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7.1 Introduction

In this chapter, we focus on a vorticity-based integro-differential formulation
for the numerical solution of the 2-D incompressible Navier-Stokes equations.
A finite volume scheme is implemented to solve the vorticity transport equation
with a vorticity boundary condition. The Biot-Savart integral is evaluated to
compute the velocity field from a vorticity distribution over a fluid domain.
The Green’s scalar identity is employed to solve the total pressure in an integral
approach. The global coupling between the vorticity and the pressure boundary
conditions is considered when this integro-differential approach is employed.
For the early stage development of the flow about an impulsively started circular
cylinder, the computational results with our numerical method are compared
with known analytical solutions in order to validate the present formulation.

A finite volume scheme is implemented to solve the vorticity transport equa-
tion with a vorticity boundary condition. The Biot-Savart integral is evaluated
to compute the velocity field from a vorticity distribution over a fluid domain.
The Green’s scalar identity is employed to solve the total pressure in an integral
approach. The global coupling between the vorticity and the pressure boundary
conditions is considered when this integro-differential approach is employed.
For the early stage development of the flow about an impulsively started circu-
lar cylinder, the computational results with our numerical method are compared
with known analytical solutions in order to validate the present formulation.

We have mentioned in the previous chapter that the governing equations as
well as the boundary conditions are globally coupled. The present method is im-
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plemented in a time-stepping algorithm that proceeds by generating, convecting
and diffusing the vorticity, by computing the corresponding velocity and by cal-
culating the pressure with the vorticity and velocity field. Computationally, in
order to recover the global coupling between the vorticity and the pressure for
their discrete time-dependent solutions, two separate iterative procedures are re-
quired: one for solving the vorticity transport equation and the other for solving
the total pressure equation.

7.2 Numerical Implementation

7.2.1 Vorticity transport equation

In solving the vorticity transport equation, we seek to advance the solution to
the next time step with the velocity and the vorticity fields computed at the
present time step. The vorticity field is then changed via the vorticity evolution
mechanism.

The no-slip boundary condition is enforced in this stage by the production
of a proper amount of vorticity at the body surface. This vorticity production is
expressed in terms of the vorticity flux. The vorticity flux on the body surface
is iteratively corrected until the no-slip condition is achieved within a preset
criterion for the final vorticity field.

During the iteration, only the slip velocity is computed by the Biot-Savart
integration, without computing the whole velocity field. The task is then to
determine the vorticity distribution over a fluid domain at each instant in time,
so that the no-slip condition is satisfied at the solid surface, the vorticity satisfies
the vorticity transport equation, and the total vorticity of the field is conserved.

A finite volume discretization is applied to Eq. (6.42) which results in a con-
sistent approximation to the conservation law, where the time rate of change of
the vorticity within the domain is balanced by the net fluxes of the convective
and the diffusive terms across the boundary surface of the domain. A phys-
ical domain is divided into a finite number of small elements, each element
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serving as a computational cell. The vorticity field is considered as a discrete
sum of the individual vorticity fields over the cells. The discretized solution
to Eq. (6.42) results in a set of cell-averaged vorticity variables which is in bal-
ance with the face-averaged fluxes across the cell sides. Integrating the vorticity
transport equation over an arbitrary but a stationary cell A with a cell boundary
C and then applying the divergence theorem yields an integral form:

∂

∂t

∫
A

ω dS +

∮
C

(
(q · n) ω − 1

Re
n · ∇ω

)
dl = 0, (7.1)

where
(

(q · n) ω − 1

Re
n · ∇ω

)
is the outward flux of ω across the cell bound-

ary.

7.2.1.1 Numerical schemes

Let us assume that at the nth time step (corresponding to time t), the vorticity
field has been computed (respecting the no-slip condition), then we seek to
advance the solution to the n + 1th time step (time t +4t). We approximate
Eq. (7.1) as a discrete integral form for both time and space coordinates, by
replacing the boundary integral with the sum of the flux on the sides of the cell
and using an explicit scheme in time-stepping:

ωn+1 = ωn − 4t
A

∑
k

Fk, (7.2)

where ωn is considered the average value of ω at the nth time stage over the cell
whose area is A, and Fk represents the value of the flux outgoing through the
kth side of the cell.

The diffusive flux term is approximated in its mean value sense in a similar
fashion to the central differential scheme (Hoffman & Chiang 1993). For the
convective term, the second-order TVD (total variation diminishing) scheme
with the flux limiter suggested by Roe (1985) is used (see also Hirsch 1990).
Time is advanced by an explicit forward Euler time stepping scheme during the
time interval 4t. In fact, this is performed by several sub-steps with a smaller
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time interval δt that satisfies the stability condition for this explicit scheme:

δt ≤ d2

4

Re
+
√

2 qs d
. (7.3)

Here, d is the longer diagonal of a cell and qs is the speed at the cell centroid.
For global stability, we take actually a sub-step time increment smaller than the
minimum value of such permissible values for all cells.

As the solution for the vorticity is advanced in time, the no-slip is presumably
enforced at the beginning of each time increment. At the end of a time step,
the distribution for ω would be changed eventually through the integration of
Eq. (6.42). One must then calculate a new slip velocity at the surface. In order
to reduce the slip velocity to zero, we require that the vorticity be produced at
the surface acting as a source of vorticity (Lighthill 1963). The new vorticity
would enter the fluid through the surface as represented by Eq. (6.48) and then
would be allowed to diffuse and convect into the fluid over a finite time interval
4t. The task is to relate the vorticity flux on the surface of the body to this no-
slip condition at the same time considering its coupling effect with the pressure.

7.2.1.2 No-slip boundary condition with vorticity flux

According to Eq. (6.47), vorticity is transferred to the fluid due to the tangential
component of the pressure gradient and an acceleration of the body surface.

Wu et al. (1994) suggested that this pressure gradient is manifested by a
spurious slip velocity observed on the body surface and this slip velocity is
considered as an acceleration equivalent to a vorticity flux generated at the wall.
The vortex sheet on the body surface should account for the modification of the
circulation of the flow field.(

ν
∂ω

∂n

)(k+1)

=

(
ν
∂ω

∂n

)(k)

+
Vs

(k)

∆t
(7.4)

where Vs is spurious slip velocity at the wall.
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Figure 7.1 Iterative adjustment of vorticity flux for vorticity boundary condition. Adpated
from Cottet & Poncet (2003).

In a discrete sense, the vorticity flux may be determined so that the no-slip
condition is satisfied at the end of the time step. The spurious slip velocity
(Vs) that would appear at the end of the time step can be regarded as the cou-
pling term corresponding to the tangential gradient of the surface pressure in
Eq. (6.48). The newly computed Vs can be then used to absorb the coupling
term and consequently to update a time-averaged vorticity flux:

σ̄(k+1) = σ̄(k) +
V

(k)
s

4t
, (7.5)

where the overbar in σ̄ denotes the time-averaged values of σ during a small
time step4t and the superscript notation refers to the iterative step. The itera-
tion continues until the no-slip condition is satisfied, namely, until Vs reduces to
a value within a preset allowance. Although there are practical considerations
which must be observed during the specified time interval4t, Eq. (7.5) implies
that the integrated amount of vorticity flux is produced and remains unchanged
during the time interval.

Now the vorticity (ωb) at the body surface can be obtained from the definition
of the vorticity flux, in a discrete differential sense,

ωb = Re d1 σ + ω1, (7.6)

where d1 is the normal distance of the centroid of a cell adjacent to the body
surface from the surface and ω1 is the cell-centered vorticity value of the cell
(see Figure 7.2 ).
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Figure 7.2 Notations for calculating the vorticty at the body surface.

7.2.2 Biot-Savart integral

In the vorticity-velocity integro-differential formulation, the Biot-Savart inte-
gral must be evaluated at appropriate field points within the discretized fluid
domain. With N elements used in discretizing the fluid domain over which vor-
ticity is distributed, we may require O(N 2) evaluations of the Biot-Savart in-
tegral in order to calculate the velocity field. The evaluation of the Biot-Savart
integral is, therefore, an important task in numerical implementations.

We will herein summarize the content described in Appendix D. See also
Suh (2000) for the more detailed explanation and the extension of the present
derivation to three-dimensions.

7.2.2.1 Evaluation of line integrals

The resulting expressions for the velocity field include the line integrals only
along the boundary contour of the element. Let the value of the line integral
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along each straight edge of the element be I i. Then, it follows that

u = − k

2π
×

(
4∑
i=1

I i

)
, (7.7)

where the subscript i is denoted by the integer of the vertex associated with the
first end point of the individual sides, `i denotes the length of i-th side and

I i =
1

2
ni

∫ `i

0

ω (ln r2 + 1) dl − 1

4
∇ω (ni · r)

∫ `i

0

ln r2 dl. (7.8)

It is seen that the line integral for each side can be treated independently. After
a substantial amount of algebraic manipulations, one may obtain the following
result for I i:

I i =
1

2
ni

{
ωi

(
`i + I(1)

)
+ (∇ω · si)

(
1

2
`2
i + I(2)

)}
− 1

4
∇ω (ni · r) I(1),

(7.9)
where

ri = ξ
i
− x, x′ = −ri · si, y′ = (ri × si) · k, (7.10)

I(1) = (`i − x′) ln r2
i+1 + x′ ln r2

i − 2 `i + 2|y′| θi, (7.11)

I(2) =
1

2

(
r2
i+1 ln r2

i+1 − r2
i ln r2

i

)
− `2

i

2
+ `ix

′ + x′ I(1), (7.12)

and

θi = tan−1 |y′| `i
r2
i − `i x′

(see Figure 7.3 ) (7.13)

7.2.2.2 Computational enhancement

Although this analysis deals with cases of linear distributions, the integration
is much simpler, as a result of this construction, if ω is assumed to be constant
over the cell. The actual numerical implementation in the present work is per-
formed under the assumption that the vorticity density is piecewisely uniform
over discretized cell elements of a fluid domain.
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Figure 7.3 Notations for the contour integral of the quadrilateral element. Here, ωi denotes
the vorticity value at the i-th vertex, si is the unit directional vector of the line integral path,
and we denote the distances between the two end points of the side and the field point by ri and
ri+1, respectively.

The present procedure is believed to be quite accurate, but it is nevertheless
time-consuming to apply computationally because of a few of the transcenden-
tal functions involved in closed-forms. In the present numerical implementa-
tion, therefore, for a vorticity distribution with unit density over each cell ele-
ment, we compute once the induced velocities at desired field points (namely,
at centroids of neighboring cell elements) and then save them (within the limit
of computer memory capacity) so that such time-consuming calculations can
be avoided. Furthermore, when the distance r is sufficiently large (say, more
than five times the diagonal dimension of the fluid element), Eq. (6.43) is ap-
plied directly without such integrations. That is, the vorticity within the region
of area A is treated as a point vortex of strength ωA located at the centroid of
the element. The sum of all of the induced velocities from the vorticity is then
added to the contribution from the onset flow. In this manner, we can calculate
the whole velocity field as well as the slip velocity at the surface.
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7.2.3 Pressure Poisson equation

7.2.3.1 Formulation

Once the vorticity and the velocity field are updated, the integral equation for
the total pressure must be solved to provide a complete set of solutions at the

n + 1th time step. Substituting Eq. (6.49) for
∂H

∂n
into Eq. (6.44) yields the

limiting form for H as a field point approaches the surface points (xB) of a
solid body:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl =

− 1

2π

∮
CB

[
n ·

∂q

∂t
− n · (q × ω) +

1

Re
n · (∇× ω)

]
ln r dl

+
1

2π

∫
S

∇ · (q × ω) ln r dS, (7.14)

where the integrals over CB is evaluated on the surface of a body in the sense of
the Cauchy principal value integral. Using the vector operation for the integrand
of the surface integral in Eq. (7.14), namely,∇·(q×ω) ln r = ∇·(q×ω ln r)−
(q × ω) · ∇(ln r) and applying the divergence integral theorem to the resultant
expression, yield a Fredholm integral equation of the second kind for H:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

[
n ·

∂q

∂t
+

1

Re
n · (∇× ω)

]
ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (7.15)

Furthermore, if we assume the body to be either fixed or impulsively started as
in our test problem later on, the equation reduces to a simpler one:

1

2
H +

1

2π

∮
CB

H
∂(ln r)

∂n
dl = − 1

2π

∮
CB

1

Re

∂ωB
∂s

ln r dl

− 1

2π

∫
S

(q × ω) · ∇(ln r) dS. (7.16)
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7.2.3.2 Application of panel methods

Accordingly, we base our pressure calculation on an integral equation formation
of the pressure-Poisson equation. One possible approach for solving Eq. (7.16)
numerically for the total pressure is to use a panel-method approximation in a
similar fashion to a one in potential flow analysis. Among the full variety of the
numerical implementation of the panel methods, we use herein a straight-line
element for the body contour subdivision representation, and a uniform den-
sity distribution of singularity strength on each panel at the boundary and over
each cell in the fluid domain. This low-order panel-method approximation is
relatively robust in the numerical implementation and thus the computing time
can be reduced in comparison with other higher-order panel methods without
significant loss of accuracy in numerical results.

The body is defined by a set of points on the surface and the body surface is
subdivided intoN (normally an even number) straight-line elements (flat panels
or interior facets). This approximate representation for the body surface enables
us to replace the two integrals overCB in Eq. (7.16) by the sum of the individual
integral form for the contribution of each straight-line panel.

The surface integral term on the right-hand side of Eq. (7.16) is similar in
form to the Biot-Savart integral in Eq. (6.43) if we replace (q × ω) · ∇(ln r) by
ω×∇(ln r). In order to include the influence of the field distribution of (q×ω),
we can use the algorithm for evaluation of the Biot-Savart integral described in
Section 3.2 under the assumption that the distribution is piecewisely constant
over each cell element.

Although we have already used the pressure boundary condition Eq. (6.49)

when we derived Eq. (7.16), the term − 1

Re

∂ωB
∂s

must be evaluated in order to
actually impose the boundary condition on the equation. At this stage, we need
the iteration procedure to specify the value, which will be described later on.

Consequently Eq. (7.16) deduces a set of algebraic expressions with un-
known values of the total pressure head (Hi, 1 = 1, · · · , N ) on the panels.
With Hi being solutions of this linear system, the total pressure field can be
obtained by integrating Eq. (7.16). The pressure field, as well as the surface
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pressure distribution, can be determined by subtracting the dynamic pressure
term in Eq. (6.27) from the total pressure.

Figure 7.4 Schematic diagram for calculation of pressure field.

7.2.4 Computational procedure

The above considerations can be summarized in the following algorithm of the
solution of a system of the governing equations.

(1) Integrate the vorticity transport equation, Eq. (6.42), in time with enforce-
ment of the no-slip condition. At the nth time step (corresponding to time
t) the velocity and the vorticity fields are assumed to be computed and we
seek to advance the solution to the n + 1 time step (time t +4t). Given
qn and ωn, the vorticity field ωn+1 at the n + 1th time step is changed via
the vorticity evolution mechanism. The no-slip boundary condition is en-
forced in this stage by assigning the vorticity flux at the solid surface. The
vorticity flux at the surface is assigned as its time-averaged value during
a small time interval as given by Eq. (7.5). We need an iterative process
to introduce a proper amount of the time-averaged vorticity flux in order
to ensure the no-slip condition and accordingly update ωn+1. The spurious
slip velocity is computed by performing the Biot-Savart integration for the
vorticity field obtained at the present iterative stage.

(2) Evaluate the Biot-Savart integral by using the integration scheme proposed
in Section 7.2.2 in order to obtain the velocity field qn+1 corresponding to
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the currently updated vorticity field ωn+1. The vorticity is assumed to be
distributed with a uniform strength over an individual cell element. Since
the job of the Biot-Savart integration is repeated for all time steps, it is
desirable to save computing time by storing the results of the Biot-Savart
integral for a unit vorticity-distribution over an individual cell. Because of
limited storage in a computer, it applies for field points within a certain
distance away from the cell for which we use the exact integration.

(3) Solve the integral equation for Hn+1 by using qn+1 and ωn+1 obtained in

steps (1) and (2). The term − 1

Re

∂ωB
∂s

in Eq. (7.16) must be evaluated
where the differentiation performs in the direction s tangent to the sur-
face of the body. To obtain the vorticity (ωB) at the body surface given by
Eq. (7.6), the vorticity flux must be evaluated in this stage at the end of the
time interval while in step (1), the rate of vorticity production was taken to
be uniform over the time t to t+4t.

Since the vorticity flux is related to the tangential gradient of the pressure
along the body surface and the normal gradient of the total pressure is
incorporated with the tangential gradient of the body vorticity at the current
time, we employ the iterative calculation between the vorticity flux and
the pressure on the surface. With the time-averaged vorticity flux obtained
in step (1), we obtain the body vorticity via Eq. (7.6). Then we use this
body vorticity value as an initial guess and qn+1 and ωn+1 in order to solve
Eq. (7.16) forH and thus to find the pressure at the surface. The tangential
gradient of this surface pressure is used to update the vorticity flux at the
(n + 1)th time step by Eq. (6.48). With this updated vorticity flux at the
end of a time step, we update the body vorticity via Eq. (7.6) again.

This iterative procedure is continued until the surface pressure and the vor-
ticity flux reach a converged state. The convergence of the iteration process
is measured with the difference in their values between two successive iter-
ations. The typical tolerance is taken as 10−4 in our test problem later on.
Up to this point, the principle of conservation of vorticity can be invoked
by integrating Eq. (6.48).

When the pressure gradient is then integrated around the closed contour of
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the a solid body, the result must be zero because the pressure is inherently
a single-valued function. It is the argument leading to the principle of the
vorticity conservation that the total vorticity in the infinite unlimited space
occupied jointly by the fluid and the solid bodies is always zero.

(4) Advance the calculation to the next time step by repeating steps (1), (2)
and (3).

The reconstruction of the surrounding cell-averaged data to a common vertex
or node is performed by a weighted averaging procedure based on an inverse-
distance weighted averaging of the variables from the cell centroid to the cell
vertices.

The above solution procedure is summarized in Figure 7.5 .

Figure 7.5 Flow chart for solution procedure of the present FVM in the vorticity-velocity-
pressure formulation.
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7.3 Lid-driven Cavity Flows

7.3.1 Formulation

As an application of the present scheme, we consider a vorticity-based integro-
differential formulation for the numerical solution of a two dimensioanl cavity
flow driven by shear and body forces (see Figure 7.6 ) (Rida et al. 1997, Shih
et al. 1989).

Figure 7.6 Coordinates and geometry for driven cavity.

The shear motion of the lid of the cavity and the body force are prescribed
as, respectively,

f(x) = x4 − 2x3 + x2 (7.17)

f
b

= 8µ [24F (x) + 2f ′(x) g′′(y) + f ′′′ g(y)] j

+64 [F2(x)G1(y)− g(y) g′(y)F1(x)] j, (7.18)

where

g(y) = y4 − y2, F (x) =

∫ x

0

f(x) dx, F1(x) = f(x) f ′′(x)− [f ′(x)]2,

F2(x) = 0.5 f 2(x), G1(y) = g(y) g′′′(y)− g′(y) g′′(y). (7.19)

This lid-driven square cavity flow is a standard benchmark for testing numerical
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schemes in the context of computational fluid dynamics because of its simplicity
and the availability of the analytical solution.

The governing equations for the unsteady flow of an incompressible Newto-
nian fluid can be written as,

∇ · q = 0, (7.20)

ω = ∇× q, (7.21)

∂ω

∂t
+ q · ∇ω = ω · ∇q + ν∇2ω +∇× f

b
, (7.22)

∇2

(
p

ρ
+

1

2
q2

)
= ∇ ·

(
q × ω + f

b

)
, (7.23)

The corresponding integro-differential vorticity-velocity formulation is given,
in non-dimensional form, by,

∂ω

∂t
+∇ · (q ω) =

1

Re
∇2ω +∇× f

b
, (7.24)

q = q
o
− 1

2π

∫
S

ω ×∇(ln r) dS, (7.25)

H = − 1

2π

∮
C

[
H
∂(ln r)

∂n
− ∂H

∂n
ln r

]
dl

+
1

2π

∫
S

∇ ·
(
q × ω + f

b

)
ln r dS, (7.26)

where p is the pressure, ν the kinematic viscosity, ρ the density of the fluid, Re
the Reynolds number and ω the scalar plane component of the vorticity vector
(ω ≡ ωk). The velocity term q

o
in Eq. (7.25) represents the contribution from

the velocity distributions over the boundary(C) of the cavity, namely:

q
o

=

∮
C

[
(n · q)∇G+ (n× q)×∇G

]
dl, (7.27)

where n is the unit normal pointing into the fluid at the boundary C. The pres-
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sure p is related to the total pressure defined by

H =
p− pr
ρ

+
1

2

(
q2 − q2

r

)
, (7.28)

where the constants pr and qr are the reference pressure and velocity, respec-
tively. In such a formulation, we deal with the Biot-Savart integral in order to
compute the velocity from a vorticity distribution in the square cavity and to
solve the total pressure in a boundary integral approach.

The boundary conditions for the velocity, the vorticity and the pressure sup-
plement the system of Eqs. (7.24), (7.25) and (7.26). The no-slip velocity con-
dition states that the velocity of the fluid (q) is equal to the moving velocity(UB)
of the boundary(xB) of the cavity:

q(xB, t) = UB on C. (7.29)

The boundary condition for the vorticity flux (σ) at the boundary can be derived
by taking the cross product of the Navier-Stokes equations with n and by using
the velocity adherence condition:

σ ≡ − 1

Re

∂ω

∂n
= −k · n×

(
dUB

dt
+∇p− f

b

)
on C. (7.30)

Similarly, the scalar product of the Navier-Stokes equations with n gives an
expression for ∂H/∂n as:

∂H

∂n
= −n ·

(
∂q

∂t
− q × ω +

1

Re
∇× ω − f

b

)
on C. (7.31)

7.3.2 Comparison with analytic solution

For purposes of comparison with the exact steady-state solution, the calcula-
tions are advanced to steady-state. As the initial condition in the time evolution
of the flow, an impulsive start was formulated. A uniform grid of equal size that
divides the cavity flow region was used. The vorticity, the vorticity flux, and the
pressure distributions along the cavity wall for Re = 100 with variation of the
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time interval and the grids are shown in Figs. 7.7 and 7.8 , where the agreement
with the exact solution is excellent.

Figure 7.7 Sensitivity of time interval on vorticity, vorticity flux and pressure along the driven
cavity wall for Re = 100 with the 61× 61 grid. The perimeter(S) along the cavity wall has the
clockwise direction from the origin at the upper left corner of the cavity.
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Figure 7.8 Sensitivity of mesh size on vorticity, vorticity flux and pressure along the driven
cavity wall for Re = 100 with4t = 0.05.

Figure 7.9 shows that the time evolution of the velocity along the vertical
and the horizontal center lines of the cavity at Re = 100 with 4t = 0.05

and the 61 × 61 grid. Figure 7.10 shows the time evolution of kinetic energy
for cavity flow in this case. This is compared with the exact steady-state value
1216/33075(= 0.0367650). The streamline pattern, the vorticity contour, and
the pressure contour in the steady-state are shown in Figure 7.11 , where the
agreement is again very good. (It is difficult to distinguish between the exact
solution and the numerical solution with the present scheme.)
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Figure 7.9 Time evolution of the velocity along the center lines of the driven cavity for
Re = 100 with4t = 0.05 and the 61× 61 grid.

Figure 7.10 Time evolution of kinetic energy of the driven cavity for Re = 100 with 4t =
0.05, and the 61× 61 grid.

Figure 7.11 Streamline pattern, vorticity contour and pressure contour of the driven cavity
for Re = 100 with4t = 0.05 and the 61× 61 grid.
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The above comparison implies that the evaluation of the Biot-Savart integral
works well. In the present numerical implementation, for a vorticity distribution
with unit density over each cell element, we compute the induced velocities at
desired field points once (namely, at centroids of neighboring cell elements)
and then save them (within the limit of computer memory capacity) so that the
time-consuming calculations at successive time steps can be avoided.

7.4 Impulsively Started Circular Cylinder

7.4.1 General aspects

As a numerical example we consider the case of an impulsively started circular
cylinder at certain Reynolds numbers. The numerical simulation for the devel-
opment of two-dimensional, incompressible flow past an impulsively started
circular cylinder has been a challenge to computational fluid dynamicists for
years. Although the geometry is simple, the flow pattern in the proximity of
the circular cylinder is in full variety. Treatment of these special flow problems
requires complex numerical procedures to be applied and often validation is
defined by comparisons with analytical solutions.

A notable theoretical investigation of the initial flow over an impulsively
started circular cylinder was given by Bar-Lev & Yang (1975). They solved the
vorticity transport equation by the method of matched asymptotic expansions
to the third order of a small quantity of non-dimensional time. Their analytical
solution would be reasonably valid for t < 0.25, Re > 50. Only for the purpose
of comparison with the analytical solution, no attempt is made to advance the
calculations to large time values. Rather, the intent is only to provide sufficient
results in the early time stage after the impulsive start, from which the validity of
the present formulation can be demonstrated. Our calculations are concentrated
on those of the vorticity and vorticity flux distribution, the pressure distribution
and the drag coefficient.

As the initial condition in the evolution of the flow, an impulsive start may be
formulated using the potential flow field although there cannot experimentally
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be such a thing as a truly impulsive start. At time t = 0+ the slip velocity
distribution (2 sin θ) obtained from the potential flow analysis is imposed on
the surface of the body. In fact, numerical schemes encounter difficulties in
resolving the initially developed thin boundary layers associated with impulsive
starts. There exists inherently the singular behavior (having infinity value) on
the (drag) force at the time immediately after the impulsive start.

7.4.2 Computational grids

An O-type regular pattern of quadrilateral cells that divides the fluid region
about a circular cylinder is used, but we believe a C-type grid will work as
well. Our computational domain is described by a set of grid points taken as
θi = 2πi/NI and rj = Ro − (Ro − 0.5) cos(πj/2NJ), where NI is the number
of cells in the circumferential direction, NJ in the radial direction and Ro is
the outer radius of the boundary of the computational domain. Since the first
i-index coincides with the last i-index, a periodic boundary condition is ap-
plied along the interface corresponding to that index. On the cylinder surface
(r = 0.5) which corresponds to j = 1, we set the vorticity flux (vorticity pro-
duction) to a suitable value determined iteratively from the no-slip boundary
condition. On the outer boundary, we convect purely ω out of the computa-
tional domain in a naturally upwind sense (i.e., without the diffusion term in

Eq. (7.2), ωn+1 = ωn − 4t
A

∑
k

{
(q · n) ωn

}
k
.

7.4.3 Numerical results

7.4.3.1 Analytic solution in early time stage

In Figures. 7.12 through 7.14 , the effect of numerical parameters on the pres-
sure drag, the friction drag and the total drag coefficients as computed by the
present method is presented for Reynolds number Re = 60, 3000 and 9500.
The analytical solutions given by Bar-Lev and Yang (1975) are also presented
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for the purpose of comparison. The frictional and the pressure drag were calcu-
lated by integrating the vorticity and the pressure, respectively, over the surface

of the cylinder. The drag coefficients are normalized by
1

2
ρ q2
∞D.

7.4.3.2 Time step

In Figure 7.12 we plot the sensitivity of the time interval 4t on the drag for
each Reynolds number. For the convergence check, three different time inter-
vals (4t = 0.0025, 0.005, 0.01) have been chosen. The grid used in these cal-
culations was 600 × 80 and the outer radius of the computational domain was
taken asRo = 1.5. The present results are shown to give good convergence with
respect to4t to the analytical solutions, especially near the immediate time re-
gion (near t = 0+) after impulsive start. The inherently singular behavior of the
solution is precisely captured as 4t becomes smaller. We observe that the nu-
merical results are in good agreement with the analytical solutions for t < 0.25,
even when using a moderate time interval of4t = 0.01.

7.4.3.3 Computational domain

In Figure 7.13 the effect of the size of the computational domain on the drag
is presented. Note that it is difficult to make distinctions between all the sym-
bols in the figures. It seems that the effect is negligible if the computational
domain contains entirely the fluid domain with non-zero vorticity values like
the present cases. But it is apparent that, as time advances, the computational
domain should become larger in order to contain the region with non-zero vor-
ticity values.

Figure 7.14 shows the corresponding effect with respect to a measure of the
mesh size. We see that the grid dependence on the solutions is small enough to
ignore unless grid resolutions for capturing a complicated vortex structure are
required. At the early stage in time for the present cases, the complicated vortex
structure is not exhibited yet. In the following computations, 4t = 0.005, the
600 × 80 grid, and Ro = 1.5 are used, from the viewpoint that these choices
would not greatly affect our numerical results.
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Figure 7.12 Sensitivity of the time interval on the drag coefficients of the impulsively started
circular cylinder at Re = 60, 3000 and 9500 with Ro = 1.5 and the 600× 80 grid.
——, analytical (Bar-Lev & Yang (1975));4,4t = 0.0025; •,4t = 0.005; ◦,4t = 0.01
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]

Figure 7.13 Sensitivity of the outer radius on the drag coefficients of the impulsively started
circular cylinder at Re = 60, 3000 and 9500 with4t = 0.005 and the 600× 80 grid.
——, analytical (Bar-Lev & Yang (1975));4, Ro = 1.5; •, Ro = 2.5; ◦, Ro = 3.5
Note: The results corresponding to Ro = 2.5 are not detectable because of the nearly same
values as the others.
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]

Figure 7.14 Sensitivity of the mesh size on the drag coefficients of the impulsively started
circular cylinder at Re = 60, 3000 and 9500 with4t = 0.005 and Ro = 1.5.
——, analytical (Bar-Lev & Yang (1975));4, grid 800×100; •, grid 600×80; ◦, grid 300×40
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7.4.3.4 Reynolds number

In Figure 7.15 we plot the vorticity distribution on the cylinder surface at t =

0.2 and t = 0.4 for Re = 3000. By comparing these results with the analytical
solutions, we find that the body vorticity obtained is satisfactory. Since this
measure is directly related to the frictional drag, we guarantee the agreement
of the frictional drag with the analytical solution as shown in Figures. 7.12
through 7.14 .

Figure 7.15 Comparison of the computed surface vorticity with the analytical solution of the
impulsively started circular cylinder at Re = 3000 with the 600 × 80 grid, 4t = 0.005 and
Ro = 1.5.

Figure 7.16 shows the time evolution of the primary separation position for
Re = 9500. The position is determined in such a way that the body vorticity
is zero. The separation angle θs is measured from the rear stagnation point.
We observe a rapid development of the separation region at about t = 0.16

and a reasonable agreement of the present results with those obtained from the
analytical solution.

7.4.3.5 Pressure, velocity and vorticity fields

The pressure distribution on the cylinder surface is shown in Figure 7.17 at
several instants.
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Figure 7.16 Time evolution of the primary separation position of the impulsively started
circular cylinder at Re = 9500 with4t = 0.005, the 600× 80 grid and Ro = 1.5.

Figure 7.17 Surface pressure distribution of the impulsively started circular cylinder at several
instants for Re = 9500 with4t = 0.005, the 600× 80 grid and Ro = 1.5.
Note: The front of the cylinder corresponds to the angular position of 180◦ on the horizontal
axis.
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At the early time the pressure distributions represents nearly the distribution
obtained from the potential flow analysis, because we can regard a very thin
layer of vorticity formed around the cylinder as an equivalent vortex sheet. As
this thin layer continues to grow, the pressure distributions are rapidly modified
near the strong vortical flow structures. While the change of pressure near the
front portion of the cylinder surface is not so great, the pressure distribution
near the rear portion is greatly changed. This feature is associated with the
complicated flow experimentally observed or numerically simulated in the wake
region behind the cylinder at such a high Reynolds number.

Figure 7.18 shows the computed streamline pattern at some instants for
Re = 9500. Although their results are not presented herein, the pattern reveals
good agreement with the experiment by Bouard and Coutanceau (1980) and
the computation by Koumoutsakos and Leonard (1995).

In Figure 7.19 , the vorticity contours at several instants for Re = 9500 are
presented. These contours are reasonably compared to other available results
(e.g. those in figure 26 in Koumoutsakos and Leonard, 1995). The complicated
interaction between the vortical structures developed at the cylinder surface is
expected to appear as time advances. This deduction can be also drawn from the
corresponding pressure fields shown in Figure 7.20 . The strong vortical flow
forms a lower pressure region moving downstream and the vorticity strength is
slightly weaker by the viscous diffusion as time advances.

The comparison between the time-averaged vorticity flux and the vorticity
flux at the end of the time interval is presented in Figure 7.21 . It is observed
that their difference is negligible except in their high peak value region. The
vorticity flux defined in the time-averaged sense when we solved the vorticity
transport equation reflects well the global coupling of the vorticity flux with the
pressure. However, in the present method, the calculation of the vorticity flux
at the end of the time step was separately done because we need the calculation
of the pressure drag.

By applying the present numerical algorithm for the impulsively started cir-
cular cylinder problems, we have validated the present formulation.
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Figure 7.18 Streamline patterns of the impulsively started circular cylinder for Re = 9500
with4t = 0.005, the 600× 80 grid and Ro = 1.5.
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Figure 7.19 Vorticity contours of the impulsively started circular cylinder for Re = 9500
with4t = 0.005, the 600× 80 grid and Ro = 1.5.
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Figure 7.20 Pressure contours of the impulsively started circular cylinder for Re = 9500
with4t = 0.005, the 600× 80 grid and Ro = 1.5.
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Figure 7.21 Time-averaged vorticity fluxes (σ) of the impulsively started circular cylinder
in t1 − 4t < t < t1 and vorticity flux (σ) at t = t1, where t1 = 2.5 for Re = 9500 with
4t = 0.005, the 600× 80 grid and Ro = 1.5.
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7.5 Oscillating Circular Cylinder Problems

7.5.1 Key parameters

The motion of circular cylinders in a fluid at rest is especially of interest in fields
of offshore and civil engineering, such as marine risers, subsurface pipelines,
etc. An overall review is given by Williamson (1996) and by Sumer and Fredsøe
(1997).

When the relative flow past a cylinder is undergoing sinusoidal oscillations,
the structure of the flow generated by the cylinder depends mainly on two pa-
rameters, namely, the Keulegan-Carpenter number, KC and the Reynolds num-
ber, Re. The KC number is defined by

KC =
Um T

D
=

2π A0

D
(7.32)

in which Um is the maximum velocity, T is the period of the oscillatory flow,
and A0 is the amplitude of the motion. The Reynolds number is defined as

Re =
UmD

ν
(7.33)

where ν is the kinematic viscosity of the fluid. The ratio

β =
Re

KC
=
D2

ν T
, (7.34)

being the Stokes parameter is a viscous scale parameter(Sarpkaya 1986). Many
researchers measured forces acting on a circular cylinder in oscillatory flow as
a function of KC and β.
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Table 7.1 Regimes of flow around a circular cylinder in oscillatory flow at Re = 103. Source
for KC < 4 is from Sarpkaya (1986), and for KC > 4 from Williamson (1985).

7.5.2 Flow characteristics

Investigating the physical meaning of the KC number , the numerator of the
right-hand side of the Eq. (7.32) is proportional to the stroke of the motion,
namely 2A0, while the denominator of the diameter of the cylinder D, repre-
sents the width of the cylinder. Small KC numbers therefore mean that the
orbital motion of the fluid particles is small relative to the total width of the
cylinder. When KC is very small, separation behind the cylinder may not even
occur. Large KC numbers imply that the fluid particles travel quite large dis-
tance relative to the total width of the cylinder, resulting in separation and prob-
ably vortex shedding. For very large KC numbers (KC → ∞), it is expected
that the flow for each half period of the motion resembles that experienced in a
steady current(Sumer & Fredsøe 1997).

Experimental investigations of the oscillatory flow around a circular cylinder
at small KC have shown that the flow can be classified into a number of dif-
ferent flow regimes governed mainly by KC and with a weak dependency on
Re(Bearman et al. 1985, Williamson 1985, Sarpkaya 1986). At KC � 1, the
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flow remains symmetrical, attached, and two-dimensional. AsKC is increased,
the flow becomes asymmetrical (KC = 4 ∼ 5). AtKC = 10 , a transverse vor-
tex street appears. Table 7.1 summarizes the changes of the flow pattern as the
KC number is increased atRe = 103. Notice that limits ofKC regimes are de-
pendent on Re(Justesen 1991, Summer & Fredsøe 1997). By further increasing
the KC number, the so-called vortex-shedding regimes (KC > 7 , Re = 103)
appear. According to the description of the vortex trajectory patterns in a sys-
tematic manner by Williamson (1985), in the vortex shedding regimes the vortex
shedding occurs during the course of each half period of the oscillatory motion.
There are several such regimes, each of which has different vortex flow pattern,
observed for different ranges of the KC number. These KC ranges include
7 < KC < 15 , 15 < KC < 24 , 24 < KC < 32, etc.

Figure 7.22 illustrates the time development of vortex motions in the regime
at 7 < KC < 15. The major portion of the KC range, namely 7 < KC < 13

(Figure 7.22 a), is known as the transverse vortex street regime. The arrows in
Figure 7.22 refer to cylinder motion. The wake consists of a series of vortices
convecting out to one side of the cylinder in the form of a street. Figure 7.22
b shows the vortex shedding patterns in the regime at 13 < KC < 15. The
wake consists of a series of pairs convecting away each cycle in the direction of
about 45◦ to the flow oscillation direction, from only one side of the cylinder.
In Figure 7.22 a and Figure 7.22 b, shown is always one pair of vortices which
convect away from the cylinder. It is called “the single pair regime”.

Figure 7.23 shows the time development of vortex motions in the case of
15 < KC < 24, that corresponding to “double pair regime”. The resultant
wake is due to two vortices shed during each half cycle. Two trails of vortex
pairs convect away from the cylinder in opposite directions and from opposite
sides of the cylinder.

Figure 7.24 depicts the vortex motions in the case of 24 < KC < 32,
namely “the three pairs regime”. The wake of three vortices shed during a
half cycle becomes three vortex pairings in a cycle. By varying both β and
KC (correspondingly Re) , flow patterns may be classified into several regimes
according to their structure. The KC and β regimes are plotted in Figure 7.25
. Eight regimes are labelled by A∗ through G based on experimental results by
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Figure 7.22 Single pair regime of flow around a circular cylinder in oscillatory motion for
7 < KC < 15. (a) 7 < KC < 13 <; (b) 13 < KC < 15. From Williamson (1985).
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Figure 7.23 Double-pair regime of flow around a circular cylinder in oscillatory motion for
15 < KC < 24. From Williamson (1985).

Figure 7.24 Three-pair regime of flow around a circular cylinder in oscillatory motion for
24 < KC < 32. From Williamson (1985).
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Figure 7.25 Classification of flows around a circular cylinder in oscillatory motion. Flow
patterns are identified within eight regimes indicated A∗ − G. � , A∗ ; � , A ;© , B ;⊕ , C
; + , D; 4 , E ;©| , F;©− , G ; • , critical values for appearance of a streaked flow. From
Tatsuno & Bearman (1989).
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Tatsuno & Bearman (1989). Principal features of the oscillating flow in the
eight regimes are summarized in Table 7.2.

Table 7.2 Principal features of the flows classified in eight regimes of flow around a circular
cylinder in oscillatory motion with KC and β. From Tatsuno & Bearman (1989).

flow regimes principal features

A∗ No flow separation; secondary streaming
two-dimensional

A Two vortices shed symmetrically per half cycle
two-dimensional

B Three-dimensional instability
longitudinal vortices

C Rearrangement of large vortices
three-dimensional

D Flow convected obliquely to one side of
the axis of oscillation; three-dimensional

E Irregular switching of flow convection direction
three dimensional

F Flow convected diagonally
three dimensional

G Transverse vortex street
three dimensional

Another main feature of the oscillating cylinder is the relation between the
vortex shedding frequency and lift frequency. It appears that the peak of the lift
force occurs immediately after the reversal motion of the cylinder is associated
with the return of the most recently shed vortex to the cylinder, while the other
peaks in the lift variation are associated with the vortex shedding. Thus, it is
evident that, in oscillatory flows, the lift force frequency is not identical to the
vortex shedding frequency(Sumer & Fredsøe 1997). One way for determining
lift frequency is by using power spectrum of the lift force and identifying the
fundamental frequency. Williamson (1985)’s work, where the ratio of Re to
KC was kept constant at β = Re/KC ≈ 255 in one series of the experiments
and at β ≈ 730 in the other, has indicated that the fundamental lift frequency
increases with increasing KC, as shown in Table 7.3.



7.5 Oscillating Circular Cylinder Problems 301

Table 7.3 Fundamental lift frequencies of the observed flow around a circular cylinder in
oscillatory motion. From Williamson (1985).

Normalized
fundamental

KC regime KC regime Reynolds lift frequency
number (= Number of
Re oscillation in the

lift per flow-cycle)

NL =
fL
fω

Single pair 7 < KC < 15 1.8− 3.8× 103 2

Double pair 15 < KC < 24 3.8− 6.1× 103 3

Three pairs 24 < KC < 32 6.1− 8.2× 103 4

Four pairs 32 < KC < 40 8.2− 10× 103 5

7.5.3 Formulation for moving frame fixed to cylinder

The present calculation provides solutions obtained by the Eulerian FVM
method for the problem of the oscillating cylinder. It is expected to provide
the simulations of vortex shedding from the cylinder. In addition, when inves-
tigating the characteristic of lift frequency, the vortex shedding frequencies are
investigated with the variety of the flow regimes with each other KC and β.

Let us consider the harmonic in-line motion of the cylinder in a fluid at rest.
Position, velocity and acceleration of the local moving coordinate at the center
of the circular cylinder are defined, respectively, as

x = A0 sin(f t) i, (7.35)

ẋ = q
F

= A0 f cos(f t) i, (7.36)

q̇
F

= −A0 f
2 sin(f t) i. (7.37)

The relative velocity to the local moving frame is q = −q
F

+ u where u is
the velocity in the inertia frame. Assume the acceleration of the local moving
frame is not zero, then Navier- Stokes equation at the local moving frame is
represented as

Dq

Dt
+ q̇

F
= −∇

(
p

ρ

)
−∇× (ν ω) (7.38)
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Vorticity transport equation and pressure equation derived from Eq. (7.38) are
not changed at the local moving frame. The vorticity-velocity relation with the
Biot-Savart integral(Eq. (6.43)), however, should be included with the velocity
on the local moving frame. Dynamic vorticity boundary condition and pressure
boundary condition (Eqs. (6.48) through (6.49)), are modified.

The main parameters are non-dimensionalized as

Re =
U0D

ν
, t∗ =

U0 t

D
, U0 = A0 f, KC =

2π A0

D
(7.39)

where U0 is the maximum velocity ,D is cylinder diameter, andA0 is the ampli-
tude of the cylinder. With the non-dimension parameters, the governing equa-
tions are expressed as

∂ω

∂t
+∇ · (q ω) =

1

Re
∇2ω, (7.40)

q = −U 0 cos

(
2π

KC
t∗
)
i+

∮
C

(ω k)×∇Gdl. (7.41)

∇2

(
1

2
q2 +

p

ρ

)
= ∇ · (q × ω k), (7.42)

These equations are equivalent to Eqs. (6.42) through (6.44). The boundary
conditions of vorticity and pressure with no-slip condition are

1

Re

∂ω

∂n
k = n×

{(
Dq

Dt
+∇p

)
− 2π

KC
sin

(
2π

KC
t∗
)
i

}
(7.43)

∂H

∂n
= n ·

{(
q × ω k − 1

Re
∇× ω k

)
+

2π

KC
sin

(
2π

KC
t∗
)
i

}
(7.44)

These are comparable to Eqs. (6.48) and (6.49). (See also Kim et al. (2003).)

7.5.4 Numerical simulation

The calculation for three different conditions of KC and β is performed, each
of which is characterized with the different flow regimes.
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7.5.4.1 Case 1: KC = 7, β = 143 (Re = 1000)

According to Tatsuno and Bearman (1989), the regime of the present parameters
(KC = 7, β = 143) is the regime named G, as shown in Figure 7.25 and
Table 7.2. The principal feature in this regime has transverse vortex street, i.e.,
the vortex is shedding in direction perpendicular to the in-line motion of the
cylinder. The feature of vortex shedding by the present calculation is shown in
Figure 7.26 .

Figure 7.26 Transverse vortex street pattern of flow around a circular cylinder in oscillatory
motion at T = 89 for KC = 7, β = 143.

In this figure, the single vortex pair is captured at time t = 89. The single
vortex pair is convecting out perpendicular to one side of the cylinder. This
result shows a good agreement with the flow pattern of the regime named G.

Figure 7.27 represents the time history of drag and lift coefficients. In order
to analyze the periodic physics of the drag and lift forces, the time domain is
converted into the frequency domain by the Fourier transformation.
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Figure 7.27 Time history of drag and lift forces of flow around a circular cylinder in oscilla-
tory motion for KC = 7, β = 143.

As shown in Figure 7.28 , the peak of drag forces in frequency domain occurs
only once at ω ≈ 0.92.
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Figure 7.28 Power spectra of drag and lift forces of flow around a circular cylinder in oscil-
latory motion for KC = 7, β = 143.

The time cycle of cylinder motion is about 7, and the dominant time cycle
of drag force shown in Figure 7.28 is about 6.8. The cycle of drag force co-
incides with the cycle of motion. On the other hand, the peaks of lift forces in
frequency are appeared twice. The first fundamental frequency is ω = 0.92 and
the second one is ω = 1.76, which corresponding to T = 6.8 and T = 3.6, re-
spectively. The maximum lift force is appeared twice during one cycle motion
of the cylinder. This fact coincides with the characteristic of the fundamental
lift frequency observed by other researchers which is described with Table 7.3
in the previous section.
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7.5.4.2 Case 2: KC = 10, β = 20 (Re = 200)

In Figure 7.25 and Table 7.2, the regime of the present parameters(KC = 10,
β = 20) corresponds to F. The principal feature in this regime is the flow con-
vected diagonally, i.e., when the cylinder moves from right to left, a large clock-
wise vortex is formed on the upper side of the cylinder and a smaller counter-
clockwise vortex on the lower side of the cylinder. As the clockwise vortex
becomes stronger, a transverse flow appears behind the two vortices. When
the cylinder reverses, the stronger clockwise vortex is convected back to the
cylinder which induces a new vortex. The transverse flow developed behind the
cylinder distorts the trail of flow away from the oscillation axis. This causes
one vortex pair of diagonal pattern to shed. In the half cycle from left to right, a
strong clockwise vortex and a flow crossing the axis of oscillation are developed
in the same manner as in the previous half cycle.

Figure 7.29 shows diagonally pattern formed by single-pair vortex. This
result shows a good agreement with the flow pattern of the regime named F.
Figure 7.30 shows the time history of drag coefficient and lift coefficient. In

Figure 7.29 Diagonally convected single-pair vortex pattern of flow around a circular cylinder
in oscillatory motion at T = 211.6 for KC = 10, β = 20.

Figure 7.31 , the peak of drag forces in frequency domain is seen to appear only
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once at ω ≈ 0.61.

Figure 7.30 Time history of drag and lift forces of flow around a circular cylinder in oscilla-
tory motion at T = 211.6 for KC = 10, β = 20.

The time cycle of cylinder motion is about 10, and the dominant time cycle
of drag force observed in Figure 7.31 is about 10.3. The cycle of drag force
coincides with the cycle of motion. The peak of lift forces in frequency is seen
to appear only once. However, the dominant frequency is ω = 1.23 , which
means that the dominant time cycle of lift force is T = 5.1. The maximum
lift force is appeared twice during one cycle motion of the cylinder. This fact
coincides with the characteristics of the fundamental lift frequency observed by
other researchers (Table 7.3).
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Figure 7.31 Power spectra of drag and lift forces of flow around a circular cylinder in oscil-
latory motion for KC = 10, β = 20.



7.5 Oscillating Circular Cylinder Problems 309

7.5.4.3 Case 3: KC = 16, β = 62.5 (Re = 1000)

In this case, the vortex shedding mechanism is similar to one in the previous
cases, but the resulting flow around the oscillating cylinder is more complex
due to the larger KC. According to Williamson (1985)(Table 7.1), the remark-
able feature of the flow is that double-pair vortex is shedding. The regime of the
present parameters is between the regime F and the regime G as shown in Fig-
ure 7.25 . This regime appears to be similar to the transverse vortex street, but
the direction of the flow may change intermittently, into longitudinal, oblique,
and transverse direction.

Figure 7.32 shows irregular switching of flow convection pattern formed
by double-pair vortex. Figure 7.33 shows the time history of drag coefficient
and lift coefficient. With the Fourier transformation, the results are shown in
Figure 7.34 . In this figure, the peak of drag forces in frequency domain appears
once at ω ≈ 0.38. The time cycle of cylinder motion is about 16, and the
dominant time cycle of drag force in Figure 7.34 is about 16.5. The cycle
of drag force coincides with the cycle of motion. The peak of lift forces in
frequency appears once. The fundamental frequency is ω = 1.15, namely, the
dominant time cycle of lift force is T = 5.46. The maximum lift force appears
three times in one cycle motion of the cylinder. This fact coincides with the
characteristics of the fundamental lift frequency (see Table 7.3).

Figure 7.32 Double-pair vortex convection pattern of flow around a circular cylinder in
oscillatory motion at T = 192.6 for KC = 16, β = 62.5.
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Figure 7.33 Time history of drag and lift forces of flow around a circular cylinder in oscilla-
tory motion for KC = 16, β = 62.5.
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Figure 7.34 Power spectra of drag and lift forces of flow around a circular cylinder in oscil-
latory motion for KC = 16, β = 62.5.
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