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A.1 Introduction

A.1.1 Vector and Tensor Notation

(1) Concerned with both scalar and vector functions:

– Parametric description of curves in space.

– Results of algebra and calculus for scalars.

– Vector analysis.

– Coordinate systems.

(2) Tensor notation

– Range convention: Whenever a subscript appears only once in a term,
the subscript takes all possible values. For example in 3D space:

xi(i = 1, 2, 3)→ x1, x2, x3 (A.1)

– Summation convention: Whenever a subscript appears twice in the
same term the repeated index is summed over the index parameter
space. For example in 3D space:

ai bi = a1b1 + a2b2 + a3b3 (i = 1, 2, 3) (A.2)

– Non repeated subscripts remain fixed during the summation. For ex-
ample in 3D space, ai = xijnj denotes three equations, one for each
i = 1, 2, 3 and j is the dummy index.

– Note 1: To avoid confusion between fixed and repeated indices or
different repeated indices, etc, no index can be repeated more than
twice.

– Note 2: Number of free indices shows how many quantities are repre-
sented by a single term.

(3) Tensors.

– A scalar is called a zero-order tensor.
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– A vector is a first-order tensor.

– Dyads are second-order tensors: a 3× 3 matrix form. (e.g. stress ten-
sor)

– The alternating tensor εijk is a special third-order tensor.

A.1.2 Fundamental Function Analysis

A scalar field f is defined in a regionD of two- or three-dimensional space with
the property that the value of f varies from point to point in D. Some concepts
and analysis for scalar functions are listed below.

(1) If lim
x→c

f(x) = f(c), the function f(x) is said to be continuous at the point
x = c.

(2) The base of natural logarithm is denoted by e, where e = lim
n→±∞

(
1 +

1

n

)n
= 2.7182818285 · · · . One often writes ln(x) for loge x.

(3) By using the Euler formula eiθ = cos θ + i sin θ, the real sine and cosine
function can be combined into a single function.

(4) A definite integral of a function f(x) which exists on the interval a ≤ x ≤
b, can be defined by the limiting process in the sense of Riemann sum:
namely, ∫ b

a

f(x) dx = lim
N→∞

N∑
i=1

f

(
a+ i

b− a
N

)
b− a
N

(A.3)

(5) For function of one variable, the rule for change of variable in a definite
integral is ∫ x2

x1

f(x) dx =

∫ u2

u1

f(x(u))
dx

du
du (A.4)

where we assume f(x) and f(x(u)) are continuous in the range of inte-
gration and x = x(u) is continuous and its derivative is continuous for
u1 ≤ u ≤ u2.
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(6) For functions of two variables, the integral becomes∫
Sxy

f(x, y) dxdy =

∫
Suv

f(x(u, v), y(u, v)) |J | dudv, (A.5)

where Jacobian J ≡ ∂(x, y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

(7) For f(x, t) and
∂f

∂t
in a region Sxt, a(t) ≤ x ≤ b(t), t1 ≤ t ≤ t2,

d

dt

∫ b(t)

a(t)

f(x, t) dx = f [b(t), t] b′(t)− f [a(t), t] a′(t) +

∫ b(t)

a(t)

∂f

∂t
dx

(A.6)
This relationship is called Leibnitz’s rule. The corresponding expression
for the integral over a two or three dimensional region is called Reynolds
transport theorem, which will be derived later.

(8) Dirac delta functions
Dirac delta function is defined as the sense of generalized functions:∫ ∞

−∞
δ(t) dt = 1 (A.7)

Also, the derivative of the unit-step function:

dU(t)

dt
= δ(t) (A.8)

The definite integral of Dirac delta function:

∫ b

a

δ(t) dt =

1, if a < 0 < b

0, otherwise
(A.9)

Dirac delta function is combined with a regular function:∫ b

a

g(t) δ(t) dt = g(0)

∫ b

a

δ(t) dt (A.10)
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(9) Fourier transforms
For f(x) periodic with period 2L, then f(x) can be expressed in a Fourier
Series

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
(A.11)

where

an =
1

L

∫ 2L

0

f(x) cos
(nπx
L

)
dx, bn =

1

L

∫ 2L

0

f(x) sin
(nπx
L

)
dx

(A.12)
The Fourier transform of a function and its inverse transform:

F (ω) =

∫ ∞
−∞

f(t) e−iωt dt (A.13)

f(t) =
1

2π

∫ ∞
−∞

F (ω) eiωt dω (A.14)

(10) The Laplace transform:

F (s) =

∫ ∞
0

f(t) e−st dt (A.15)

f(t) =
1

2πi

∫ a+i∞

a−i∞
F (s) est ds (A.16)

A.2 Vector Calculus

A.2.1 Definition of Vector Quantity

(1) The simplest vector: line vectors.
A line vector is transformed from one coordinate system to another.

(2) Consider two Cartesian coordinate systems rotated with respect to one
another.
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a11, a21, a31: the direction cosines of the x′1 axis, with respect to the
x1, x2, x3 axes, respectively.

Figure A.1 Two Cartesian coordinate systems rotated with respect to one another. (From
Aris 1962, p. 9)

(3) The new coordinates:

x′1 = a11 x1 + a21 x2 + a31 x3

x′2 = a12 x1 + a22 x2 + a32 x3 (A.17)

x′3 = a13 x1 + a23 x2 + a33 x3

Also, transform from x′1, x
′
2, x
′
3 to x1, x2, x3:

x1 = a11 x
′
1 + a12 x

′
2 + a13 x

′
3

x2 = a21 x
′
1 + a22 x

′
2 + a23 x

′
3 (A.18)

x3 = a31 x
′
1 + a32 x

′
2 + a33 x

′
3
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A summation notation:

x′i =
3∑
j=1

ajixj i = 1, 2, 3 (A.19)

xi =
3∑
j=1

aijx
′
j i = 1, 2, 3 (A.20)

(4) A vector is defined as :

u′i =
3∑
j=1

ajiuj i = 1, 2, 3 (A.21)

Let us consider two simple examples.

(a) Consider velocity of a point P (x1, x2, x3). The components of this
quantity along the three axes are dx1/dt, dx2/dt, and dx3/dt. Calcu-
lating the velocity in the primed system, we find

dx′i
dt

=
d

dt

3∑
j=1

aji xj =
3∑
j=1

aji
dxj
dt
. (A.22)

This has exactly the form required by Eq. (A.21). Hence the velocity
of a point is a vector quantity.

(b) Consider the set of numbers ∂u/∂xi where u is a scalar function
u(x1, x2, x3). We see how ∂u/∂x′i is expressed in terms of ∂u/∂xi:

∂u

∂x′i
=

3∑
j=1

∂u

∂xj

∂xj
∂x′i

=
3∑
j=1

∂u

∂xj
aji from Eq. (A.20). (A.23)

Hence ∂u/∂xi is a vector. It is actually a gradient of the scalar func-
tion.
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A.2.2 Basic Unit Tensors

In general, in a 3-dimensional space a tensor of order (rank) m has 3m compo-
nents,

τij···k ei ej · · · ek for i, j, · · · k = 1, 2, 3 (A.24)

A.2.2.1 Kronecker delta tensor

(1) The most useful tensor of order 2 is the unit tensor, denoting by doubly-
underlined upper-cased bold face:

I = δij ei ej (A.25)

with Kronecker delta δij being defined by

δij = 1 if i = j; δij = 0 if i 6= j (A.26)

(2) The contraction (inner product) of 2 unit tensors gives

I · I = δij δjk = δik = I (A.27)

(3) The double contraction of 2 unit tensors (denoted by a colon) gives

I : I = δij δji = δii = d (A.28)

where d is the dimension of the space that we dealt with; e.g., d = 3 in
3-dimensions.

A.2.2.2 Permutation tensor

As another example, the important tensor of order 3 is the permutation (alter-
nating) tensor:

E = εijk ei ej ek (A.29)
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where εijk are the Cartesian components of permutation symbol:

εijk = 0 if any i, j, k equal

εijk = 1 if (ijk) = (123), (231), (312)

εijk = −1 if (ijk) = (132), (213), (321).

 (A.30)

A.2.2.3 Multiplication of basic tensors

(1) We can easily see that the following formulas for δij and εijk holds from
their definitions:

δii = 3, (A.31)

δij uklmi = uklmj, (A.32)

δij εijk = 0, (A.33)

(2) The permutation tensor is used for cross (vector) product of vectors. If we
need more than one cross products, the multiplication of two permutation
tensors is involved. Let us start with the rule of vector product: 1

εijk = ei · (ej × ek) =

∣∣∣∣∣∣∣
ei · e1 ei · e2 ei · e3

ej · e1 ej · e2 ej · e3

ek · e1 ek · e2 ek · e3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣
(A.34)

(3) From Eq. (A.34), the product of two permutation tensors is written as

εijkεmnl =

∣∣∣∣∣∣∣
 δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3


 δm1 δm2 δm3

δn1 δn2 δn3

δl1 δl2 δl3


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
δim δin δil

δjm δjn δjl

δkm δkn δkl

∣∣∣∣∣∣∣
(A.35)

(4) Contraction with respect to k, l (i.e., k = l) yields

εijk εmnk = δim δjn − δin δjm (A.36)
1We will follow the procedure in the text, Wu, J.-Z, Ma, H.-Y. and Zhou, M.-D. (2006), Vorticity and Vortex

Dynamics, Springer, pp. 697–698.
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(5) Making the contraction with respect to j, n and continuing again give

εijk εmjk = δim δjj − δij δjm = 3 δim − δim = 2δim (A.37)

εijk εijk = 2 δii = 6 (A.38)

(6) The corresponding formulas in a 2-dimensional space are given by

εij3 εmn3 =

∣∣∣∣∣ δim δin

δjm δjn

∣∣∣∣∣ = δim δjn − δin δjm (A.39)

εij3 εmj3 = δim δjj − δij δjm = 2 δim − δim = δim (A.40)

εij3 εij3 = 2 (A.41)

A.2.2.4 Example of permutation tensor

(1) A special example of the permutation tensor can be observed in definition
of vorticity: 2

ω = ωi = ∇× q = εijk
∂qk
∂xj

= εijk
1

2

(
∂qk
∂xj
− ∂qj
∂xk

)
=

1

2
εijk Ωjk (A.42)

where Ωjk ≡
(
∂qk
∂xj
− ∂qj
∂xk

)
is a spin(rotational) tensor.

(2) Also it is easily seen that, by multiplying the above equation by εlmi and
using Eq. (A.34),

εlmi ωi = εlmi
1

2
εijk Ωjk =

1

2
(δlj δmk − δlk δjm) Ωjk

=
1

2
(Ωlm − Ωml) = Ωlm (A.43)

from which we have
Ωij = εijk ωk. (A.44)

2See Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 25 and
Wu, J.-Z, Ma, H.-Y. and Zhou, M.-D. (2006), Vorticity and Vortex Dynamics, Springer, p. 698.
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(3) The inner product of a vector a and an antisymmetric tensor Ω becomes

a · Ω = ai εijk ωk = ω × a, Ω · a = εijk ωk aj = a× ω. (A.45)

(4) If the relative velocity v of any two points is Ω · x where x is the relative
position vector of the two points, then the motion is due to a rigid body
rotation. Here Ω relates to the angular velocity.

(5) Similarly, we also have

∇ · Ω =
∂

∂xi
(εijk ωk) = −∇× ω. (A.46)

Such relations between vorticity ω and the spin tensor Ω are useful to de-
duce the physical interpretation in vortex dynamics.

A.2.3 Multiplication of Vectors

(1) Scalar product:

a · b = ab cos(a · b) (A.47)

or
a · b = a1b1 + a2b2 + a3b3 (A.48)

or
a · b = δijaibj = aibi, (summation convention) (A.49)

(2) Vector product:

c = a× b; w = ab sin(a, b). (A.50)

In a form of tensor-notation, a× b = εijkajbk.

(3) Scalar triple product:

a · (b× c) = aiεijkbjck (A.51)
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a · b× c = a× b · c = b · c× a etc. (A.52)

(4) Vector triple product:

a× (b× c) = (a · c) b− (a · b) c (A.53)

i.e.,

a× (b× c) = εmli al (εijk bj ck)

= (δmj δlk − δmk δlj) al bj ck
= ak bj ck − aj bj ck. (A.54)

The basic formula :

a× (b× c) + b× (c× a) + c× (a× b) = 0 (A.55)

A.2.4 Vector Derivatives

A.2.4.1 Gradient: ∇u

(1) Consider a scalar function u = u(x, y, z) that is differentiable and has
continuous derivatives. Let us define the gradient of u at x, y, z as the
limiting value of a certain surface integral over a surface surrounding the
point x, y, z, as follows

∇u ≡ lim
V→0

1

V

∮
S

u n dS (A.56)

where S is the area enclosing the volume V , dS is the element of area,
and n is the unit vector normal to the surface at each point of the surface
integration. 3

(2) Now we can take V very small, in the form of a cube, say, with sides
4x,4y,4z. Then, neglecting second-order quantities, V = 4x4y4z,

3
∫
S
· · · dS and

∮
S
· · · dS are the symbolism to indicate that the integration is over, respectively, an open surface

and a closed surface.
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and∫
S

u n dS ≈ −u i4y4z − u j4x4z − u k4x4y

+

(
u+

∂u

∂x
4x
)
i4y4z +

(
u+

∂u

∂y
4y
)
j4x4z

+

(
u+

∂u

∂z
4z
)
k4x4y

≈
{
∂u

∂x
i+

∂u

∂y
j +

∂u

∂z
k

}
V (A.57)

(3) Hence, in limit,

∇u = i
∂u

∂x
+ j

∂u

∂y
+ k

∂u

∂z
(A.58)

We recognize this as the vector. Another symbol often used for ∇u is

grad u. In a form of tensor notation, it is
∂u

∂xi
.

A.2.4.2 Divergence: ∇ · v

(1) Consider now a vector function, v = v(x, y, z) ≡ v1 i + v2 j + v3 k,
where v1, v2, and v3 are all scalar functions of x, y, z, having continuous
derivatives. We define

∇ · v = lim
V→0

1

V

∮
S

n · v dS (A.59)

(2) Now, by calculating for a small cubical volume, you can easily confirm the
following equality:

∇ · v =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
(A.60)

(3) Another symbol used for ∇ · v is div v. In a form of tensor notation, it is
∂vi
∂xi

.
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A.2.4.3 Curl: ∇× v

(1) We define the curl of a vector

∇× v ≡ lim
V→0

1

V

∮
S

n× v dS (A.61)

and find, by considering a small cube, that

∇× v =

(
∂v3

∂y
− ∂v2

∂z

)
i+

(
∂v1

∂z
− ∂v3

∂x

)
j +

(
∂v2

∂x
− ∂v1

∂y

)
k (A.62)

(2) Symbolically we write

∇× v =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.63)

(3) Another symbol used for curl v is ∇ × v. In a form of tensor notation, it

is εijk
∂vk
∂xj

.

A.2.4.4 Laplacian: ∇2u

(1) The Laplacian of a scalar function u(x, y, z) is defined as

∇2u ≡ ∇ · (∇u) =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
(A.64)

(2) By analogy, the Laplacian of a vector function is the vector whose rectan-
gular Cartesian components are the Laplacian of the vector’s correspond-
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ing components 4

∇2v = i ∇2v1 + j ∇2v2 + k ∇2v3 (A.65)

A.2.4.5 Differential operator: ∇

(1) From the original definition of grad u, we can deduce that the differential
du is given by the formula, in rectangular Cartesian coordinates,

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz = d` · ∇u (A.66)

where d` is any directed line (vector) element. This means that du is the
increment of u corresponding to a position increment d`.

(2) Similarly, for a vector function v(x, y, z),

dv ≡ i dv1 + j dv2 + k dv3

=

(
dx

∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z

) (
i v1 + j v2 + k v3

)
= d` · ∇v (A.67)

(3) In all of the formulas above, we consider the symbol ∇ as representing a

vector operator i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

If you treat this operator as a vector, with the appropriate vector-multiplication
signs, you get the right result. Equations (A.66) and (A.67) are indepen-
dent of the choice of coordinate system.

A.2.4.6 Directed derivative

(1) Equations (A.66) and (A.67) lead immediately to the formulas for the di-
rected derivative in the direction of a given vector s ≡ s1 i+ s2 j + s3 k in

4 We must do more work to find its expression in a non-Cartesian system.
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rectangular Cartesian coordinate:

∂u

∂s
= es · ∇u (A.68)

∂v

∂s
= es · ∇v (A.69)

(2) Again we have defined a new vector operator:

es · ∇ =
s1

s

∂

∂x
+
s2

s

∂

∂y
+
s3

s

∂

∂z
(A.70)

where s is the magnitude of s.

A.2.5 Expansion Formulas

(1) The following formulas are of general utility. Let φ denote any differen-
tiable scalar function of x, y, z, and u, v and w any such vector functions.

∇ · (φu) = u · ∇φ+ φ∇ · u (A.71)

∇× (φu) = (∇φ)× u+ φ∇× u (A.72)

∇ · (v × w) = w · ∇ × v − v · ∇ × w (A.73)

∇× (v × w) = w · ∇v + v∇ · w − w∇ · v − v · ∇w (A.74)

∇(v · w) = v · ∇w + w · ∇v + v × (∇× w) + w × (∇× v) (A.75)

∇ · (∇× v) = 0 (A.76)

∇× (∇φ) = 0 (A.77)

∇× (∇× v) = ∇(∇ · v)−∇2v (A.78)

(2) Operation on the position vector x = x1 i+ x2 j + x3 k whose magnitude
is denoted by r = |x| =

√
x · x, with a constant vector a, is illustrated as

follows:
∇r = x/r (A.79)

∇ · x = 3 (A.80)
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∇× x = 0 (A.81)

∇rn = n rn−2 x (A.82)

∇ · (rn x) = (n+ 3) rn (A.83)

∇× (rn x) = 0 (A.84)

∇2(rn) = n(n+ 1) rn−2 (A.85)

∇ · (a× x) = 0 (A.86)

∇(a · x) = a (A.87)

∇× (a× x) = 2 a (A.88)

∇ · (a×∇r) = 0 (A.89)

∇ · (r a) = (x · a)/r (A.90)

∇× (r a) = (x× a)/r (A.91)

A.3 Integral Theorems

A.3.1 Divergence Theorem

(1) Let u and v denote arbitrary scalar and vector functions of x, y, z as before.
These are assumed to be defined, continuous, and single-valued in a certain
region of space, and, moreover, that their first derivatives with respect to
x, y, and z satisfy the same requirements.

(2) Now consider the surface integral
∮
S

u n dS, carried over any closed sur-

face S within the region, enclosing a volume V , n being the unit normal
vector directed outward.

(3) It is clear that, if the volume V is subdivided into small volume Vi, this

integral equals the sum of all the integrals
∮
Si

u n dS taken over the small

surfaces Si.
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(4) Since integration over neighboring elements will cancel one another, and
only the integration over the outside will remain:∮

S

u n dS =
∑∮

Si

u n dS (A.92)

(5) But, in the limit, the surface integral over the small surface become
∇u dV , according to our definition of the gradient, Eq. (A.56), and the
summation becomes a volume integration:∮

S

u n dS =

∫
V

∇u dV (A.93)

(6) In particular, if u = const., Eq. (A.93) becomes∮
S

n dS = 0. (A.94)

It means that the integral of vectorial surface element over a closed surface
must vanish.

(7) If u is taken as a negative of static pressure acting on a body submerged
fully into a fluid (i.e., u = −p = ρgz, where z is vertically upward coor-
dinate), the force acting on the body is

F =

∮
S

(−p) n dS =

∫
V

∇(ρgz) dV =

∫
V

(ρ g k) dV = ρ g V k (A.95)

This relation is well known as the Archimedes principle for buoyancy force
of a submerged body.

(8) By entirely analogous reasoning, using the definitions of the divergence
and curl, you will verify that∮

S

n · v dS =

∫
V

∇ · v dV (A.96)

and ∮
S

n× v dS =

∫
V

∇× v dV (A.97)
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Equation (A.96) is known as the divergence theorem, or Gauss theorem.

(9) If we take v as fluid velocity, Eqs. (A.96) and (A.97) become, respectively,∮
S

n · v dS =

∫
V

θ dV (A.98)

and ∮
S

n× v dS =

∫
V

ω dV (A.99)

These equations show that the velocity components over boundary are di-
rectly related with the field distribution of expansion (or compressing pro-
cess) and vorticity in fluid region.

(10) The three types of the theorem above can be unified by a general form:∮
S

(n ∗ f) dS =

∫
V

(∇ ∗ f) dV (A.100)

where ∗ denotes one of differential operator, scalar product and vector
product, and f is a scalar or vector function depending on the choice.

(11) As an example, take f = ∇u to yield∫
V

∇2u dV =

∫
V

∇ · (∇u) dV =

∮
S

n · ∇u dS =

∮
S

∂u

∂n
dS (A.101)

where ∂u/∂n is the directed derivative in the outward direction as defined
in Eq (A.68).

A.3.2 Stokes’ Theorem

(1) Let us apply Eq. (A.56) for definition of ∇u to a very small volume ele-
ment of a thin disk with uniform height4h and base area4S. Its volume
then becomes4S 4h.

(2) Consider the product of ∇u with the outward unit normal vector to the
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upper surface nu. Then it is not difficult to prove that,

nu ×∇u ≈ nu ×
1

4V

∮
S

u n dS ≈ 1

4S

∮
C

u d` (A.102)

where C is the small contour that forms the boundary of 4S. The line
integral in Eq. (A.102) is taken in the direction that would advance a right-
hand screw in the n direction.

(3) Now consider a volume element with the uniform thin height and an arbi-
trary base surface S. If this volume is subdivided into very small volume
Vi with the same height, the above product in an integral sense can be
expressed as the sum of all the integrals taken over the small line integrals:∫

S

n×∇u dS = lim
Vi→0

∑∮
Ci

u d` (A.103)

(4) Since the line integration over neighboring contour elements will cancel
one another, and only the integration over the outside contour will remain:∫

S

n×∇u dS =

∮
C

u d` (A.104)

(5) With this knowledge, two more important transformation theorems follow:∫
S

n · ∇ × v dS =

∮
C

v · d` (A.105)∫
S

(n×∇)× v dS =

∮
C

d`× v (A.106)

The first of these is known as Stokes’ theorem.

(6) If u is constant, Eq. (A.104) becomes

0 =

∮
C

u d` (A.107)



276 VECTOR ANALYSIS

and if v = x, Eq. (A.106) becomes, since (n×∇)× x = −2n,∫
S

n dS =
1

2

∮
C

x× d`. (A.108)

(7) If we consider v as fluid velocity, we have the well-known relation between
vorticity flux through an open surface and circulation along the boundary
of the surface: ∫

S

n · ω dS =

∮
C

v · d` (A.109)

(8) By analogous reasoning, we have used the relationship,

n · ∇ × v ≈ 1

S

∮
C

v · d` (A.110)

(9) The conditions on u and v are analogous to those imposed above; that
is, the functions and their first derivations must be finite, continuous, and
single-valued in the region. The surface S enclosed by the contour C need
not be flat; n is normal to S at every point, and the direction of C is chosen
as described above. 5

(10) The unified form of Stokes’ theorem may be written by,∫
S

(n×∇) ∗ f dS =

∮
C

d` ∗ f (A.111)

A.3.3 Volume Integrals of a Vector

(1) Using integration by parts, we can express the integration of f(x) by the
moment of f ′(x):∫ b

a

f(x) dx = b f(b)− a f(a)−
∫ b

a

x f ′(x) dx (A.112)

(2) In a similar fashion to this one-dimensional formula, a surface or volume
integral can be cast to the integrals of the first moment of the derivative of

5For rigorous proof, see Arfken, G. (1970), Mathematical Methods for Physicists, 2nd ed., Academic Press,
pp. 51–53.
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f plus boundary integrals.

(3) With d = 2, 3 being the space dimension and x the position vector, we find
the vector expansion formulas:

∇ · (f x) = f + x (∇ · f) (A.113)

∇ · (x f) = d f + x · ∇f (A.114)

∇(x · f) = f + x · ∇f + x× (∇× f) (A.115)

x× (n× f) = n (f · x)− (n · x) f, (A.116)

(4) From the volume integral for Eq. (A.113), we apply the divergence theo-
rem to find an identity:∫

V

f dV =

∮
S

(n · f)x dS −
∫
V

x (∇ · f) dV (A.117)

(5) Another form of Eq. (A.117) can be provided as follows:
First, subtracting Eq. (A.115) from Eq. (A.114) yields

∇ · (x f)−∇(x · f) = (d− 1) f − x× (∇× f) (A.118)

Now we take volume integrals of this equation and apply the divergence
theorem to find another identity, using Eq. (A.116):∫
V

f dV =
1

d− 1

[∫
V

x× (∇× f) dV +

∫
V

{
∇ · (x f)−∇(f · x)

}
dV

]
=

1

d− 1

[∫
V

x× (∇× f) dV +

∮
S

{
(n · x) f − n (f · x)

}
dS

]
=

1

d− 1

[∫
V

x× (∇× f) dV −
∮
S

x× (n× f) dS

]
(A.119)

(6) As a general comment, we note that the left-hand side of Eq. (A.117) and
Eq. (A.119) is independent of the choice of the origin of x, so must be the
right-hand side. Namely, if we remove x from the right-hand side of these
equations, the remaining integrals must vanish. Then Eq. (A.117) can be
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written as, with adding a constant vector x0,∫
V

f dV = −
∫
V

(x− x0) (∇ · f) dV +

∮
S

(x− x0) (n · f) dS (A.120)

A.4 Curvilinear Orthogonal Coordinates

We will have need for the expressions of several vector differential operators in
terms of curvilinear orthogonal coordinates. 6 Suppose x1, x2, x3 are mutually
orthogonal curvilinear coordinates.

A.4.1 Line element

(1) When the line-element vector in the orthogonal system is expressed in
terms of a scalar multiple, the scalar multiple is usually written hi and is
called a scale factor:

ds = (h1 dx1, h2 dx2, h3 dx3) (A.121)

where

h1 = h1(x1, x2, x3) =

∣∣∣∣ ∂s∂x1

∣∣∣∣ =

{(
∂s1

∂x1

)2

+

(
∂s2

∂x1

)2

+

(
∂s3

∂x1

)2
}1/2

, etc.

(A.122)

(2) The base vectors,
∂s

∂xi
, is then expressed in terms of the scale factor and a

unit vector, e.g.

∂s

∂x1
= h1(x1, x2, x3) e1(x1, x2, x3) (A.123)

(3) For example, if we take spherical coordinates x1 = r, x2 = θ, and x3 = φ

where φ is the azimuthal angle about the axis θ = 0, the line element is
6For example, expressions for the related common differentials in spherical, cylindrical and polar coordinate

systems are found in Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, pp. 598–603.
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ds = (dr, r dθ, r sin θ dφ); hence the scale factors h1 = 1, h2 = r, h3 =

r sin θ.

(4) If we take cylindrical coordinates x1 = ρ, x2 = φ, and x3 = z where
φ is the azimuthal angle about the axis ρ = 0, the line element is ds =

(dρ, ρ dφ, dz); hence the scale factors h1 = 1, h2 = ρ, h3 = 1.

Figure A.2 Cylindrical and spherical coordinate systems. (From Brockett 1988, p. 1-30a)

(5) The scalar differential arc length, denoted by ds is determined from

ds2 = ds · ds =

(
∂s

∂xi
dxi

)
·
(
∂s

∂xj
dxj

)
= hi hj dxi dxj ei · ej (A.124)

When the unit base vectors are orthogonal, this expression reduces to the
simple form

ds2 = h2
1 dx

2
1 + h2

2 dx
2
2 + h2

3 dx
2
3 (A.125)

(6) By the triple scalar product, the volume element can be obtained from the
elemental arc length vectors:

dV = ±
(
∂s

∂x1
dx1

)
·
(
∂s

∂x2
× ∂s

∂x3
dx2 dx3

)
(A.126)

where the ± sign is necessary to provide a positive element of volume.
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For an orthogonal coordinate system, with
∂s

∂x1
= h1 e1, etc, the volume

element is
dV = h1 h2 h3 dx1 dx2 dx3 (A.127)

since e1 · (e2 × e3) = ±1. Multiplication of the scale factors corresponds
to the Jacobian J = h1 h2 h3.

A.4.2 Gradient (∇u)

(1) We have the formula du = ds · ∇u, which is completely general. Also in
any coordinate system, we have

du =
∂u

∂x1
dx1 +

∂u

∂x2
dx2 +

∂u

∂x3
dx3 (A.128)

(2) Equating these two relations gives

∂u

∂x1
dx1+

∂u

∂x2
dx2+

∂u

∂x3
dx3 = h1 dx1 (∇u)1+h2 dx2 (∇u)2+h3 dx3 (∇u)3

(A.129)

(3) Now dx1, dx2, dx3 are completely arbitrary; hence this equation can be
true only if their coefficients are equal. Thus

∇u =

(
1

h1

∂u

∂x1
,

1

h2

∂u

∂x2
,

1

h3

∂u

∂x3

)
(A.130)
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A.4.3 Divergence (∇ · v)

(1) For this operator we return to the original definition; thus, denoting by
v1, v2, v3 the components of v in the 1, 2, 3 directions at any point,

∇ · v ≈ (h1 h2 h34x14x24x3)
−1{

− v1 h2 h34x24x3 − v2 h3 h14x34x1 − v3h1h24x14x2

+

[
v1 h2 h3 +

∂

∂x1
(v1 h2 h3)4x1

]
4x24x3

+

[
v2 h3 h1 +

∂

∂x2
(v2 h3 h1)4x2

]
4x34x1

+

[
v3 h1 h2 +

∂

∂x3
(v3 h1 h2)4x3

]
4x14x2

}
=

1

h1 h2 h3

{
∂

∂x1
(h2 h3 v1) +

∂

∂x2
(h3 h1 v2) +

∂

∂x3
(h1 h2 v3)

}
(A.131)

A.4.4 Curl (∇× v)

(1) Apply Stokes’ theorem to one face of the element of a cube, say y = const
face: ∫

S

n · ∇ × v dS =

∮
C

v · d`

= v1 h14x1 − v3 h34x3

+

[
v3 h3 +

∂

∂x1
(v3 h3)4x1

]
4x3 −

[
v1 h1 +

∂

∂x3
(v1 h1)4x3

]
4x1

=

[
∂

∂x1
(h3 v3)−

∂

∂x3
(h1 v1)

]
4x14x3 (A.132)

But also ∫
S

n · ∇ × v dS ≈ −h1 h34x14x3 (∇× v)2 (A.133)
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(2) Thus, by cyclic substitution,

(∇× v)2 =
1

h3 h1

[
∂

∂x3
(h1 v1)−

∂

∂x1
(h3 v3)

]
(∇× v)3 =

1

h1 h2

[
∂

∂x1
(h2 v2)−

∂

∂x2
(h1 v1)

]
(A.134)

(∇× v)1 =
1

h2 h3

[
∂

∂x2
(h3 v3)−

∂

∂x3
(h2 v2)

]
or, symbolically

∇× v =
1

h1 h2 h3

∣∣∣∣∣∣∣∣∣
h1 i1 h2 i2 h3 i3
∂

∂x1

∂

∂x2

∂

∂x3

h1 v1 h2 v2 h3 v3

∣∣∣∣∣∣∣∣∣ (A.135)

(3) For example, if we take spherical coordinates x1 = r, x2 = θ, and x3 = α

where α is the azimuthal angle about the axis θ = 0,

∇× v =
er

r sin θ

{
∂(vα sin θ)

∂θ
− ∂vθ
∂α

}
+
eθ
r

{
1

sin θ

∂vr
∂α
− ∂(r vα)

∂r

}
+
eα
r

{
∂(r vθ)

∂r
− ∂(r vr)

∂θ

}
(A.136)

A.4.5 Laplacian (∇2u)

(1) For∇2u, we simply employ Eqs. (A.130) and (A.131) above:

∇2u = ∇ · (∇u) =

1

h1 h2 h3

{
∂

∂x1

(
h2 h3

h1

∂u

∂x1

)
+

∂

∂x2

(
h3 h1

h2

∂u

∂x2

)
+

∂

∂x3

(
h1 h2

h3

∂u

∂x3

)}
(A.137)

(2) The most convenient way to write out∇2v is by use of expansion formula
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Eq. (A.78):
∇2v = ∇(∇ · v)−∇× (∇× v) (A.138)

which can be expanded by use of formulas, Eqs. (A.130), (A.131), and
(A.135).

A.4.6 Convection term (u · ∇v)

(1) This useful vector appears in the Navier-Stokes equation when we write
the time rate of flow momentum in Eulerian description sense. Performing
very complicated procedure but straightforward manipulation, we arrive at
the following result:

(u · ∇v)1 =
1

h1

[
u1
∂v1

∂x1
+ u2

∂v2

∂x1
+ u3

∂v3

∂x1

+
1

h2
(u1v2 − u2v1)

∂h1

∂x2
+

1

h3
(u1v3 − u3v1)

∂h1

∂x3

]
− u2

h1 h2

[
∂(h2 v2)

∂x1
− ∂(h1 v1)

∂x2

]
+

u3

h3 h1

[
∂(h1 v1)

∂x3
− ∂(h3 v3)

∂x1

]
(A.139)

(u · ∇v)2 =
1

h2

[
u1
∂v1

∂x2
+ u2

∂v2

∂x2
+ u3

∂v3

∂x2

+
1

h3
(u2 v3 − u3 v2)

∂h2

∂x3
+

1

h1
(u2 v1 − u1 v2)

∂h2

∂x1

]
− u3

h2 h3

[
∂(h3 v3)

∂x2
− ∂(h2 v2)

∂x3

]
+

u1

h1 h2

[
∂(h2 v2)

∂x1
− ∂(h1 v1)

∂x2

]
(A.140)
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(u · ∇v)3 =
1

h3

[
u1
∂v1

∂x3
+ u2

∂v2

∂x3
+ u3

∂v3

∂x3

+
1

h1
(u3 v1 − u1 v3)

∂h3

∂x1
+

1

h2
(u3 v2 − u2 v3)

∂h3

∂x2

]
− u1

h3 h1

[
∂(h1 v1)

∂x3
− ∂(h3 v3)

∂x1

]
+

u2

h2 h3

[
∂(h3 v3)

∂x2
− ∂(h2 v2)

∂x3

]
(A.141)

A.5 Tensors of Second Order

(1) For example, let us consider a stress tensor that is a key quantity in con-
tinuum mechanics. 7 A stress is a force per unit area, in which force and
an element of area are vectors. The area element have to specify both its
magnitude and the direction of its normal.

(2) If F denotes the force and S is the area element, the stress tensor T might
be thought of as F/S. This quotient of two vectors cannot be defined, but
rather we can define F as S · T . The stress tensor at a point T becomes a
newly physical quantity associated with two directions.

(3) In fact, it needs 9 numbers to specify the stress tensor in a reference system
corresponding to the 9 possible combinations of 2 base vectors.

(4) A second-order tensor is a set of nine numbers τij, having the property
that when transferred from the x1, x2, x3 system to the x′1, x

′
2, x
′
3 system

the corresponding quantities are given by

τ ′ij =
3∑

k=1

3∑
`=1

aki a`j τk`, for i, j = 1, 2, 3 (A.142)

A.5.1 Dyadic Products

(1) Much of our work can be simplified if we extend our definitions of vector
multiplication to include the dyadic product u v.

7See Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 5.
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(2) For our purpose, this need only be defined by the relations

(u v) · w ≡ u (v · w)

w · (u v) ≡ (w · u) v
(A.143)

(3) Actually the dyadic product u v is a special form of second-order tensor;
it can easily be seen to satisfy the definition of such a tensor. This defini-
tion may be stated as follows, with reference to the xi and x′i coordinate
systems.

(4) In the case of u v, of course, the nine numbers involved are the products
uivj (i, j = 1, 2, 3).

(5) Let us consider some examples:

(a) For∇(u · v), using dyadic notation,∇(u · v) = (∇u) · v + (∇v) · u.

(b) Laplacian∇2v = ∇ · (∇v).

(c) When we define (u v) × w ≡ u(v × w) and w × (u v) ≡ (w × u)v,
these are obviously dyadics.

(d) If φ is any dyadic product, φ · (a× b) = (φ× a) · b.

(e) Let us look at the more important example. Let ui be a vector, and
consider the set of nine numbers ∂ui/∂xj. This is easily shown to be
a second-order tensor. It might be represented by the symbol grad u

or ∇u.

A.5.2 Gradient of a Vector

(1) Now, consider the gradient of a vector, ∇u, which is involved into the
convection and the diffusion terms of the Navier-Stokes equations.

(2) The velocity change at a point du is

du = (dx · ∇)u (A.144)
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(3) The gradient of a vector is defined by, in a similar fashion to the gradient
of a scalar,

∇u = lim
V→0

1

V

∮
S

n u dS =
∂uj
∂xi

(A.145)

(4) In a rectangular Cartesian coordinate system, the gradient of a vector u =

u1 i+ u2 j + u3 k is

∇u =
∂u1

∂x1
i i+

∂u2

∂x1
i j +

∂u3

∂x1
i k + · · · similar 6 terms (A.146)

(5) In general orthogonal curvilinear coordinates, the gradient of a vector u =

u1 e1 + u2 e2 + u3 e3, is 8

∇u =
1

h1

(
∂u1

∂x1
+
u2

h2

∂h1

∂x2
+
u3

h3

∂h1

∂x3

)
e1 e1 +

1

h1

(
∂u2

∂x1
− u1

h2

∂h1

∂x2

)
e1 e2

+
1

h1

(
∂u3

∂x1
− u1

h3

∂h1

∂x3

)
e1 e3 + · · · (similar 6 terms more) (A.147)

(6) If the vector v is a velocity vector in the field of fluid mechanics, this is
often resolved into a symmetric and antisymmetric form:

∇v =
1

2

[
(∇v +∇vT ) + (∇v −∇vT )

]
=

1

2
def(v) +

1

2
rot(v) (A.148)

where, if we consider a second-order tensor to be a 3×3 matrix, the super-
script T stand for transpose of the matrix which is the operation described
by interchanging the rows and columns of the matrix.

(7) The first term is called the strain rate tensor, having 6 independent com-
ponents. It represents (i) normal strain rate and (ii) shear strain rate which
cause stress in fluid.
The second term is called the spin tensor or vorticity tensor Ω, having
only off-diagonal components. It represents rigid body rotation of a fluid

8For details, see Milne-Thomson, L. M. (1968), Theoretical Hydrodynamics, 5th edition, Macmillan, Lon-
don, pp. 62–66, and Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, pp. 598–603.
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element.

A.6 Reynolds Transport Theorem

A.6.1 Mathematical Derivation of Transport Theorem

(1) We will have need for the rate of change of an integral taken over a volume
moving through a field

d

dt

∫
V (t)

F (x, t) dV (A.149)

where F (x, t) may be a scalar, vector or tensor variable.

(2) We assume the path of points in V (t) are known:

x = x(ξ, t) (A.150)

where ξ is the initial point of x.

(3) Hence we can invert the integral to the ξ variable:∫
V (t)

F (x, t) dV =

∫
V (0)

F ∗(ξ, t) J dξ1 dξ2 dξ3 (A.151)

where Jacobian J is written as

J =
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
= εijk

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk
(A.152)

F ∗(ξ, t) = F
{
x(ξ, t), t

}
(A.153)

(4) Hence

d

dt

∫
V (0)

F ∗(ξ, t) J dξ1 dξ2 dξ3 =

∫
V (0)

(
∂F ∗

∂t
J + F ∗

∂J

∂t

)
dξ1 dξ2 dξ3

(A.154)
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(5) Now

∂J

∂t
= εijk

∂

∂t

(
∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk

)
(A.155)

∂

∂t

∂x1

∂ξi
=

∂

∂ξi

∂x1

∂t
=
∂v1

∂ξi
(A.156)

(6) If v1 = v1(x1, x2, x3)
∂v1

∂ξi
=
∂v1

∂xj

∂xj
∂ξi

(A.157)

Since εijk
∂v1

∂x2

∂x2

∂ξi

∂x2

∂ξj

∂x3

∂ξk
and similar terms are zero, the non-zero terms

εijk

(
∂v1

∂x1

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk
+
∂v2

∂x2

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk
+
∂v3

∂x3

∂x1

∂ξi

∂x2

∂ξj

∂x3

∂ξk

)
(A.158)

remain. So
∂J

∂t
= (∇ · v) J (A.159)

where v is the velocity of the point x.

(7) Hence ∫
V (0)

(
∂F ∗

∂t
+ F ∗∇ · v

)
J dξ1 dξ2 dξ3

=

∫
V (t)

[(∂F ∗
∂t

)
ξ=const

+ F ∗∇ · v
]
dV (A.160)

The Jacobian can be interpreted as the ratio of the volume occupied by
a small piece of the fluid at time t to the volume occupied by this piece
when t = 0. The divegence of the velocity can be interpreted as the rate
of change of volume per unit volume of the moving piece of fluid. (See
Kaplan, W., Advanced Mathematics for Engineers, pp. 589–591, 1981.)
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(8) Now

∂F ∗

∂t

∣∣∣∣
(ξ=const)

=
F
{
x(ξ, t), t

}
∂t

∣∣∣∣∣
ξ

=
∂F

∂t
+
∂x

∂t
· ∇F =

∂F

∂t
+ v · ∇F

(A.161)

(9) Hence
d

dt

∫
V (t)

F dV =

∫
V

[∂F
∂t

+∇ · (v F )
]
dV (A.162)

or

d

dt

∫
V (t)

F dV =

∫
V (t)

∂F

∂t
dV +

∮
S(t)

n · (v F ) dS (A.163)

(10) We can apply this relation at any instant in time. The first integral implies
rate of change in volume and the second one rate of change associated with
motion of surface bounding volume. 9

(11) It is noted that this is similar to Leibnitz’s rule for an integral over one
dimensional region: (For proof, see Kaplan, W., Advanced Mathematics
for Engineers, pp. 520–521, 1981, or Kaplan, W., Advanced Calculus,
pp. 220–221, 1952)

d

dt

∫ b(t)

a(t)

f(x, t) dx =

∫ b(t)

a(t)

∂f

∂t
dx+ f [b(t), t] b′(t)− f [a(t), t] a′(t)

(A.164)

(12) We can apply extensively the transport theorem to the case that there is
a discontinuity interface Σ within a volume V . 10 The volume V is con-
sidered to be composed of two volumes V1 and V2 divided by an internal
surface Σ. V is a material volume but as Σ moves with arbitrary veloc-
ity uΣ and across it F suffers a discontinuity, F1 and F2 being its values
on either side. If nΣ is the normal to Σ in the direction form V1 to V2,

9See Newman, J. N. (1977), Marine Hydrodynamics, MIT Press, for depicted interpretation.
10Refer to Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 86.
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Eq. (A.163) may be generalized to

d

dt

∫
V (t)

F dV =

∫
V (t)

∂F

∂t
dV +

∮
S(t)

n · (v F ) dS +

∮
Σ(t)

nΣ · (uΣ F ) dS

(A.165)

A.6.2 Alternative Derivation of Transport Theorem

(1) General volume integral with boundary S(t), and its difference:

I(t) =

∫
V (t)

F (x, t) dV (A.166)

4I = I(t+4t)− I(t)

=

∫
V (t+4t)

F (x, t+4t) dV −
∫
V (t)

F (x, t) dV (A.167)

Figure A.3 Change of material volume in transport of physical quantity.

(2) First-order difference in Taylor series expansion:

F (x, t+4t) ' F (x, t) +4t ∂F (x, t)

∂t
(A.168)
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4I =

∫
V+4V

(
F +4t ∂F

∂t

)
dV −

∫
V

F dV

= 4t
∫
V

∂F

∂t
dV +

∫
4V

F dV +O
[
(4t)2

]
= 4t

∫
V

∂F

∂t
dV +

∮
S

(Un4t)F dV +O
[
(4t)2

]
(A.169)

(3) Transport theorem for a volume V (t)

dI

dt
=

∫
V

∂F

∂t
dV +

∮
S

UnF dV (A.170)

For material V (t), with same normal velocity as the fluid

d

dt

∫
V (t)

F (x, t) dV =

∫
V (t)

∂F

∂t
dV +

∮
S(t)

(ui ni)F (x, t) dV

=

∫
V (t)

[
∂F

∂t
+

∂

∂xi
(Fui)

]
dV (A.171)

A.7 Moving Coordinate Systems

A.7.1 Velocity due to Rigid Body Rotation

(1) Suppose a rigid body rotates about an axis through the origin of a coor-
dinate system with an angular velocity ω = ω n, where the direction of
the axis is given by a unit vector n and ω is the magnitude of the angular
velocity (see Figure A.4). 11

11The description herein is based on Aris, R. (1962), Vectors, Tensors and the Basic Equations of Fluid Mechan-
ics, Prentice Hall, p. 17.
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Figure A.4 Rotation of a rigid body. (From Aris 1962, p. 17)

(2) Let P be any point in the body at position x. Then n× x is a vector in the
direction of PR of which magnitude is |x| sin θ. However, |x| sin θ = PQ

is the perpendicular distance from P to the axis of rotation.

(3) In a small interval of time δt, the radius PQ moves through an angle ω δt
and hence P moves through a distance (PQ)ω δt.

(4) It follows that the small short distance PR is a vector δx perpendicular to
the plane of OP and the axis of rotation:

δx = (n× x)ω δt = (ω × x) δt (A.172)

(5) Dividing both sides by δt and taking the limit δt→ 0 provide the velocity
of the point P . Thus the linear velocity v of the point x due to a rotation ω
is

v = ω × x (A.173)

This result can be directly applied to moving coordinate systems. Details
are given in the following subsection.



A.7 Moving Coordinate Systems 293

A.7.2 Transformations of Moving Coordinates

(1) Let us introduce two coordinate systems: one system fixed to space and
the other moving relative to the space-fixed system. The moving (the un-
primed) coordinate system is supposed to be in motion of both translation
and rotation relative to the space-fixed (the unprimed) system.

Figure A.5 Moving coordinate system.

(2) Then the position vector x′ defined in the space-fixed system is related to
the position vector x defined in the moving system as follows:

x′ = x+R (A.174)

where R is the distance vector between two coordinate systems. (See fig-
ure A.5).

(3) Because of the relative motion, time-derivative will appear different to
observers in the two coordinate systems. For example, a vector that is
constant in either system would seem to vary with time to an observer
fixed in the other system. We can write the relationship between the
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derivative(d′/dt) observed in the space-fixed system and the derivative(d/dt)
observed in the moving system, for an arbitrary vector:

dA′

dt
=
dA

dt
+ Ω× A (A.175)

where Ω is the vector angular velocity of the moving system. The last term
in Eq. (A.175) implies a rotation of a rigid body. 12

(4) If this formula is applied to the special case of the position vector x given
in Eq. (A.174), we have the velocity:

q′ = q + Ω× x+ Ṙ (A.176)

where Ṙ represents the translation velocity of the moving frame. Therefore
this equation implies that the absolute velocity is the sum of the velocity(q)
measured by an observer in the moving system and the frame velocity of
the moving system (Ω× x+ Ṙ).

(5) In a similar manner, we can obtain the relation between acceleration vec-
tors by making use of the general rule Eq. (A.175):

a′ ≡ d′2x′

dt2
= a+ 2 Ω× q +

dΩ

dt
× x+ Ω× (Ω× x) + R̈ (A.177)

Here we have written dΩ/dt instead of d′Ω/dt because Ω is a vector that
is always the same in both systems.

(6) The first term of Eq. (A.177) (a) is the acceleration viewed in the moving
system. The second is the Coriolis acceleration, which depends on the
velocity in the moving system. The meaning of the third term is not clear.
The fourth term is the generalized centripetal acceleration, since

|Ω× (Ω× x)| = Ω2 x sin(Ω, x) (A.178)

(7) It is noted that, if we consider the self-rotation of earth with constant an-
gular speed, this term becomes a form of gradient of a scalar function and

12See 김 형 종 (1999), 미적분학, 총 2권, 서울대학교 출판부, pp. 317–318, and Aris, R. (1962), Vectors,
Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, p. 17.
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its effect was already included in gravitational acceleration for treatment
as a body force term of the momentum equations.

A.8 Mathematical Identities

A.8.1 Green’s Scalar Identity

(1) If u = ψ∇φ in Eq. (A.96), we obtain Green’s first identity:∫
V

[
ψ∇2φ+∇ψ ·∇φ

]
dV =

∮
S

ψ n ·∇φ dS (A.179)

And if u = φ∇ψ, use Eq. (A.96) and add the result to Green’s first identity,
we obtain Green’s second(scalar) identity:∫

V

[
ψ∇2φ− φ∇2ψ

]
dV =

∮
S

[
ψ
∂φ

∂n
− φ∂ψ

∂n

]
dS (A.180)

where n · ∇φ =
∂φ

∂n
.

(2) For these relations to be valid, φ and ψ must be continuous in the volume
and on the surface and the second derivatives must be continuous within
the volume while on the surface only the first derivatives need be continu-
ous. 13

(3) As an practical application, an arbitrary scalar field defined in a volume V
can be represented in terms of integrals over the enclosing surfaces plus an
integral of ∇2φ over the volume. We will show this fact as the following
derivation:

(4) From the expansion formulas, we see that
1

|x|
=

1

|r|
=

1

r
satisfies Laplace’s

equation: ∇2

(
1

r

)
= 0 if r 6= 0. Similarly ∇2

(
1

|y − x|

)
= 0 for y a

13More detailed explanation can be found in mathematical texts, e.g., Kreyszig, E. (1993), Advanced Engineer-
ing Mathematics, Seventh ed.,Wiley, pp. 553–554.
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constant vector. Since ∇2

(
1

|y − x|

)
does not exist at x = y, we exclude

this point from the volume by surrounding it with a sphere.

Figure A.6 Two-dimensional drawing of a simply connected region for deriving the scalar
identity.

(5) Hence if we take ψ =
1

|y − x|
, Green’s second identity becomes:

∮
S+
∑

(y,ε)

[
n ·∇φ
|y − x|

− φn ·∇ 1

|y − x|

]
dS =

∫
V−B(y,ε)

[
1

|y − x|
∇2φ

]
dV

(A.181)
where B(y, ε) is a sphere of radius ε centered at y and bounded by Σ.
In this application, the surface is in three-dimensional space and the inte-
gration variable is x.

(6) We illustrate the situation with a two-dimensional drawing as shown in
Figure A.6. Integrations over the small tubes joining Σ and S2, and S1 and
S2 vanish by continuity of φ.

(7) On the surface Σ surrounding the point y, as shown in Figure A.7 for an



A.8 Mathematical Identities 297

enlarged view, we have

y − x = −ε er (A.182)

n = −er (A.183)

dS = (ε dθ)(ε sin θ dα) (A.184)

φ(x) = φ(y) + ε
∂φ

∂r

∣∣∣∣
y

+ · · · (A.185)

∇ 1

|y − x|
=

(y − x)

|x− y|3
= −ε er

ε3
(A.186)

where er is the unit vector in the radial direction.

Figure A.7 Small sphere region containing a singular point.

(8) Hence the integration for the surface Σ and the small ball B becomes,
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respectively,∮
∑
[
n ·∇φ
|y − x|

− φn ·∇ 1

|y − x|

]
dS

= −φ(y)

∫ 2π

0

dα

∫ π

0

[
ε2
er · (ε er)

ε3
sin θ

]
dθ +O(ε)

= −4π φ(y) +O(ε) (A.187)

and ∫
B

[
∇2φ

1

|y − x|

]
dV = ∇2φ

∣∣
y

(
O(ε2)

)
(A.188)

(9) Hence, taking the limit as ε→ 0, we find

φ(y) =
1

4π

∮
S

[
n ·∇φ
|y − x|

− φ
n · (y − x)

|y − x|3

]
dS − 1

4π

∫
V

∇2φ

|y − x|
dV

(A.189)
If the point y had been outside V , the left-hand side would have been zero.

(10) For a two-dimensional field, ψ = ln
1√

x2
1 + x2

2

in Green’s second identity

and a similar expression is obtained.

A.8.2 Uniqueness of Scalar Identity

(1) Let us consider the uniqueness of this integral representation. If another
scalar field, say φ′(x) had the same value of ∇2φ in V and the same value
of φ or n · ∇φ on S, then we could construct a third solution which had
∇2φ′′ = 0 in V , and either φ′′ = 0 or n · ∇φ′′ on S.

(2) If φ = ψ = φ′′ in Green’s first identity, then∫
V

[
φ′′∇2φ′′ +∇φ′′ ·∇φ′′

]
dV =

∮
S

[φ′′ n ·∇φ′′] dS (A.190)



A.8 Mathematical Identities 299

and this reduces to only ∫
V

∇φ′′ ·∇φ′′ dV = 0 (A.191)

(3) Since (∇φ)2 is always greater than or equal to zero, the only solution is

∇φ′′ ·∇φ′′ = 0 (A.192)

This requires that φ′′ be at most a constant. If φ were specified on the
boundary, the constant is zero. If n · ∇φ is specified on the boundary, φ is
uniquely determined by the integral to within a constant.

(4) It is important to recognize that our expression for φ is in terms of φ and
n · ∇φ and the above consideration shows we need specify only one of
these on the boundary. Hence to find the unknown on the boundary, one
must first solve an integral equation.

(5) Also we have assumed that the field boundaries are fixed. If they were to
depend on the field, then special conditions must be specified to insure the
solution is unique. In addition to this uniqueness, we should also consider
the far-field behavior of φ as the distance r goes to infinity. 14

A.8.3 Type of Boundary Conditions

(1) Dirichlet boundary condition (1st type)

– The Dirichlet (or first type) boundary condition is perhaps the easi-
est one to understand. When we solve a differential equation, we put
specified values on the boundary of the domain where a solution needs
to take.

– For example, when Poisson equation such as ∇2ψ = −ω for stream
function ψ and vorticity ω is satisfied in a domain Ω, the Dirichlet
boundary condition takes the form ψ(x) = f(x) on the boundary ∂Ω,
where f(x) is a known function defined on the boundary.

14Detailed consideration may be found in Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cam-
bridge University Press, Cambridge.
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(2) Neumann boundary condition (2nd type)

– The Neumann (or second type) boundary condition specifies the val-
ues that the derivative of a solution is to take on the boundary of the
domain, when imposed on an ordinary or a partial differential equa-
tion.

– For example, for Laplace equation ∇2φ = 0 which we will present

later on, the Neumann boundary condition takes the form
∂φ(x)

∂n
= g(x).

Here, n denotes the (typically exterior) normal to the boundary and g
is a given scalar function.

(3) Robin boundary condition (3rd type)

– The Robin (or third type) boundary condition is a type of hybrid
boundary condition; it is a linear combination of Dirichlet and Neu-
mann boundary conditions, namely, it is a specification of a linear
combination of the values of a function and the values of its derivative
on the boundary of the domain.

– Robin boundary conditions are a weighted combination of Dirichlet
boundary conditions and Neumann boundary conditions, such as a φ+

b
∂φ

∂n
= h(x) where a and b are non-zero constants or functions more

generally.

– Robin boundary conditions are commonly used in solving Sturm-
Liouville problems. (See Stakgold, 1986 for details). These boundary
conditions should not be confused with mixed boundary conditions,
which are boundary conditions of different types specified on different
subsets of the boundary.

(4) Mixed boundary condition

– The mixed boundary condition for a partial differential equation im-
plies that different types of boundary condition are used on different
parts of the boundary.

– For example, in partial sheet cavity problems for a hydrofoil, if φ is
a solution to Laplace equation on a fluid domain and the boundary is
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divided into two portions of cavity and non-cavity, one would impose
a Dirichlet boundary condition on the cavity portion and a Neumann
boundary condition on the non-cavity portion.

(5) Cauchy boundary condition

– A Cauchy boundary condition imposed on an ordinary differential
equation or a partial differential equation specifies both the values a
solution of a differential equation is to take on the boundary of the
domain and the normal derivative at the boundary. It corresponds to
imposing both a Dirichlet and a Neumann boundary condition.

– Cauchy boundary conditions can be understood from the theory of
second order, ordinary differential equations, where to have a particu-
lar solution one has to specify the value of the function and the value
of the derivative at a given initial or boundary point.

– For a second order partial differential equation, we now need to know
the value of the function at the boundary, and its normal derivative
in order to solve the partial differential equation. When the variable
is specially time, Cauchy conditions can also be called initial value
conditions.

A.8.4 Vector Identity

(1) Another identity involving vectors can be constructed from divergence the-
orems for a vector and a dyadic. In the third divergence theorem given by
Eq. (A.97), let the vector be u× v, then∫

V

[∇× (u× v)] dV =

∮
S

[n× (u× v)] dS (A.193)

(2) According to the expansion formula on vector triple products, we know

n× (u× v) = (n× u)× v + (v× n)× u

= (n× u)× v − v (n · u) + n (u · v) (A.194)
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Hence∮
S

[n× (u× v)] dS =

∮
S

[(n× u)× v − (n · u) v + n (u · v)] dS

(A.195)

(3) These integrals can be rearranged by the divergence theorem:∮
S

[(n× u)× v] dS =

∫
V

[∇× (u× v) +∇ · (u v)−∇(u · v)] dV

(A.196)

(4) Now adding the results of the divergence theorem for a dyadic u v to both
sides: ∮

S

(n× u)× v + (n · u) v] dS

=

∫
V

[∇× (u× v) + 2 v (∇ · u) + 2u ·∇v −∇(u · v)] dV

(A.197)

(5) Using the expansion formulas

∇× (u× v) = v ·∇u+ u (∇ · v)− v (∇ · u)− u ·∇v
(A.198)

∇(u · v) = v ·∇u+ v× (∇× u) + u× (∇× v) + u ·∇v
(A.199)

and subtracting one from the other, we obtain

∇× (u× v)−∇(u · v) = u (∇ · v)− v (∇ · u)− 2u ·∇v
−v× (∇× u)− u× (∇× v) (A.200)
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(6) Hence ∮
S

[(n× u)× v + (n · u) v] dS

=

∫
V

[v (∇ · u) + u (∇ · v)− u× (∇× v)− v× (∇× u)] dV

(A.201)

This is called vector identity.

(7) An arbitrary vector field can be represented by this vector identity by
choosing

v = ∇ 1

|y − x|
=

(y − x)

|y − x|3
for y fixed (A.202)

For which, we have

∇× v = 0

∇ · v = 0

 for x 6= y (A.203)

(8) Hence for y not in V , Eq. (A.201) becomes, without any restriction,∮
S

[
(n× u)×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dS

=

∫
V

[
(y − x)

|y − x|3
(∇ · u)−

(y − x)

|y − x|3
× (∇× u)

]
dV (A.204)

(9) For the case when y is in V ,
(

1

|y − x|

)
becomes singular as y tends to

x. The point y can be excluded from V by surrounding it with a sphere
of radius ε centered at y, as shown in Figure A.6. This sphere plus any
other surfaces inside V can be connected to the exterior surface by small
tubes to make all the surfaces continuous and the region remains simply
connected, in the same manner as for the scalar identity.
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(10) The vector identity applies to the region V as defined with the exclusions:∮
S+T+

∑
(y,ε)

[
(n× u)×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dS

=

∫
V−B

[
(y − x)

|y − x|3
(∇ · u)−

(y − x)

|y − x|3
× (∇× u)

]
dV (A.205)

Integrations over the small tubes T1 and T2 vanish by continuity as they
become increasingly small.

(11) On the surface Σ surrounding the point y (see Figure A.7):

y − x = −ε er (A.206)

n = −er (A.207)

dS = (ε dθ) (ε sin θ dφ) (A.208)
(y − x)

|x− y|3
=
−ε er
ε3

(A.209)

where er is the unit vector in the radial direction. Furthermore,

u|∑ = u(y) + (x− y) ·∇u+ · · · = u(y) +O(ε) (A.210)

(n× u)× (y − x) = ε (−er × u)× (−er) = ε {u− er(u · er)}
(A.211)

(n · u) (y − x) = ε (er · u) er (A.212)

(12) Hence, ∮
∑
[
(n× u)×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dS

= u(y)

∫ 2π

0

dα

∫ π

0

ε3 sin θ dθ

ε3
+O(ε)

= 4π u(y) +O(ε) (A.213)
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And for ε→ 0,

4π u(y) = −
∮
S

[
(n× u)×

(y − x)

|y − x|3
+ (n · u)

(y − x)

|y − x|3

]
dSx

+ lim
ε→0

∫
V−B(y,ε)

[
(y − x)

|y − x|3
(∇ · u)−

(y − x)

|y − x|3
× (∇× u)

]
dVx

(A.214)

This is a representation of u in terms of both components on the boundary,
the normal component n · u, and the tangential component, n× u, plus the
divergence and the curl integrated over the field.

(13) If u is divided into two components after interchanging the variables x and
y, Eq. (A.214) is rewritten as

4π u = u1 + u2 (A.215)

u1(x) = +

∫
V

(x− y)

|x− y|3
(∇ · u) dVy −

∮
S

(n · u)
(x− y)

|x− y|3
dSy (A.216)

u2(x) = −
∫
V

(x− y)

|x− y|3
× (∇× u) dVy −

∮
S

(n× u)×
(x− y)

|x− y|3
dSy (A.217)

where the bar through the integral sign indicates the limit integration.

A.8.5 Integral Expression of Helmholtz Decomposition

(1) For a vector field u given in a domain V , we define a vector F by

F (x) = −
∫
V

G(x− y)u(y) dVy (A.218)

where G(r) is the fundamental solution (Green function) of Poisson equa-
tion

∇2G(r) = δ(r). (A.219)
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For example, G(r) = − 1

4π|r|
in 3-D dimesional free space.

(2) By Eqs. (A.218) and (A.219) and the definition of the Dirac delta function,
we have

−∇2F = −
∫
V

δ(x− y)u(y) dVy = u(x) (A.220)

(3) According to Eq. (A.78),

u(x) = −∇2F = −∇(∇ · F ) +∇× (∇× F ) (A.221)

(4) By comparing this expression with the Helmholtz decomposition form u =

∇φ+∇× A, the scalar and the vector potentials are simply given by

φ = −∇ · F , A = ∇× F (A.222)

(5) We can then perform the integration of Eq. (A.218) to yield

φ = −∇ · F =

∫
V

∇ ·
{
G(x− y)u(y)

}
dVy

=

∫
V

∇G(x− y) · u(y) dVy

= −
∫
V

∇yG(x− y) · u(y) dVy

= −
∫
V

{∇y · (Gu)−G∇y · u} dVy

= −
∮
S

Gn · u dSy +

∫
V

Gθ dVy (A.223)
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and

A = ∇× F = −
∫
V

∇×
{
G(x− y)u(y)

}
dVy

= −
∫
V

∇G(x− y)× u(y) dVy

=

∫
V

∇yG(x− y)× u(y) dVy

=

∫
V

{∇y × (Gu)−G∇y × u} dVy

=

∮
S

Gn× u dSy −
∫
V

Gω dVy (A.224)

Here we denote the gradient operator with respect to the integration vari-
ables y by ∇y so that∇G = −∇yG.

(6) Equations (A.223) and (A.224) provide the mathematical background of
the Helmholtz decomposition for any vector field. Therefore the irrota-
tional vector ∇φ and the solenoidal vector ∇ × A can be expressed in
terms of dilatation and vorticity, respectively:

∇φ = −
∮
S

(n · u)∇G dSy +

∫
V

θ∇G dVy (A.225)

∇× A = −
∮
S

(n× u)×∇G dSy +

∫
V

ω ×∇G dVy (A.226)

Note that we have dropped the subscript y in ∇G for brevity, and hence
it denotes the operator with respect to the integration variables y. This
result is the same as the expression of the vector identity Eqs. (A.216) and
(A.217) derived in the previous subsection.

A.8.6 Uniqueness of Vector Identity

(1) To examine uniqueness of the solution as before, suppose that vectors u1

and u2 satisfy ∇ · u1 = ∇ · u2 and ∇ × u1 = ∇ × u2 in V . Then the
difference vector u3 = u1 − u2 satisfies∇ · u3 = 0 and ∇× u3 = 0 in V .

(2) The condition that the curl and divergence of u3 are both zero is necessary
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and sufficient to establish that u is the gradient of a scalar function P which
satisfies Laplace’s equation:

u3 = ∇P (A.227)

∇2P = 0 (A.228)

(3) Green’s first identity, Eq. (A.179),∫
V

[
ψ∇2φ+∇ψ ·∇φ

]
dV =

∮
S

ψ n ·∇φ dS (A.229)

with ψ = φ = P reduces to∫
V

u3 · u3 dV =

∮
S

P n · u3 dS (A.230)

(4) If the normal component of the two solution vector is specified equal on
the boundary, then n · u3 = 0 on S and hence∫

V

u3 · u3 dV = 0 (A.231)

Since u3 · u3 is always greater than or equal to zero, the only possible
solution is

u3 = 0 (A.232)

(5) When the boundary condition uniquely defines the normal component of
the vector, Eq. (A.215) represents a unique representation of an arbitrary
vector and no information need be given about the tangential component
of the vector.

A.8.7 Improper Integrals

(1) Proper integrals in physics: a limit of a Riemann sum.

(2) Two general types of improper integrals:



A.8 Mathematical Identities 309

(a) a range of integration that tends to infinity and

(b) integrands that are singular at points within the range of integration.

(3) Example of the improper integral,∫ b

a

f(x) dx = lim
a1,b1,c1→0

[∫ x0−b1

a+a1

f(x) dx+

∫ b

x0+c1

f(x) dx

]
(A.233)

(4) The improper integral
∫ ∞

1

dx

x
:

lim
R→∞

[∫ R

1

dx

x

]
= lim

R→∞
[ln(R)]→∞ (A.234)

(5) The integrand of
∫ 1

0

dx√
x

is singular at x = 0, the integral is convergent

improper:

lim
ε→0

∫ 1

ε

dx√
x

= lim
ε→0

[
2−
√
ε
]

= 2 (A.235)

(6) Principal Value Integrals
Define with some aspect of symmetry:

(P.V.)

∫ ∞
−∞

f(x) dx ≡
∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx (A.236)

(7) Also at the point x0 such that lim
x→x0

f(x)→∞,

(P.V.)

∫ b

a

f(x) dx ≡
∫ b

a

f(x) dx

= lim
ε→0

[∫ x0−ε

a

f(x) dx+

∫ b

x0+ε

f(x) dx

]
(A.237)

(8) Cauchy Principal Value Integral: A specific form with a well-behaved nu-
merator and singular denominator.
In application, such integrals is derived for the case that a field point ap-
proaches the body surface.
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A form of the general solution for the flow about a body is obtained with
sources, sinks,dipoles or vortices distributed over the body surface.

A.8.8 Green Functions

When other surfaces can be included in the problem of the Laplace equation
(more generally other partial differential equations, not necessarily the Laplace
equation) that governs flow fields, additional boundary conditions are imposed.
Then the Green function is often taken instead of the elementary function for
computational advantage.

(1) Green fucntion is defined as an elementary singularity plus another non-
singular component that satisfies Laplace equation as well as boundary
contions on the other surfaces.

(2) What is left unsatisfied is boundary conditions on a body.

(3) Scalar (velocity potential) at x in terms of a distribution of elementary

singularities ψ =
1

|x− y|
. When we add a function (say H(x, y)) that also

satisfies the Laplace equation and is not singular within the field to ψ, iden-
tity is unchanged except that we have a modified singularity element. It is
necessary but not easy to find a function H with the following properties.

(4) If there were surfaces near a body, construct new singularity element
G(x, y) with ∇2G = 0 and such that

(a) G satifies given boundary conditions on non-body surfaces

(b) G contains elementary singularity element (say
1

|x− y|
) to give the

field point value φ(x)

(c) G results in integral equation over only the body surface.

(5) The formulation is as follows

G(x, y) =
1

|x− y|
+H(x, y) (A.238)
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where H(x, y) is non-singular for all x ∈ V, ∇2H = 0 and

φ n · ∇G−Gn · ∇φ = 0 on S 6= SB (A.239)

(6) For a simple example, if a wall is aligned with onset flow, H is image of
elementary singularity.
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