_i = F_{i-2} + F_{i-1}$ $(i \ge 2)$

 $F = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

- Fibonacci series in nature

Fig. Fibonacci spiral and shell*

Fig. Number of flower petals and Fibonacci series**

9.7 Fibonacci search

- Applying Fibonacci series to search method
 - ① Decide how many observations(n)

② Place the first observation in I_0 at a distance of $I_0 \frac{F_{n-1}}{F_n}$ from both ends

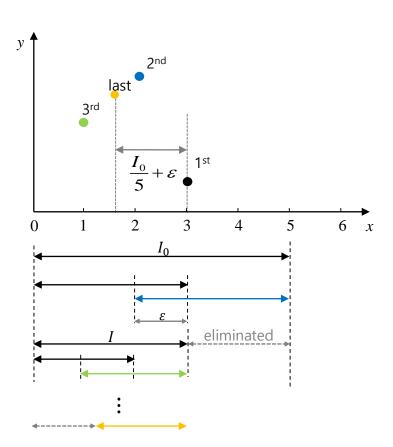
③ Place the next observation in the interval of uncertainty at a position that is symmetric to the existing observation

④ Interval reduces according to Fibonacci series

$$I_1 = I_0 \frac{F_{n-1}}{F_n} \qquad I_2 = I_1 \frac{F_{n-2}}{F_{n-1}} = I_0 \frac{F_{n-2}}{F_n} \qquad I_3 = I_2 \frac{F_{n-3}}{F_{n-2}} = I_0 \frac{F_{n-3}}{F_n} \qquad \cdots$$

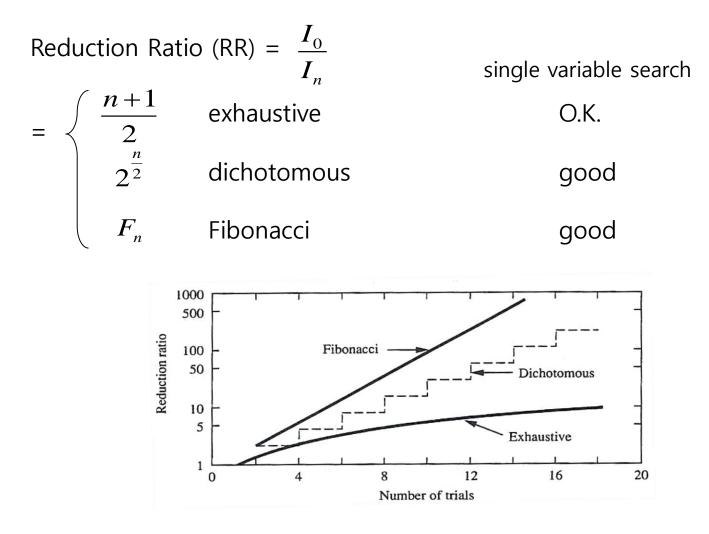
Example 9.1

Find the maximum of the function $y = -x^2 + 4x + 2$ in the interval 0 < x < 5

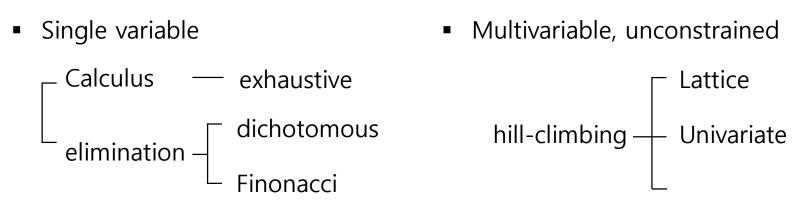


Arbitrarily choose: n = 4, $I_0 = 5$ 1st: $x_1 = I_0 \frac{F_3}{F_4} = \frac{3}{5}I_0 = 3$ 2^{nd} : symmetric $0 \sim 5 \longrightarrow x_2 = 2$ eliminate 3<x<5 3^{rd} : symmetric 0 ~ 3 $\rightarrow x_3 = 1$ eliminate 0<x<1 Final : $x = 2 - \varepsilon$ Interval of uncertainty $2 - \varepsilon \le x \le 3 \frac{I_0}{5} + \varepsilon = \frac{I_0}{F_n} + \varepsilon$ 11/27

9.8 Comparative effectiveness of search methods



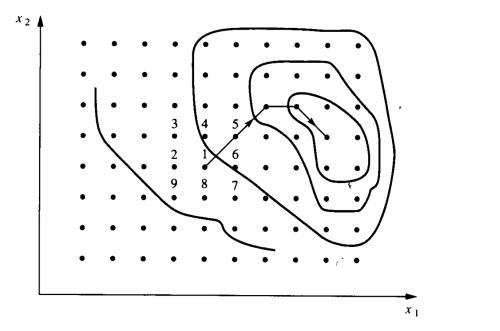
9.10 Multivariable, unconstrained optimization



9.11 Lattice search

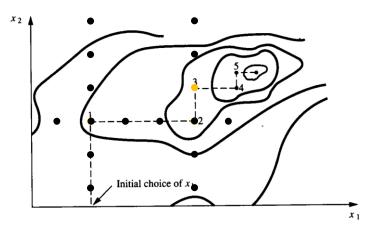
- Start at on point in the region of interest
- Check a number of points in a grid surrounding the central point
- Move the central point to maximum value of a grid
- If the central point is greater than other surrounding point: **coarse grid**

 \rightarrow fine grid

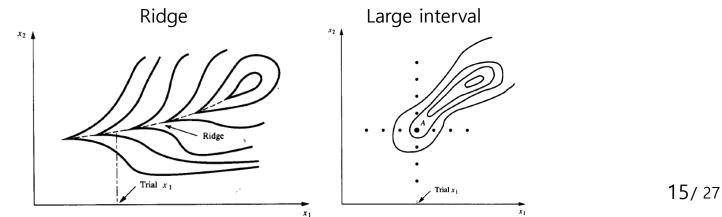


9.12 Univariate search

- Optimization with respect to **one variable** at a time



- Failure occurs



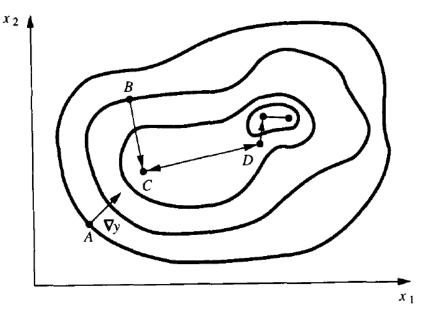
9.13 Steepest-ascent method

- Decide in which **direction** to move along the gradient
- Decide how far to move and then move that distance

$$\nabla y = \frac{\partial y}{\partial x_1} \hat{i_1} + \frac{\partial y}{\partial x_2} \hat{i_2}$$

 $\hat{i_1}$, $\hat{i_2}$: unit vector in the x_1 and x_2

gradient vector (at A) is normal to the contour line (at A)



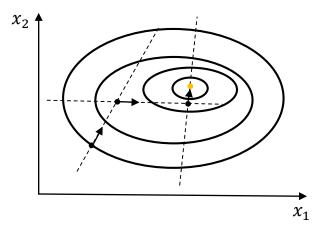
9.13 Steepest-ascent method

① trial point as near to the optimum as possible (otherwise, arbitrarily chosen)

② Gradient vector is normal to the contour line or surface and therefore indicates the direction of maximum rate of change

$$\frac{\Delta x_1}{\partial y/\partial x_1} = \dots = \frac{\Delta x_n}{\partial y/\partial x_n} \qquad \qquad \frac{\partial y}{\partial x_1} : \frac{\partial y}{\partial x_2} : \dots : \frac{\partial y}{\partial x_n} = x_1 : x_2 : \dots : x_n$$

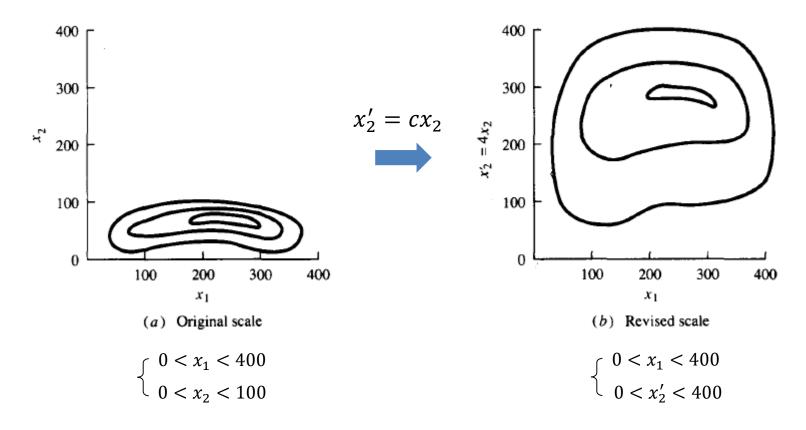
③ in the direction of gradient, move until optimum is reached



17/27

9.14 Scales of the independent variables

- Contours should be as spherical as possible to accelerate the convergence



9.15 Constrained optimization

- The most frequent and most important ones encountered in the design of thermal systems
 - 1) Conversion to unconstrained by use of penalty functions
 - 2) Searching along the constraint
 - \rightarrow equality constraints only

9.16 Penalty functions

$$y = y(x_1, x_2, \dots x_n) \rightarrow \text{maximum} \quad \text{if minimum}$$
Subject to
$$\phi_1 = y(x_1, x_2, \dots x_n) = 0$$

$$\vdots$$

$$\phi_m = y(x_1, x_2, \dots x_n) = 0$$
New unconstrained function
$$Y = y - P_1 \phi_1^2 - \dots - P_m \phi_m^2 \qquad Y = y + P_1 \phi_1^2 + \dots + P_m \phi_m^2$$

 P_i Relative weighting

too high – move very slowly

too small - terminate without satisfying the constraints

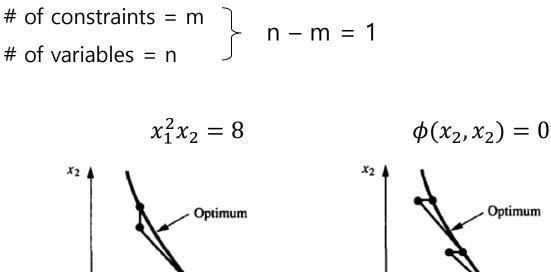
9.17 Optimization by searching along a constraint-hemstitching

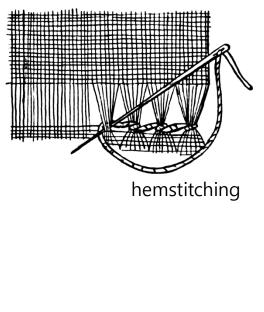
- Choose a trial point
- Driving toward the constraint(s) (fixed x1 or x2)
- On constraint(s), optimize along the constraint(s) (tangential move)

9.18 Driving toward the constraint(s)

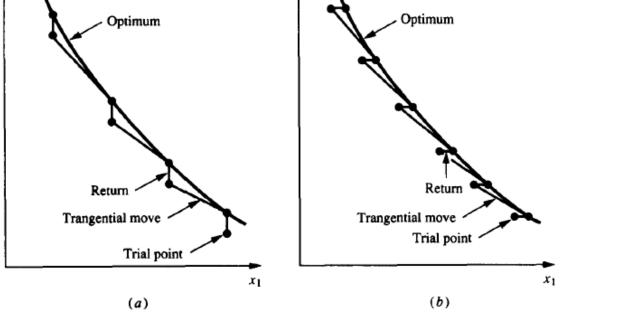
- m < n m : the number of constraints
 - n: the number of variables
- n-m : the number of remaining variables which should be solved

9.19 Hemstitching search when n-m=1





22/27



9.19 Hemstitching search when n-m=1

• constraint

$$\phi(x_1, x_2) = 0$$
$$\Delta \phi = \frac{\partial \phi}{\partial x_1} \Delta x_1 + \frac{\partial \phi}{\partial x_2} \Delta x_2 = 0$$
$$\frac{\Delta x_1}{\Delta x_2} = -\frac{\partial \phi / \partial x_1}{\partial \phi / \partial x_2}$$

• objective function

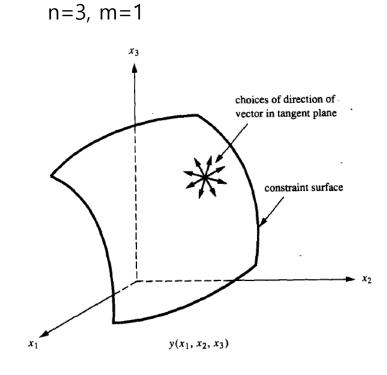
$$\Delta y \approx \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2$$
$$= \left(-\frac{\partial y}{\partial x_1} \frac{\partial \phi / \partial x_2}{\partial \phi / \partial x_1} + \frac{\partial y}{\partial x_2} \right) \Delta x_2 = G \Delta x_2$$

In minimization, if
$$G>0$$
, $\Delta x_2 < 0$
if $G<0$, $\Delta x_2 > 0$
In maximization, if $G>0$, $\Delta x_2 > 0$
if $G<0$, $\Delta x_2 < 0$

9.19 Hemstitching search when n-m=1

Three-variable problem where n=3, m=2optimize $y = y(x_1, x_2, x_3)$ subject to $\phi_1(x_1, x_2, x_3) = 0$ $\phi_2(x_1, x_2, x_3) = 0$ On the constraints, (tangential move) $\Delta \phi_1 = \frac{\partial \phi_1}{\partial x_1} \Delta x_1 + \frac{\partial \phi_1}{\partial x_2} \Delta x_2 + \frac{\partial \phi_1}{\partial x_3} \Delta x_3 = 0$ Eliminate Δx_1 , Δx_2 $\Delta \phi_2 = \frac{\partial \phi_2}{\partial x_1} \Delta x_1 + \frac{\partial \phi_2}{\partial x_2} \Delta x_2 + \frac{\partial \phi_2}{\partial x_2} \Delta x_3 = 0$ $\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \frac{\partial y}{\partial x_3} \Delta x_3$ In minimization, if G>0, $\Delta x_3 < 0$ if G<0, $\Delta x_3 > 0$ $= G\Delta x_2$ In maximization, if G > 0, $\Delta x_3 > 0$ if G<0, $\Delta x_3 < 0$

9.20 Moving tangent to a constraint in three dimensions



- maximum change of y

$$\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \frac{\partial y}{\partial x_3} \Delta x_3$$

- direction (tangent to a constraint)

$$\Delta \phi = \frac{\partial \phi}{\partial x_1} \Delta x_1 + \frac{\partial \phi}{\partial x_2} \Delta x_2 + \frac{\partial \phi}{\partial x_3} \Delta x_3 = 0$$

- distance

$$\Delta x_1^2 + \Delta x_2^2 + \Delta x_3^2 = r^2 = const.$$

- maximum

$$\Delta y = ?$$

9.20 Moving tangent to a constraint in three dimensions

Lagrange Multiplier Method

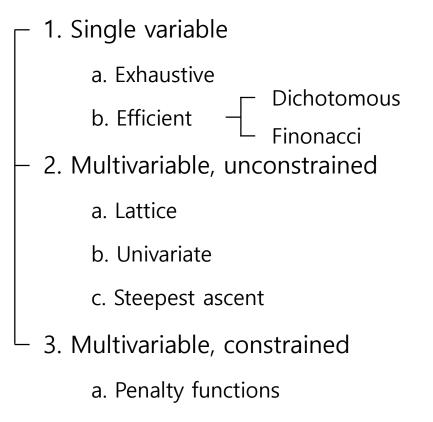
$$\frac{\partial y}{\partial x_1} - \lambda_1 (2\Delta x_1) - \lambda_2 \frac{\partial \phi}{\partial x_1} = 0 \quad \cdots \quad 1$$
$$\frac{\partial y}{\partial x_2} - \lambda_1 (2\Delta x_2) - \lambda_2 \frac{\partial \phi}{\partial x_2} = 0 \quad \cdots \quad 2$$
$$\frac{\partial y}{\partial x_3} - \lambda_1 (2\Delta x_3) - \lambda_2 \frac{\partial \phi}{\partial x_3} = 0 \quad \cdots \quad 3$$
$$1 \times \frac{\partial \phi}{\partial x_1} + 2 \times \frac{\partial \phi}{\partial x_2} + 3 \times \frac{\partial \phi}{\partial x_3}$$
$$\frac{\partial y}{\partial x_1} \frac{\partial \phi}{\partial x_1} + \frac{\partial y}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \frac{\partial y}{\partial x_3} \frac{\partial \phi}{\partial x_3} - \lambda_2 \left[\left(\frac{\partial \phi}{\partial x_1} \right)^2 + \left(\frac{\partial \phi}{\partial x_2} \right)^2 + \left(\frac{\partial \phi}{\partial x_3} \right)^2 \right] = 0$$

9.20 Moving tangent to a constraint in three dimensions

$$\frac{1}{2\lambda_{1}} = \frac{\Delta x_{1}}{\frac{\partial y}{\partial x_{1}} - \lambda_{2}} \frac{\partial \phi}{\partial x_{1}} = \frac{\Delta x_{2}}{\frac{\partial y}{\partial x_{2}} - \lambda_{2}} \frac{\partial \phi}{\partial x_{2}} = \frac{\Delta x_{3}}{\frac{\partial y}{\partial x_{3}} - \lambda_{2}} \frac{\partial \phi}{\partial x_{3}}$$

 Δx_i = step size of on variable in the move

9.21 Summary



b. Search along a constraint