CHAPTER 7. LINEAR ALGEBRA

X = B2 XE2E O|fE, FEHM &

Engineering Math, 7. Linear Algebra



Contents

7.1 Matrices, Vectors : Addition and Scalar Multiplication
7.2 Matrix Multiplication

7.3 Linear Systems of Equations. Gauss Elimination

7.4 Linear Independence. Rank of Matrix. Vector Space

7.5 Solutions of Linear Systems : Existence, Unigqueness

7.6 Second- and Third-Order Determinants

7.7 Determinants. Cramer’s Rule

7.8 Inverse of a Matrix. Gauss-Jordan Elimination

Engineering Math, 7. Linear Algebra



/.1 MATRICES, VECTORS -

ADDITION AND SCALAR
MULTIPLICATION




Matrices

Matrix : a rectangular array of numbers (or functions)

enclosed in brackets.
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Matrices

We shall denote matrices by capital boldface letters A, B, C, ===, or by writing
the general entry in brackets ; thus A=[a;], and so on. By an m x n matrix (read

m by n matrix) we mean a matrix with m rows and n columns —rows come
always first!

m X n is called the size of the matrix. Thus an m x n matrix is of the form

A, A, &,
d d d
A:[ajk] _ 21 22 2N .(2)
_aml a‘m2 amn_

a), Seo. | |
5 National | §
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Matrices
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Vectors

Matrix : arectangular array of numbers (or
functions) enclosed Iin brackets.

Vector : a matrix with only one row or column.

We shall denote vectors by lowercase boldface
letters a, b, -~ or by its general component In
brackets, a=[a;] , and so on.

column vector

Examples) row vector
71 N
a=(a, )@, )(a,} L
- N v N_U b_'/:)\
— 5 )l
Components (entries) )_ <
)
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Matrices

Ex 1) Linear Systems, a Major Application of Matrices

In a system of linear equations, briefly called a linear system, such as
4X, 46X, +9X, —|6 :

6%, —2X, —:201
5% —8X, + X, —10'

the coefficients of the unknowns x;, x,, x; are the entries of the coefficient
matrix (Al 3A), call it A4,

4 6 9 4 6 9 6]
A = 6 O — 2| . Thematrix ;\: 6 O _9 :20:
5 -4 1 5 -8 1 110!

is called augmented matrix (B 7t 3) of the system.

We shall discuss this in great detail, beginning in Sec. 7.3
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Matrices

Ex 2) Sales Figures in Matrix Form

Sales Figures for Three products I, II, lll in a store on Monday (M),
Tuesday (T), - may for each week be arrange in a matrix.

M T W Th F S
400 330 810 0 210 470] |
A=| 0 120 780 500 500 960 II.
100 0 0 270 430 780 Il

If the company has ten stores, we can set up ten such matrices, on for
each store. Then by adding corresponding entries of these matrices we
can get a matrix showing the total sales of each product on each day.

lationa,
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Matrix Addition and Scalar Multiplication

Equality of Matrices

Two matrices A=[a;,] and B=[b,] are equal, written A=B, if and only if they have
the same size and the corresponding entries are equal, that is, a;;=b,;, a;,=b,5,
and so on. Matrices that are not equal are called different. Thus, matrices of
different sizes are always different.

Ex3) Equality of Matrices

5 i ;
National 10 |
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Matrix Addition and Scalar Multiplication

Addition of Matrices

The sum of two matrices A=[g;] and B=[b;] of the same size is written A+B and
has the entries g, + b, obtained by adding the corresponding entries of A and B.
Matrices of different sizes cannot be added.

Ex4) Addition of Matrices and Vectors

-4 6 3 5 -1 0 1 5 3
If A= and B = - then A+B= .
0O 1 2 3 1 O 3 2 2

If a=[5 7 2] and b=[-6 2 0] then a+b=[-1 9 2]
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Matrix Addition and Scalar Multiplication

Scalar Multiplication (Multiplication by a Number)

The product of any m x n matrix A=[a;,] and any scalar c (number c) is written cA
and is the m x n matrix cA=[ca;] obtained by multiplying each entry of A by c.

Ex5) Scalar Multiplication

2.7 -1.8] 27 18
f A= 0 09 |, then -A=| 0 -09
_90 —4_5_ __9_0 45_ Zzero matrix
(3 -2 [0 o
10 ! :
gAz 0 1| O0-A=|0 0}
10 -5 10_0]
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0 : zero matrix (of size m x n matrix)

Rules for Matrix Addition and Scalar Multiplication

(a) A+B=B+A

3 <(b) (A+B)+C=A+(B+C) (written A+B+C)
(c) A+0=A
(d)  A+(-A)=0

((a) c(A+B)=cA+cB

(b) (c+k)A=cA+kA

€)  c(kA)=(ck)A (written ckA)
(d) 1A = A

(4) -




7.2 MATRIX MULTIPLICATION

’33';{'8 ';t‘ Seoul

L BT - National 14
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[mﬁn] [n|§< r] = [mC§< r]

Multiplication of a Matrix by a Matrix

n J:l,...’m
C i :Zajlblk = a0y +a;,b, +---+a;0, - (1) (1
— =1---,p
n=3 p=2 p=2
Al A ( 3
e N 7 \ o T
A, G, Q3 (|b, b, e
C C
o_ad | B as|lb, b, lr=9=" “|in-4
- C;; C
dy; dg, dag b31 b32 31 V32
a4l a42 a'43 - C4l C42 =
L |

Cyy =50, + a221321 + a23b31

#
tiona
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[mﬁn] [n'?é r] = [m(i r]

Multiplication of a Matrix by a Matrix

Ex 1) Matrix Multiplication
'3 5 -1]|2 -2 3 1| [22 -2 43 42

AB=|4 0 2|5 0 7 8|=26 -16 14 6
-6 -3 2|9 -4 1 1| |-9 4 -37 -28

6. =3-245.5+(<1)-9=22

The product BA is not defined.




A B = C
Multiplication of a Matrix by a Matrix  n.nj s =mxn

Ex 1) Matrix Multiplication
4 21||3 B 4.3+2-5 B 22
1 8||5| |1-3+8:5| |43
3114 2 | |
is not defined.
5111 8

Ex3) Products of Row and Column Vectors

1 1] '3 6 1]
3 6 1]|2|=[9] 213 6 1]=|6 12 2|
4] 4 12 24 4




[m&n] e r] = [kr]

Multiplication of a Matrix by a Matrix

Ex 4) CAUTION! Matrix Multiplication is Not Commutative (Z7}Hd9)),
AB#BA in General

1 1 -1 1
A= B=
Loo 100} {1 —}

1 1 1/-1 1] [0 O
AB = —
1100 100“1 -1 0 o}

Commutative rule (! 24 %))

—1 171 17 [99 99
BA = _
1 - Hloo 100| |99 —99}
. AB = BA

It is interesting that this also shows that AB=0 does not necessarily imply BA=0 or A=0 or B=0.




Properties of Matrix Multiplication

(@)  (kA)B=k(AB)=A(kB)| (written KAB or AkB)
(b) A(BC)=(AB)C (written ABC)

(c) (A+B)C=AC+BC
(d) C(A+B)=CA+CB

(2) -

(2b) is called the associative law (ZgHg{&!)

(2c) and (2d) is called the distributive law ({2HHE&l)
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A B = C
Properties of Matrix Multiplication Len ferd =lme<rd

n
Cik = Zajlblk = ajlblk +aj2b2k "’"""ajnbnk -+ (1)
1=1

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

Cjk=abk(3) J:111m1 k:]-)"p

where aj . the jth row vector of A
b, : the kth column vector of B, so that in agreement with (1),

oy,
bnk

SRS
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Properties of Matrix Multiplication

Ex 5) Product in Terms of Row and Column Vectors

If A=[a;] is of size 3x3 and B=[b;,] is of size 3x4, then
ab, ab, ab, ab, S
AB=|ab, ab, ab, ab,|--(4). |A=|a| B=[o, b, b, b,]
a,b, ab, ab, a,b, —-

Parallel processing of products on the computer is facilitated by a variant of (3)
for computing C=AB, which is used by standard algorithms.

In this method, A is used as given, B is taken in terms of its column vectors,
and the product is computed columnwise; thus,

AB=Alb, b, - b |=[Ab, Ab, - Ab, |- (5).

Engineering Math, 7. Linear Algebra Mo



C; =a;b,

Properties of Matrix Multiplication

Ex 5) Product in Terms of Row and Column Vectors
ab, ab, ab, ab,
AB=|ab, ab, ab, ab,|--(4)
a,b, ab, ab, ab,

AB=Alb, b, - b |=[Ab, Ab, - Ab, |- (5).

Columns of B are then assigned to different processors (individually or
several to each processor), which simultaneously compute the
columns of the product matrix Ab,, Ab,, etc.

Engineering Math, 7. Linear Algebra Iniv.



Properties of Matrix Multiplication

Ex 6) Computing Products Columnwise by (5)
AB=Alb b, --- b, |=|Ab, Ab, --- Ab_ |---(5).

4 1|13 0 7 11 4 34
AB = =
B MR i
To obtain AB from (5), calculate the columns
4 1|37 [11][4 1]0] [4][4 1][7] [ 34
5 2||-1| |-17[ |-5 2||4| |8] |-5 2]||6] |-23

of AB and then write them as a single matrix, as shown in the second equation
on the right.




Applications of Matrix Multiplication

Ex 11) Computer Production. Matrix Times Matrix
Supercomp Ltd produces two computer models PC1086 and PC1186.

Matrix A : the cost per computer (in thousands of dollars)
Matrix B : the production figures for the year 2010 (in multiples of 10,000 units)

Find a matrix C that shows the shareholders the cost per quarter (in millions of
dollars) for raw material, labor, and miscellaneous.

PC1086 PC1186 Quarter
1.2 1.6 |[Raw Components 2

1 3 4
A=|0.3 0.4 |Labor g_|3 8 6 39 Pclose
6 2 4 3

_0.5 0.6_ Miscellaneous

PC1186
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Applications of Matrix Multiplication

Ex 11) Computer Production. Matrix Times Matrix

PC1086 PC1186 Quarter
(1.2 1.6 |Raw Components L 2 3 4
- " L _[3 8 6 9]ecue
A=|0.3 0.4 |Lap =
s 6 2 4 3|pciiss
_0.5 O.6_Miscel|aneous B -
Q? Quarter
1 2 3 4

13.2 12.8 13.6 15.6 | Raw Components
C=AB=| 3.3 3.2 3.4 3.9 | Labor
i 5.1 5.2 5.4 6.3 | Miscellaneous

Engineering Math, 7. Linear Algebra



Applications of Matrix Multiplication

Ex 12) Weight Watching. Matrix Times Vector

A weight-watching program

A person of 185lb burns 350 cal/hr in walking (3 mph)

Bill, weighing 185 Ib, plans to exercise according to the matrix shown.

500 cal/hr in bicycling (13 mph)
950 cal/hr in jogging (5.5 mph)

Verify the calculations (W = Walking, B = Bicycling, J=Jogging).

MON
WED
FRI
SAT

W B J

1.0 0 05
1.0 1.0 05
15 0 05

350
500
950

20 15 1.0

825
1325
1000

2400

*11b (TRE) = 0453592 kg
Engineering Math, 7. Linear Algebra



Applications of Matrix Multiplication

Ex 13) Markov Process. Powers of a Matrix. Stochastic Matrix

Suppose that the 2004 state of land use in a city of 60 mi? of built-up area is
C : Commercially Used 25 %o,
| : Industrially Used 20 %,
R : Residentially Used 55 %o.

Transition probabilities for 5-year intervals : A and remain practically the same
over the time considered.

Find the states 2009, 2014, 2019

FromC Froml|l FromR

To C 0.7 0.1 O
A: Tl | 0.2 0.9 0.2
ToR _0.1 O 0.8

* Markov Process: 0|2 &E{7} 0tAH MEfQt= SEIMOZ TR HE{Of QoA T A™ECHE A S Seou

atl
Engineering Math, 7. Linear Algebra L;\ Iniv.
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Applications of Matrix Multiplication

Ex 13) Markov Process. Powers of a Matrix. Stochastic Matrix

A : stochastic matrix (EH=2E) : a square matrix

all entries nonnegative
all column sums equal to 1

Markov process : the probability of entering a certain state depends only on the
last state occupied (and the matrix A), not on any earlier state.

FromC Froml|l FromR

wc[07 01 07

solution. A To | 0.2 0.9 0.2

area °R1 0.1 O 0.8

c [0.7-25+0.1-20+ 0-55] [0.7 0.1 O |[25] [19.5
1 10.2-25+0.9-20+0.2-55 |={0.2 0.9 0.2] 20 34.0
= |0.1-25+ 0-20+0.8-55| |01 O 0.8]55| |465

* Markov Process: 0|2 2Ej7 0}H ME{Qts SEMOZ SAX| AEHO QJsiMEt 2™ ECH= 2

Engineering Math, 7. Linear Algebra
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Applications of Matrix Multiplication

A

ToC
Tol
ToR

FromC From| FromR
0.7 0.1 e
0.2 0.9 0.2

0.1 0) 0.8

Ex 13) Markov Process. Powers of a Matrix. Stochastic Matrix

area
C
I
R

We see that the 2009 state vector (y) is the column vector

y

(0.7-25+0.1-20+ 0-55]
0.2:25+0.9-20+0.2-55 | =

10.1-25+ 0-20+0.8-55

195~ 25
—134.0 |= Ax=A 20
465 55

0.7 01 0 |25] [19.5]

02 09 02|20|=|34.0|

The sum of the entries of y is 100%.

01 0 08]55] 465

The vector (x) is the given 2004 state

vector

Similarly, you may verify that for 2014 and 2019 we get the state vectors.

z=Ay=A(Ax)=A’x=[17.05 43.80 39.15[
u=Az=A(Ay)=A%=[16.315 50.660 33.025[

Q?
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a; & ay,
Transposition (T X]) PRI
Transposition of Matrices and Vectors [ 8ny Ay

The transposition of an m x n matrix A=[a,] is the n x m matrix AT (read A

transpose)
: the first row of A as its first column
the second row of A as its second column, and so on.

Thus the transpose of Ain (2) is AT:[akj] , Written out

As a special case, transposition converts row vectors to column vectors and

conversely

Al = [akj] —

Ay
Ay,

Ay

aZl

a22

n

ml

m2

mn

Engineering Math, 7. Linear Algebra




Transposition

Ex 7) Transposition of Matrices and Vectors

P
-8 0

1 0
0] [3 8
1] |0 -1

=6 2 3]

> -8 1
If A= , then A' =
4 0 O
Comparing this A little more compactly, we can write
r |5 4]
5> -8 1 3
s 0 o |70 Y
1 0] 8
6 6]
6 2 3] =|2] 2
L - _3_

Engineering Math, 7. Linear Algebra



Rules for transposition

Caution! Note that in (d) the transposed matrices are in reversed order.

(a)
(b)

(A" =A
(A+B) =A" +B'

(c) (cA")=cA'
(d) (AB)" =BTA"

Engineering Math, 7. Linear Algebra



Special Matrices

Symmetric matrix (CHEAHE)
T
A=A, (thus a;=a)

Skew-symmetric matrix (HFCHZI )

A' =-A, (thus a, =—a, hence a; =0).

Ex 8) Symmetric and Skew-symmetric Matrices

20 120 200 0 1 -3

A=[120 10 150 B=|-1 0 -2

200 150 30 '3 2 0
Symmetric matrix Skew-symmetric matrix

"8,;::“ Seoul 33
LBy . National |
£:J\ Univ. ] |
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Triangular Matrices

Ex 9) Upper and Lower Triangular Matrices

1 3| 1 4 2 2\0 0 3N0 0 0
0N\2 | 3 2|, |-8 -1.0| 9 -3~0 0
0 0\6 7 6 8 1 0 20
) A _ 1 9 3 6
Upper Triangular Matrices Lower Triangular Matrices -

Upper triangular matrices (9 &HZsied)
" square matrices
= nonzero entries only on and above the main diagonal
= any entry below the diagonal must be zero.

Lower triangular matrices (O}2jAZFsHE)
= nonzero entries only on and below the main diagonal

= Any entry on the main diagonal of a triangular matrix may be zero or not.

’f‘{;f'f'a’é? Seoul
¥ tiona I
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Diagonal Matrices

Ex 10) Diagonal Matrix D. Scalar Matrix S. Unit Matrix I.

R R RY

>
* *
> ¢ — 0. — ¢ — 0._ ¢ —
— . . .
* o *
* ‘e

. .
9 *
4 ‘0 * ‘0
* * * *
. . . .
1. - ., (A
* * * *
* * e *
. . Po .
. - . -
. . . .
* > >
% ‘e %
— . — . —
— ‘Q ‘.. — ‘Q C ‘. —
* > ) * )
- - *
- . -
LN LN .
*e *e *
> 03 -

*
*
*
*
*
* *
‘0
*
*
*
*
*

g
g o
o o
* *
* *
R °
*
* *
3 N
* *
. K =
e Q
. *
. @

Diagonal Matrices (CHZt2H&)
= square matrices
= nonzero entries only on the main diagonal
= any entry above or below the main diagonal must be zero.
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Diagonal Matrices

O

I

o

|

w

(@)

n

[

-y
O O O

o O O
[
o o -

Q Q
* 0
Q Q
Q Q
Q Q
0 Q
Q °
*
Q
Q
Q Q
Q
0
A
o -

S : scalar matrix (A Zt2} &)

AS =SA=CA.--(12).

| :unit matrix (or identity matrix) (S| SE)
a scalar matrix whose entries on the main diagonal are all 1

Al=1A=A...(13).

,ij.,:r ar A Seou,
BTy o National | 36
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REFERENCE: VECTORS AND LINEAR EQUATIONS™

*Strang G., Introduction to Linear Algebra, Third edition, Wellesley-Cambridge Press, 2003, Ch.2.1, p21
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Vectors and Linear Equations

The import problem of linear algebra is to solve a system of equations.

X—-2y=1
First example) 3x+2y =11
3Xx+2y =11
V4 Slopes are important in calculus and
this is linear algebra.
1 x-2y=1 The point x =3,y =1 lies on both lines.

This is the solution to our system of linear
equations.

v

1
3

o solution of first equation The Ieﬁ flgurg shows two lines meeting
e solution of second equation at a single point.

Engineering Math, 7. Linear Algebra A= Univ.



Vectors and Linear Equations

Linear system (MY HEYAEAL can be a “vector equation”. If you
separate the original system into its columns instead of its rows, you get
This has two column vectors on

1 —2 1 the left side. The problem is to
X +Y = = find the combination of those
3 2 11 vectors that equals the vector on
3 the right.
We are multiplying the first column by x and the second column by vy,
{9 and adding. With the right choices x =3,y =1, this produces 3

(column 1) + 1 (column 2) = b.

The left figure combines the column vectors on the left
side to produce the vector b on the right side.

H|
3x+2y=11
Y
X—-2y=1
X: 1 x-2y=1
A combination of columns produces the right ) - 3X +2 y =11
side (1, 11). 1 N

) i Seoul i |
i National =~ 39
Engineering Math, 7. Linear Algebra A= Univ. i |



. . X—2y =1
Vectors and Linear Equations 3x+2y =11

AT

The left side of the vector equation is a linear combination of the
columns.

The problem is to find the right coefficients x =3 and y = 1.

We are combining scalar multiplication and vector addition into one

step. :
. L 1 —2 1
Linear combination 3| |[+1 =
3 2 11

‘Ej lation.
Engineering Math, 7. Linear Algebra == Univ.



Vectors and Linear Equations

The three unknowns X, y, z. The linear equations Ax =b are

X+2y+32=06
2X+95y+272=4
OX—-3y+ z=2

The right figure shows three planes meeting at a single point.
Z L Z L
/ 6X—-3y+ z2=2 /{
X+2y+32=06 0
y K
X+5y+2z=4
X X

The third equation gives a third plane. It cuts
the line L at a single point. That point lies on
all three planes and it satisfies all three
equations.

The usual result of two equations in
three unknowns is a intersect line L of
solutions.

i
]
Engineering Math, 7. Linear Algebra £



Vectors and Linear Equations

X+2y+32=06
2X+95y+22=4

- 6X—3y+ z2=2

The left figure starts with the vector form of the equations :

1] | 2] [3] [6]
X|2|+Yy| S|+z|2|=|4
6] [3] |1] |2]

The left figure combines three columns to

1 produce the vector (6,4,2)

2 |=columnl
6

(x,y,2)=(0, 0, 2) because 2(3,2,1) =(6,4, 2) =b.

Z L
5| =column 2 6x-3y -+ 0
-3
X The coefficient we need are —-
Xx=0,y=0and z=2. This e
b=|4|=2 times column3 Is also the intersection
2 point of the three planes in

the right figure. X

ationa
Engineering Math, 7. Linear Algebra ‘LJ\ iv.



X+2y+3Z2=6
2X+5y+2z=4
6X—3y+ z=2 (3

Vectors and Linear Equations

1 2 3|[x]| |6
Matrix equation : AX=1|2 5 2 Y| = 4=Db
6 -3 1|z |2

Coefficient matrix unknown vector

We multiply the matrix A times the unknown vector x to get the right side
b

Multiplication by rows : AX Multiplication by columns : Ax is
comes from dot products, each a combination of column
row times the column x : vectors :
(row1)ex | Ax = x(column 1)
Ax=|(row2)ex | + Yy (column 2)+ z (column 3)
| (row3)ex

€0
"1 ationa
Engineering Math, 7. Linear Algebra £



Vectors and Linear Equations AXF ; TH

Ax = x(column 1) + y (column 2)+ z (column 3)

When we substitute the solution x = (0, 0, 2), the multiplication Ax
produces b :

1 2 3|0 6 |
5 21(/0|=2 timescolumn3=|4|
6 -3 1] 2] 2]

The first dot product in row multiplication is (1, 2, 3) * (0, 0, 2) = 6. The
other dot products are 4 and 2.

Multiplication by columns is simply 2 times column 3.

AX IS a combination of the columns of A.

E]"\‘ eoul
lationa,
Engineering Math, 7. Linear Algebra



7.3 LINEAR SYSTEMS OF

EQUATIONS. GAUSS
ELIMINATION




Linear System, Coefficient Matrix, Augmented Matrix

A linear system (MEARIAE AN of m equations in n unknowns X, , X, is a set
of equations of the form

~ ~ s~ n- "N
) \ e oo —1 |
(\aELxl ﬂﬁz,xz + -H\ai’n,Xn s /given N
~~ ~~  ~ I I .
N = N = N - I o do (1)
.............................. | | d;q, Ay,
A 4@ X, 4@ X =D Beby )
— I 17 m
(Gmy™1 T (Cmgy (Gmn?n T Pm)
PR Uf b,==b_=0, homogeneous system (&l |
4 coefficients | WHAN else nonhomogeneous system (H] :
T ee T ~ | AP AL, !

The system is called linear because each variable x; appears in the first power
only, just as in the equation of a straight line.

Engineering Math, 7. Linear Algebra



Linear System, Coefficient Matrix, Augmented Matrix

A X+, X, +--+ QX :bl
8, X, +8,,X, +:-+a,. X =D, (1)

a X +a X, +--+a X =D

m

A solution of (1) is a set of numbers x;,»+, X, that satisfies all the m equations.

A solution vector of (1) : a vector x whose components form a solution of (1).
If the system (1) is homogeneous — the trivial solution (xp&#t &) x,=0,- , x,=0.

Matrix Form of the Linear system (1).

Ax=b---(2)

Engineering Math, 7. Linear Algebra Mo



Linear System, Coefficient Matrix, Augmented Matrix

Ax=Db---(2)
the coefficient matrix A=[a;] : m x n matrix
n,
n I_
m L ail a12 aln
d a a
A=l & 22 2n Cand x=
:aml am2 amn_

= A s not azero matrix.

A X tapX, +--+ X, :bl

a, X, +aynX, +---+a

X, =bh,

2n*n

..............................

cand b=

= X has ncomponents, whereas b has m components.

Engineering Math, 7. Linear Algebra



Linear System, Coefficient Matrix, Augmented Matrix

ap X +a, X, +- -+ X, :bl

Augmented matrix (H7I4 &) Ak At + b, <y |
all a12 o aln E bl A X + A, X, +oo+ a8, X, =bm
~ d a e A, !
21 22 2N
A= ;
_aml am2 a‘mn bm_
The dashed vertical line could be omitted.
The last column of A does not belong to A.
The augmented matrix A determines the system (1) completely because it
contains all the given numbers appearing in (1).
Engineering Math, 7. Linear Algebra Lajif‘gt/ S 4 9 ,,,,,,,



Linear System, Coefficient Matrix, A ugmented Matrix

Ex 1) Geometric Interpretation. Existence and Uniqueness of Solutions

If m=n=2, we have two equations in two
unknowns Xy, X,

A X) +appX, = bl
Ay X; T ayX, = bz

If we interpret x,, X, as coordinate in the x; X, -

plane,

= each of the two equations represents a
straight line,

= (X4, X,) is a solution if and only if the point P
with coordinates Xy, X, lies on both lines.

Hence there are three possible cases :

If the system is homogenous (b,=b,=0), case (c)
cannot happen

(a) precisely one solution if the lines intersect

X2
A X +X, =1
2X, =X, =0
T~ X,

3
(b) Infinitely many solutions if the lines coincide

X, X, +X, =1
N\ 2%, +2X, =2
[ X,
(c) No solution if the lines are parallel
X2
\ X +X,=1

\\ X +X,=0

N T X,

Engineering Math, 7. Linear Algebra



Linear System, Coefficient Matrix, Augmented Matrix

Ex 1) Geometric Interpretation. Existence and Uniqueness of Solutions

(b) Infinitely many solutions if the lines : if we choose a value of x,, then the
coincide : corresponding values of x, is uniquely

: determined.

X, X, +X, =1

2X1 + 2X2 =2 X, : independent variable
: or design variable,
: X, : dependent variable.

1 X,
: There would be many solutions,
Changing the form of the equation as : S0 we choose the best solution to obtain proper

: result.
X, =1-X%,

Engineering Math, 7. Linear Algebra



Linear System, Coefficient Matrix, Augmented Matrix

Ex 1) Geometric Interpretation. Existence and Uniqueness of Solutions
Pro 8y X + 8, X, +a3X; = b,

Three equations in three unknowns interpreted as
Py - @y X + 85X, + 853X = bz

planes in space
P Ps 1 g% + @5, X, + 83X, =Dy

Unique solution No solution

P,

No solution

Engineering Math, 7. Linear Algebra



Gauss Elimination and Back Substitution

< Gauss Elimination (7}5$2 £7{%¥) and Back Substitution (& X|&})

= A standard elimination method for solving linear systems
= |f a system is in “triangular form”, we can solve it by “back
substitution”.

Triangular Matrices

1 4 212 0 0]
0 3 2,|-8 -1 0
0 06||7 6 8

Upper triangular matrix ~ Lower triangular matrix

'ona,
Engineering Math, 7. Linear Algebra == Univ.



Gauss Elimination and Back Substitution

e 1 (— B
Xl X2 X3 - rowz + 1 ''''''''''''' 2 1 ...... % "1
3X; - Xy - Xg= 2 owix(=9) 7 £3 ZL.zll %, | =2
NI o Nl B
: 3Xq = Xy = X3= 2
rowa + 1) -3%,6%-3%,=-3
row1x(—3) ) TP
: '7X2 '4X3: '1
_ ..................................................... /_ — - _\
X{+2X,+X3= 1 1 2 1|x 1
'7X2 '4X3 — '1 O _7 —4 X2 —1
Engineering Math, 7. Linear Algebra Lﬂj:%?;"a/ 54



Gauss Elimination and Back Substitution

X1+ 2X,+ X3=1 1 2 1]|x 1
3X1= Xp—X3=2 {3 -1 1}{@}{2]
2X; + 3X, - X3 = -3 2 3 —1fx] [-3
4 ) R o )
Xp+ 2%+ X3= 1 12 Liax L
2%, 43X, - X, = -3 5 _1 X, _3 ow3 +
| A N\ E—
L 2X+3X, - X3 = -3
row3 + _|_) 2X1 -4X, -2X5=-2
row1x(—2) X, -3x= -5
- \ .................................... - —
X, + 2%, + X3 = 1 2 19X 1
N R 0 -7 —4|x,|=|-1
- X, - 3%y = -5 0 -1 -3 x| |-9]
\ Y N /

'ona,
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Gauss Elimination and Back Substitution

X1+ 2X,+ X3=1 1 2 1]|x 1
3X1= Xp—X3=2 3 -1 -1|x,|=]| 2
2X; + 3X, - X3 = -3 2 3 —1fx] [-3
_ - D
Xp+ 2%+ X3= 1 1 2 17x 1
'7X2 '4X3 - '1 0 _7 _4 X2 - —1
X -3X. = - row 2 < row 3 0 -1 -3|x -5
N X;=3%3= ) N bl
4 ) - D
X+ 2%+ X3= 1 1 2 17x 1
'X2 '3X3 — '5 0 _l —3 X2 = —5
- -4X, = - 0 -7 —-4|x —-1
L Xy =4X4 1; 9 AL L7)
row 2x(—1)
_ ~ D)
X+ 2%+ X3= 1 1 17 x, 1
“7X., -4X., = - 0 -7 —4|«x -1
L Xy -4X4 lj N L L7
Ty

a
Engineering Math, 7. Linear Algebra E'J\ Iniv.



Gauss Elimination and Back Substitution

X1+ 2X,+ X3=1 1 2 1]|x 1
3X1= Xp—X3=2 {3 -1 1}{@}{2]
2X; + 3X, - X3 = -3 2 3 —1fx] [-3
4 N - Y
X+ 2X,+ X;= 1 1 2 1 |x 1
Xy +3X3=5 0 1 3 |X|=
“TX, -A%, = -1 0 -7 —4|x,| [-1
\_ / \_ -
row 3+ row 2x7
4 N - o
X;+2X,+ X3= 1 1 2 1|x 1
X, +3X3=5 0 1 3|X,|=
17x,= 34 0 0 17(x,| |34
N / N T

The last equations and matrix are equal to given original equations.

Engineering Math, 7. Linear Algebra



Gauss Elimination and Back Substitution

g X1+ 2X, + X5 = 1\
X, +3X3=95
N 17X3=34)
34
Xg=—==2
17

>
D
X3

Xo +3X; =X, +3-2=9

X, =-1

-

-

o O -

O DN

34

“Back substitution”

X, +2X, + X, =%+2-(-)+2=1

soXx =1

Engineering Math, 7. Linear Algebra



Gauss Elimination and Back Substitution

Since a linear system is completely determined by its augmented matrix,
Gauss elimination can be done by merely considering the matrices.

augmented matrix

: I 2 )
1 2 17x] [1 1 2 1]

3 -1 -1x|=|2|| EZ=»| |3 -1 -1

2 3 -1|x| |-3 2 3 -1! -3
\_ - N ~
- Y n )
1 2 17 x] [1 1 1

0 1 X, |=| 5 :> |

0 0 17]x,| |34 0 0 17 |34
\_ - T N —

lationa,
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Elementary Row Operations.

Row-Equivalent CESY) System

Elementary Row Operations for Matrices :
1) Interchange of two rows
2) Addition of a constant multiple (&) of one row to another row

3) Multiplication of a row by a nonzero constant ¢

Elementary Operations for Equations :
1) Interchange of two equations
2) Addition of a constant multiple of one equation to another equation

3) Multiplication of an equation by a nonzero constant ¢

Engineering Math, 7. Linear Algebra



Elementary Row Operations.

Row-Equivalent (3 EX|) System

—> Solution set of S,
® \
Row Operations Same
®
@

S, —> Solution set of S,

“a linear system S,
is row-equivalent to
a linear system S, ”

@ : “elimination” @ : Solution of S, found ->® :/Solution of S, |found

goal

The interchange, addition, and multiplication of two equations does not alter
the solution set. Because we can undo it by a corresponding subtraction.

A linear system S, is row-equivalent to a linear system S, if S; can be obtained
from S, by row operations.

Because of this theorem, systems having the same solution sets are often
called equivalent systems.

No column operations on the augmented matrix are permitted because they
would generally alter the solution set.

):l:'lE] r«:‘ Seoul | |
¢ B National = @1
Engineering Math, 7. Linear Algebra SN Univ. L



Gauss Elimination :

Jhe Three Possible Cases of Svstems ____________________

case 1: Gauss Elimination if Infinitely Many Solutions Exist

three equations < four unknowns

30 20 20 -50:80
06 15 15 -5427
12 -03 -03 24 121

3.0x, +2.0x, +2.0x;, —5.0x, =8.0
0.6x, +1.5x, +1.5x, —5.4x, =2.7
1.2x,—0.3X, +0.3x, +2.4x, =2.1

@ Row2-0.2*Row1l @
— . - Row3-0.4*Row1
30 20 20 -50!80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, —4.4x, =1.1
0 -11 -11 44 1-11 ~1.1x, -1.1x, + 4.4x, = -1.1
@ Row3+Row?2 @
30 20 20 -50:80 3.0% +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, —4.4x, =1.1
0 0 0 0 0] 0=0

Engineering Math, 7. Linear Algebra



Gauss Elimination :
Jhe Three Possible Cases of Svetems

case 1 : Gauss Elimination if Infinitely Many Solutions Exist

30 20 20 -50:80] 3.0x, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11

1.1x, +1.1x, — 4.4x, =1.1
0 0 0 0 0| 0=0

Back substitution.
From the second equation : X, =1— X, +4X,

From the first equation : x, =2 -,

Since X; and x, remain arbitrary, we have infinitely
many solutions.

If we choose a value of x; and a value of x,, then the corresponding values of x,
and x, are uniquely determined.

’33'*{8,, eou
Y ati
Engineering Math, 7. Linear Algebra A



Gauss Elimination :
Jhe Three Possible Cases of Svetems

case 2 : Gauss EIimination If no Solution Exists

32 1:3 (3%, +2X, + X, =3
2 1 1] O 2%+ X, + X =0
6 2 4 6| (16X, +2X, +4X%; =6
o o
3 2 1.3 (3X, + 2%, + X, =3
: Row2-2/3*Row1
0 -1/3 1/3}-2 ¢ =1/3%,+1/3x, =-2
| Row3-2*Row1
0o -2 20 - 2%+ 4x,=0
o o
3 2 1 3] (3x, + 2X,+ X, =3
| Row3-6*Row3
0 -1/3 1/3 - 4 —1/3x,+1/3x, =2
0 0 012 k 0=12

The false statement 0=12 show that the system has no solution.

) i Seoul
E'J National |
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Row Echelon Form and Information From It

Row Echelon Form

At the end of the Gauss elimination (before the back substitution)
the row-echelon form (8 AICI2|E#) of the augmented matrix will be

a8, a, e a, | b
C,, e C,, b,
zero K. k. b |---(8)
b,
Zero o
_ b,

(r: no. of equations, n:no.of unknowns, m: no.of rows)

Here,r<mand a,#0, c,,#0, -+, k,.# 0, and all the entries in the blue triangle

as well as in the blue rectangle are zero.

Seoul

R Seou i |
e j ‘ National @5
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Row Echelon Form and Information From It

Row Echelon Form (r: no. of equations,

(a) Exactly one solution
ifr=nand b, b,,if present, are zero,

solve the nth equation corresponding to (8) (which is k. x,=b,) for x,, then the (n-1)st equation for X, _,
and so on up the line (back substitution).

n: no. of unknowns, m: no. of rows)

(b) Infinitely many solutions

if r<nand b, b, are zero,

to obtain any of these solutions, choose values of x,,,, **, X, arbitrary.

Then solve the rth equation for x,, then the (r-1)st equation for x,;, and so on up the line.

(c) No solution _ _
if r <m and one of the entries b,.,,---0,, is not zero, there is no solution.

n=3

r A N ni4 ni3
N ! N e ~N r N

r=3 -11 0 r=2[ |30 2.0 20 —5.0;8.0 r=2 iz 1 3
00 2590 1| ‘(\1.1 11 -4411 0)\-1/3 1/3} -2
00 o0 (]

X — X, +X =0 3.0x, +2.0x, +2.0x, —5.0x, =8.0 3+ 2X,+ X;=3

0-% +10%, + 25%; =90 0-x +1.1x, +1.1x, —4.4x, =1.1 —1/3X, +1/3x, =2
0-% +0-%, ~95% =—190 0-% +0-%, +0-%+0-%, =0.0 0-12
L 0-x+0-%x,+0-x,=0

i a )‘f Seoul I |
] National =~ 66
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7.4 LINEAR INDEPENDENCE. RANK OF
MATRIX. VECTOR SPACE

inear Algebra



Linearly independent vectors

7 If the point is at the origin, the equation
becomes
k ; 17 [o] [o0] 0
| Yy a 0|+b|1|+c/0{=0=|0
0 0 1 0

X 1Yy (o) (0) S -

The equation above is satisfied if and only if

1=|10],j=|1 k=0 a=h=c=0.
0/ \0) 1

We can express the location of the point

Then, i, j, k are linearly independent.

with i, j, k.
1) (0} (0
al+bj+ck=al0|+Dbl1 |+c| O
\0) \0) \1

'ona,
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Linear Independence and Dependence of Vectors

Given any set of m vectors a ), -+, 3, (with the same number of components),

a linear combination of these vectors is an expression of the form
cla(l) + cza(z) +--+ cma(m)

., Cy, v, Cy are any scalars. Now consider the equation.

Cla.(l) + Cza(z) + A + Cma(m) — O ...... (1)
When C1:C2:---:Cm:O
Vector a(l) y a(2) y" %y a(m) vectors linearly independent set or linearly independent.
i
Function Definition 3.1 Linear Dependence / Independence )
A set of functions T, (Xx), f,(X),..., T, (X)is said to be ‘linearly

dependent’ on an interval 1 if there exist constant C;, C,,...C,, not all zero
such that ¢, f,(xX)+c, f,(X)+---c, f,(X)=0

for every x in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be
‘linearly independent’

\ J

In other words, a set of functions is ‘linearly independent’ if the only constants for
¢, f,(x)+¢,f,(X)+---+c.f (x)=0
are C,=C,=---=C, =0

i a .r; Seoul ] |
LB National = Q9
Engineering Math, 7. Linear Algebra Je=K Univ. ! |



Linear Independence and Dependence of Vectors

Cla(l) + Cza(z) + °* + Cma(m) — O °°°°° (1)

If (1) also holds with scalars not all zero, we call these vectors linearly dependent, because
then we can express (at least) one of them as a linear combination of the others. For
instance, if (1) holds with, say, ¢;#0, we can solve (1) for a;:

(Some k’s may be zero. If a4,)=0, even all of them may be zero.)

Engineering Math, 7. Linear Algebra



Linear Independence and Dependence of Vectors

Ex 1) Linear Independence and Dependence

Vector

ay=[3 0 2 2]
a, =[-6, 42, 24, 54]
a4 =[21,-21, 0,-15]
6a, =[18, 0, 12, 12]
—%a(z) =[3,-21,-12,-27]

~ag =[-21,21, 0, 15]

1
6a, — Ea(z) —a, =[0,0,0,0]

The three vectors are
linearly dependent

Linear Systems

@ 3x+0-X,+ 2%, =2
@ —6Xx +42X,+24x, =54
21x, —21x, + 0-x,=-15
L Ox2+®@
[ 3%+ 0-X,+ 2%, =2
0-x, +42X, +28%, =58
21x -21%, + 0-X;=-15
L Ox(-1+6

.

[ 3%+ 0-X, + 2%, =2
0-x, +42x, + 28X, =58
| 0-%, —21x, —14x,=-29
J L @x(0.5)+®

3X+0-X,+ 2X, =2
0-x, +42X, +28%, =58
0-%+0-X,+0-%x,=0

The three equations are
linearly dependent

Matrix

(3 0 21213 0 2
6 42 24154 |16 42 24
21 -21 0 ;{-15]:|21 -21 O
'3 0 2! 213 0 2
0 42 28: 58 0 42 28
21 -21 0 ;-15]:|21 -21 O
(3 0 2 P23 0 2]
0 42 28 :58 |0 42 28
0 -21 -14;-29]:|0 -21 -14
(3 0 212 (3 0 2
0 42 28:58 0 42 28
0 0 0;0]] o o o]

The three rows are

linearly dependent

Engineering Math, 7. Linear Algebra




Rank of a Matrix

Rank (H =) of a Matrix
The rank of a matrix A

- “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank — 3 O 2 2 -
The A=|-6 42 24 54
matrix

21 -21 0 -15

has rank 2, because Example 1 shows that the first two row vectors are linearly
independent, whereas all three row vectors are linearly dependent.

Note further that rank A=0 if and only if A=0 (zero matrix).

Engineering Math, 7. Linear Algebra



Rank of a Matrix

MExample 1 I 1 -13) [ x#x-x%=3
. 2 _2 6 8 - 32X —2X, +6X, =8
Rank of 3 x 4 Matrix B
. . 3 5 -7 8 X, +5X, = 7%, =8
Consider the 3 x 4 matrix goxcae |
1 1 -1 3 (1 1 -1 3 X+ X, =X, =3
- 90 % —4X, +8X%, =2
10 4 8 2 2757
A=12 -2 6 38| 3 & o 3X, +5%, — 7%, =8
3 5 -7 8 B
Jox3re
. (1 1 -1 3 X, + X, =X, =3
With u,=(11 -1 3), u,=(2 -2 6 8), and 0% —4x. +8x. =2
Us=(3 5 -7 8) — 4u,-1/2u,+u,=0. 0= 8 2 O-x1+2x2 e
0 2 -4 -1) 2~ =
the set u,, uU,, u; is linearly dependent. L@x(0.5)+6
u, # c U, — Uy, U, is linearly independent. 1 1 -1 3 X, + X, =X, =3
Hence by Definition, rank(A) = 2. 0 -4 8 2 0-X —4X, +8X, =2
0 0 0 0 0-X+0-x,+0-%,=0
rank(A) = 2

‘Eﬂ tiona,
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Rank and Row-Equivalent Matrices

Theorem 1 : Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

A, is row-equivalent to a matrix A,

= rank is invariant under elementary row operations.

1 -1
-1 1
0 10
20 10

J

1 -1
0 10
0 O
0 O

1
-1
25

0

1
25
-95
0

30 20 20 -50]
06 15 15 -54
1.2 -03 03 24
30 20 20 -50°

0 11 11 -44
0 0 0 0

0

@NOO

2
1
2

-1/3 1/3

0

1]
1
4

0

Engineering Math, 7. Linear Algebra



Rank and Row-Equivalent Matrices

IZIExampIe 3 Solution) | Q ?
. - = |If we form a matrix A with the given
Linear Independence - yectors as rows,
D nden . = if we reduce A to a row-echelon
/ epe dence . form B with rank 3, then the set of
Determine whether the set of vectors @  vectors is linearly independent.
= If rank(A) <3, then the set of vectors
u,=<211> is linearly dependent.
u,=<0,30> |
u,=<312>
in R3in linearly dependent or linearly 211 row
independent. . A=|0 3 0 operatiors
312 T

S i |
L Nati al 75
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Rank in Terms of Column Vectors

Theorem 3 : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent
column vectors of A. Hence A and its transpose A" have the same rank.

Proof) Let Abean mx nmatrix of rank(A) =r
Then by definition of rank, A has r linearly independent rows which we

denote by v, -, Vi) and all the rows ag,, =, a,, of A are linear
combinations of those.

Engineering Math, 7. Linear Algebra



Rank in Terms of Column Vectors

3 by 3 matrix

let ra_nk A=3
d, a,
a21 a22

| 351 Ay

A

A5 G
Ay | =], |,
A3 | |83

3 (=rankA) Imearly independent rows (basis) :

V= :V11 Vio 13]
Vo =1Vy Vyp st]
Vi =|Va Vg V33]

1 all a12 a13 Cllv +C12V +Cl3v
A, | =] 8y Ay Ay | =|CyV;+CuV, +C5V;
a3 a‘Sl a‘32 a33 C31V +C32V +C33V
HHEE v,, v,, v,2| YA ECE BHE

A°| rank?} 30|22 3712|
independent S}LC}.

ny
o

282 Al WHEJ} o] &
HELDL (ex:a ,a,,a,)

£13
= At b—Ia1+ma2 +na,

rr
f

> JI

(I, m,n: const

<] a,,a,,a; & CtE basis (v, v,, v;,) 2 EHE

b=la, + ma, +na,

72 3719 basisE

HIE] (a,, a,, a;)= linearly

CHH 37H2| basis7} E235}Ct.

=1(Cy Vv, +Cp,V, +C3V;5) +M(Cyy V; +CppV, +CpVy) +N(CyyV, +CyyV, +CyVsy)
= (Ic, + mc,, +nc;,)v, +(Ic, + mc,, +nc,, )V, + (IC; +MC,; +NCy3) V4

(I,m,n,c:const)

Ex) 3% 37
basis V V2
<] a,,a,,8, 8 C}2 2749| basis2 EHSICHH | combination®

Zhekol )

HUw<

b=

= I(C11V1 + ClZVZ) + m(Czlvl + szvz) + n(C31Vl + Cszvz)

la, + ma, +na,

= (Ic,y +mCy, +ncyy )V, + (Ic, +MC,, +nCy, )V, g Vi Vostoze sm &
(I,m,n,c:const) ;
4 a)‘ Seoul — :
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Vl [ ll 12 13 ]
V2 [V21 V22 V23 ]
v 3 [V31 V32 V33 ]

Rank in Terms of Column Vectors - 3 by 3 matrix

A HE| S0 Chet WEAS E HE S0 Ciet Aoz A
& dy dp 8 CpyVy 6V, +C3V,

A= a, |=| 8y 8y Ay |=|CyVy+CuLV, +CxuV;
A, dy d Ag G,V T G5V, +C55V,

O mze baS|s vo| ME o= mHsH
Ay =CpVyy TCpVy +CaV5 [2,] =(2)(@,)3)= CuVs + 0V, +uV,

a.. =C-..V.. +C-.V.. +C..V = C11[V11’V121V13] +Cio[Var, Vs Vg 1+ Cra[ Vg, Vi s Vs ]
21 = LorVin T LoV T 03V _ ‘M’
a31 — C31V11 + C32V21 + C33V3l

a, =Cy;Vy, +C,V,, +CaVs, \C/:l:'::“of A linearly independent basis

Agy = CpVip +CVy, +CoVs, Y _ /N _

dy, = CgqVy, +C5,V,, + G55V, Ay Ciy Ci Ci3
B $ Ao | = Vi | Cop |+ Vi | Cop | V5| Cog

Ayz = Cy3Vi3 T CppVos +Cy3Vag a, Cyy C., Cas

Aoz = Cyy Vi3 +CypVog +Cy3Vs, - - - B
Agz = CgVi3 +C5yVog +Cg3V3

—

HIE{ & 3712| basis (cQ] &2 £+ vo| £t SUsh =Y. U}2tA rank AT = rank A

)‘\‘ Seoul 78
| . National | |
‘E‘J\ Univ. ! |
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Rank in Terms of Column Vectors - 3 by 3 matrix

AQ| HIE]
Y a, a, ap; Cj vV, +CpV, +C5V, T B
A= A, |=|ay 8y, ady |=|C,yV,+CyhV, +CxV; B al 7 _C 7 _C 7 _C 7
a, Ay Q3 Ag C;5,Vy TGV, 1G53V, k 11 12 13
0] 9HIE{= 0] |i olC}HH =
| @HE{S0]| linearly dependent SFCHH? aZk 1k C21 —|—V2k C22 -I—V3k C23
a, Ciy C, C, _a3k i _C _ _C 2 | ¢ 3_
Ay | = Vi | Con [+ Vo | Gy |+ VU Cyy
| 33, Ca1 Ca2 C2s | —> .. 0] ¥HIE|E2 linearly independent 3 basis
Ay Cia Ciz o il o ‘e (cO k|@=|o AL O] Aol £
HHIE & 3709| basis (c2] =2 == ve| 2 &
Ay | =Vy | Coy [+ (Vo +V5U)| Cyp 2gh =M.
[t2tA rank AT = rank A
| Sy | | Ca | Cs,

1L Aol sE| BHEOIM basise] 47t SOISH E|0f 220] H Vi, Ve,

Q a; 4, ap C,yVy +C,V, +UC,V, C,yV, tCp (1+ u)(Vz + V3) C,V,+Cp (1+ u)vnew
A= A, |=|ay 8y, 8y |=|CyV,+CyLV,+UC,V; | =| CyV, +Cy (1+ U)(Vz + V3) =|C;V; +Cyp (1+ u)vnew
a, Ay 8 g C;,Vy TGV, T UC,V, Ca1Vy +Cyp L+ U)(V, + V) CyVy +Cyp (L UV,

" Seoul ;
‘E-_E]ﬂ National
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7.5 SOLUTIONS OF LINEAR SYSTEMS :
EXISTENCE, UNIQUENESS
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Solutions of Linear Systems : Existence, Uniqueness

Theorem 1

(a) Existence (ZEX4Y): A linear systems of m equations in n unknowns Xy, X

ap X +appX, -+ a, X, :bl
Ay X, +a,X, +oo- 48, X, =D,

2n’'n

n

a X +a. X, +--+a X =b_

= Dl

is consistent (20| 8l=), that is, has solutions (i€ =), if and only if
the coefficient matrix A and the augmented matrix A have same rank. Here

all a12 ain _all a, - aini bl_
A — dy  dyp Gy, | A a,, a, a,,
_aml am2 e amn | _aml a'm2 amn E bm ]

Engineering Math, 7. Linear Algebra



Solutions of Linear Systems : Existence, Uniqueness

(b) Uniqueness (R ¥4)

The linear system has precisely one solution if and only if this common
rank r of A .and A equals n.

(c) Infinitely Many Solutions

If this common rank r is less than n, the system has infinitely many
solutions.

(d) Gauss Elimination

If solutions exist, they can all be obtained by the Gauss elimination.

Engineering Math, 7. Linear Algebra ‘E'J\ iv.



Solutions of Linear Systems : Existence, Uniqueness

| Theorem | Rank of a Matrix by Row Reduction

If a matrix A is row-equivalent to a row-echelon form B, then
1) the row space of A =the row space of B
i) the nonzero rows of B form a basis for the row space of A, and

S i) r ankA = the number of nonzero rows in B )
1 11 .0 30 20 20 -50!80 (3 2 1:3]
-1 1 -1 0 |
: 06 15 15 —5.4,2.7 2 1 1:0
0 1025 90 12 -03 -03 24 21 i
20 10 0 g0 a | 6 2@4 6]
@1 11 0] © ?.0 20 20 5080 @3 2 1 3
®@|0n10 25 90 @ |10\ 11 11 —44i1\ @0\ ~1/3 1/35_
O 95 I 0 0 0 0/ —-—
|0 0 95: 190 L= @0 0 012!
0 0 0 (0 | '
rank : 3 rank : 2 rank : 3
1121—X22;§3 igo 3.0x, +2.0x, +2.0%, —5.0x, =8.0 3%, + 2X, + X, =3
TRt A= —x, —0.3x, —0.3%, +0.2x, = -2.3 OX, + X, +2 X, =15
3%, —3X, =92 %, =-190
2%, — 2%, + 2%, =0 1.5x, +1.0x, +1.0x, —2.5x, = 4.0 3%, +2X, +X; =-9
O 20
; X1+1(;<;—1<22;§3 :go 3.0%, +2.0x, +2.0x, —5.0x, = 8.0 3+ 2%+ X =3
' 2 3= 0-x +1.1x, +1.1x, —4.4x, =1.1 _
0-% +0-X, —95%, =190 0X1+ 02+ . 3 . 4_00 —1/3%, +1/3x, =2
0-% +0-%,+0-% =0 K U Xy H UK U X =0 0=12
o a ﬁ‘h Seoul

Engineering Math, 7. Linear Algebra
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Solutions of Linear Systems : Existence, Uniqueness

X, +X, =1 1 1 1]
4%, — X, =—6 = |4 -1 Xl}: -6 = B
X
2%, —3X, =8 2 -3|-°- |8
1 1 |1] [1 0l1] J[1 0]0
[A| B] =14 -1|-6|—|0 1 —|0 110 rank(A|B)=3
_2 -3| 8 | _O 0 16_ _O 0 1_ /
) . row operation row operation /,,’a/ifferent
11 1 0] =
A= -1 — |0 1| rank@)=2
2 -3 0 0 (1 0]0] X +0-x, =1
row operation @ 1 O No solution case < O . Xl + X2 = O
0 O .r_l_i 0-x+0-x,=1

rank(A)#rank(A|B)

False statement

Engineering Math, 7. Linear Algebra



Solutions of Linear Systems : Existence, Uniqueness

| Theorem | Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the
coefficient matrix A is the same as the rank of the augmented matrix of the

system y
1 -1.1 10 30 20 20 -50!80 (3 2 1:3]
-1 1 -1 0 i |
SR 06 15 15 -54:27 2 1 1'0
| 1.2 -03 -03 24 :21 |
20 10 0 180 6 2 4:6]
] & _ A , @ .
@1 -1 10 @ [30 20 20 -50:80 @[3 2 3
@[010 25 | 90 @ |[0\ 11 11 -4411 @o. -1/3 1/3
®|[0__0°.-95 1190 rank (aJB): 3 0 0 0 0] ®0 0 0 .12'
0O O 0 | (Q: ] rank (A): 3 rank (A|B) : 2 k (A[B) : 3
rank (A): 2 ran :
rank (A): 2
X, — X, + %, =0 3.0x, +2.0x, +2.0%,-5.0x, =8.0 3y, + 2%, +%, =3
=% +11x, + 24x%, =90 —¥ —0.3x, ~0.3%, +0.2x, = -2.3 9%, +7X, +2X; =15
3% — 3%, 92, =190 1.5x, +1.0x, +1.0x, —2.5x, =4.0 3% 12 _ 9
2%, —2X, +2%, =0 . Solution XheXy+X == .
Solution . L Many solutions o No Solution
Ko 4x =0 Oneselton  (3.0x +2.0X, +2.0% ~5.0% =80, e e 3
0-x, +10x, + 25%, =90 0-x +1.1x, +1.1x, —4.4x, =1.1 % 2T e
0-% +0-X, —95X, =—190 0-x+0-x,+0-x,+0-%x,=0.0 _1/3X2+1/3X8:1_§

0-x+0-x,+0-x,=0

Engineering Math, 7. Linear Algebra
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Solutions of Linear Systems : Existence, Uniqueness

Theorem 2

A homogeneous linear system (MIX}AM SO ubE Al)

A Xy + Xy +oo -+ 8 X, =0
Ay X, + 3y X, +-- 43, X =0

a X +a X +---+a X =0
= A homogeneous linear system of m equations in n unknowns always
has the trivial solution (Xt &t oH).
= Nontrivial solutions (KtH ot Xl &2 ol) exist if and only if rank A=r <n.

= If rank A=r <n, these solutions, together with x =0, form a vector space
of dimension n—r, called the solution space (H32}).

= Linear combination of two solution vectors of the homogeneous linear
system, X = ¢;X, + C,X, With any scalars ¢, and ¢, is a solution vector.

A ati
Engineering Math, 7. Linear Algebra £



Solutions of Linear Systems : Existence, Uniqueness

M Example

3 2 2 -510
6 15 15 540]
12 -3 -3 24 10
i 284
3 2 2 50
0 11 11 440}

0 11 -11 44 10

282
3 2 2 -5 0
011 -4:0
000 0°'0
(@) rank (A|B) : 2 Nontrivial
rank (A): 2 E> solution exist!

(r < n)
(b) Solution space

3X, +2X, +2X; —5X, =0
X, +X;—4X, =0

If X,=1,%x,=0=x,=-1,x=0

[X.s X5, X5, X, ] =[0,-1,1,0]

If X,=0,x,=1=x,=4,x=-1

[X., X5, X3, X, ] =[-1,4,0,1]

.. dimension of solution vectors =(n-r) =(4-2)

X(l) - [X1’ Xy1 X3, X4] — [0, -11, O]
X(z) - [Xl’ Xy1 X3, X4] - [_1’ 4, 0’1]

(b) Linear combination of solution vectors

X =CXy +C,X (5 =[-C;,—C, +4C,,C, G, ]

—C, 0

3 2 2 -5
—C, +4c, 0
6 15 15 -54
C, 0
_O_

12 -3 -3 24
CZ

W A(CX gy +CX () = CAX g +C,AX, =0

Engineering Math, 7. Linear Algebra



Solutions of Linear Systems : Existence, Uniqueness

Theorem 3 : Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns has

always nontrivial solutions.

Theorem 4 :Nonhomogeneous Linear System (HI XXt & & H

=2
=]

ot A1)

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are

obtained as A%, +a,X, ++a, X =D

Ay X, + 85X, ++8,,X, =D,

.............................. (1)

X= XO + Xh A Xy + 8 Xy oo 8 X, :bm

;X +a,X, o +,X, =0

Ay X, +8yX, ++--+8,,X, =0 (2)

A X +a,,X +-+a,,X, =0
where X, is any solution of the nonhomogeneous linear system (1) and x, runs
through all the solutions of the corresponding homogeneous system (2).
Proof ) X, =X-X, AX,=AX-X,)=b-b=0

EJ"; Seoul 88
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Connection between the concept of

rank of a matrix and the solution of linear system

AX =0

Always consistent
I

\] v
Unique ?olutlon: Infinity of Solution:
X=0 rank(A) <n
rank(A) = n
AX=B,B#0
V.
Consistent: Inconsistent:
rank(A) = rank(A|B) rank(A) < rank(A|B)
Unique Solution: Infinity of Solution:
rank(A) =n rank(A) <n

Engineering Math, 7. Linear Algebra



7.6 SECOND- AND THIRD-ORDER
DETERMINANTS
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Determinant (& 2 4&!) of second- and third order

Determinant of second order

D=det A=det| & || 2| a,a,, —a,a,,

a21 a22 _ a'21 a'22

Determinant of third order

dj;  dpp, Ay
D = dyy dyy Ay
dj; 43 Agg
B d,, Ay dj, dj dj, A
—+a11 —dy +as1
d;, dgg dj, dgg dy,, Ay

Engineering Math, 7. Linear Algebra



7.7 DETERMINANTS. CRAMER'S RULE

inear Algebra



Determinant of Order n

Terms
In D we have n? entries a, also nrows and n columns, and a main diagonal on
which ay,, a5, ..., a,, Stand.

M, is called the minor (&%) of a, in D, and C; the cofactor (0§215) of a in D

For later use we note that D may also be written in terms of minors

D= Z ) a, M, (j=12 -, n)

D= Z;(—l)”" a,M, (k=12 - n)
|=
C'k = (_1)j+k \ jk

€0
"1 ationa
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Determinant of Order n

A determinant of order nis a scalar associated with an n x n matrix A=[a],

which is written

dj; Ay
a21 a22
D=detA=
a‘nl anz
and is defined for n=1 by D = dyq

A,
a2n

nn
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Determinant of Order n

D=a;Cj+a;,Cj, +--+a;,Cy, (j =12, ”)
D = aikclk +a2kC2k +"'+ankcnk (k =12, -, n)
Cjk :(_1)j+kM jk

M, is a determinant of order n-1, namely, the determinant of the
submatrix of A obtained from A by omitting the row and column of the
entry a,, that is, the jth row and the kth column.

Engineering Math, 7. Linear Algebra



Determinant of Order n

1) n=1
A=la,| . .detA=a,
2) n=2
Al B
_a21 a‘22_
det A = —
a11 a22 alz a21

= 18y, —dj,ay

Engineering Math, 7. Linear Algebra




Determinant of Order n

Yn=3 -
d; G, a3
A=la, a8y, ay
Ay A3 g3
detA=ay, dyy Ayl —dyp|dy dos| T 3|dy Ay
d3;  dj3 A3 A3 da Ay

=y (azz dgz — dyzds, )_ dy, (321333 - a23a31)
+ a5 (a21a32 —dy, a-31)

lationa,
Engineering Math, 7. Linear Algebra == Univ.



Determinant : C,=(-1)""M,

" | Cof ¢ 2 Third-Qrder T inant

Find minors and cofactors.
d; QA |\/|12 =|a,, ),
A=|a, ay, dys 8y, a,,
dj a3 Ag )
m— Cp = (_ 1)1 My, =-My,
M, = A,, Oy M=, a,
d;, dj, 31 32
+1 1+3
C11 :(_1)1 M11 — M11 C13 :(_1) M13 — M13

Engineering Math, 7. Linear Algebra Univ.



Determinant :

W | Cof ¢ 2 Third-Qrder [ —

Find minors and cofactors.
d QA
A= dy dy dyg
_3'31 dj, dg; |
2) 2nd row
d, 3
M 21 —
a32 a33

Ay Ay 5
M 22 —
dy, dys
sz — (_ 1)2+2 M 22 — M 22
d; &y
M 23 —
d;; dg

Engineering Math, 7. Linear Algebra



Determinant : Ci=(1""M,,

v | Cof ¢ 2 Third -Order [ —

Find minors and cofactors.
_ _ Ay A3
dy; G, Gy M., =|a, A,s
A=8, a8, ay
a‘31 a'32 a33 3+2
- - Cs :(_1) M, =-M,,
3) 39 row
dyy A
d, i3 M. —la g
_ 13 — |%21 22
M 31 a22 a23

C, = (— 1)3+1 M, =M, Cas = (_ 1)3+3 Mgz = Mg

Engineering Math, 7. Linear Algebra
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Determinant : D=Y(-)"a,M, (j=12 -,n)
. k

M  Cof ¢ o Third-Orier T -

(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=|2 6 4
-1 0 2

1) 1strows

=1 6 4 -3 2 44+02 6
0 2 -1 2 -1 0

=1(12-0)-3(4+4)+0(0+6)=—-12




Determinant : D=Y(1)"a,M, (j=12 - n)

M | Cof ¢ 2 Third-Order Deferminant

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 2nd rows

|
|
N

+6 —4
0 22 |-1 2l -1 O

=—2(6-0)+6(2+0)—4(0+3)=-12

Engineering Math, 7. Linear Algebra



Determinant : D=Y(1)"a,M, (j=12 - n)

M | Cof ¢ 2 Third-Order Deferminant

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 39 rows

1
|
(@)
S
+
o
N
+
N

= -1(12-0)+0(4-0)+2(0-0) =12

Engineering Math, 7. Linear Algebra



Determinant : D=3 (1™ a,M, (j=12, -
[n ]0 I c E I t II ° I—Q I Dk=1l ° I]
(Expansions of a Third-Order Determinant)
Find determinant.
-3 0 0
detA={6 4 0
-1 2 5
=3 4 0 -06 +0[6 4

-1 2
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Behavior of an nth-Order Determinant under Elementary
%

Theorem 1. Behavior of an nth-Order Determinant under
Elementary Row Operations (7|&28494Ah

(a) Interchange of two rows multiplies the value of the
determinant by -1.

(b) Addition of a multiple of a row to another row does not
alter the value of the determinant.

(c) Multiplication of arow by a nonzero constant c
multiplies the value of the determinant by c.

1 | ;
L eY% | National . 105
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Behavior of an nth-Order Determinant under Elementary

Row QOperations oo

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

4 b:ad—bc, ‘ OI:bc—ad
c d a b

(a) holds for determinants of order n-1(22) and show that it then holds

determinants of order n.
Let D be of order n. Let E be one of those interchanged. Expand D and E

by arow that is not one of those interchanged, call it the jth row.

D=2 (-1)"a;My, E = kZ;(_l)jﬂ( AN
k=1 -

Engineering Math, 7. Linear Algebra Iniv.



Behavior of an nth-Order Determinant under Elementary
WM

n

D = kZ:(_l)j+kajkM jk E= (_1)j+kajkNjk
-1

N; is obtained from the minor M;, of g, in D by interchange of those two rows
which have been interchanged in D.

| ® ® ® ®
Now these minors are of order n-1. @ a, _333' ay) 3, (A
Ex) D=lay | 8, @, E=lay | a; as;
= The induction hypothesis (FIE#2] 7Hd) Ay | 3, | 8 Q1 | B | Ay
applies
N K = —M ik (n-1Xte] WA Aofl cisf 2 Fa|7} RS 71d)
n ok n ol
_ _1\Mt _ J+
D_kZ( Y M= (-1) ajk(—Njk) =—E
=1 k=1

Engineering Math, 7. Linear Algebra Ed



Behavior of an nth-Order Determinant under Elementary

Row Qperations

Proof. (b) Addition of a multiple of a row to another row does
not alter the value of the determinant.

Add c times Row i to Row j.
Let D be the new determinant. Its entries in Row j are
A +Cay-

A, dp - 4y Ay a, .,

Ay A, o Qy Ay CIP o Ay
D — D =

anl a‘n2 Tt ann anl an2 Tt ann

Engineering Math, 7. Linear Algebra < Univ.



Behavior of an nth-Order Determinant under Elementary

%
We can write IS by the jth row.

Ay A, A,
N Ch a;; A, n .
D = = Z(_l)J (ajk +Cay, )M ik
a,+ca, a;,+ca, a, +ca,|
anl anz ann
e K L K
_ j+ j+ B
=>(-1)"a,M, +CZ(—1) a,M ., =D, +cD,
k=1 k=1
D, D,

Engineering Math, 7. Linear Algebra



Behavior of an nth-Order Determinant under Elementary

Row Operations o

Ay, djp, o
N all ai2 a‘in
_ J+k _
k=1
aJl aj2 ajn
an1 a‘n2 a‘nn

Engineering Math, 7. Linear Algebra . Univ.



Behavior of an nth-Order Determinant under Elementary

Row QOperations ___ o

It has a; in both Row i and Row j.
Interchanging these two rows gives D, back,

d; &, - A, &, - 4
n | o allalzam .. nterchanging G :_a_il_ - _a_lz_ —---- _ajin_ :
D . (_ 1)J+k a M R ®'® b e m e e e e e e e e e e = e la
9 = ik Vi =1 - . . | >
k:l ___________ p— Same ............................ o
© % & % | ©dy dp v dnk
A, dp, An, Ay A, o Ay

but on the other hand interchanging these two rows gives -D, by Theorem (a).
Interchanging

D, __00 8 -D,

Together D,=-D, ®» D,=0

Engineering Math, 7. Linear Algebra



Behavior of an nth-Order Determinant under ElementaryP. =D

Row Operations D, =0

Ay

a'il

O
I

ajl +Ca,

anl

Ay,

a'i2

a,, +ca;,

an2

A

Ay

a‘il

aj

anl

Ay,

ai2

an2

A

=D, +cD,
=D+c-0

Ay

+c| -

anl

&p ot 9y
dp &y,
dp, @y,
a, - a,

Engineering Math, 7. Linear Algebra



Behavior of an nth-Order Determinant under Elementary

Row QOperations oo

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢

&y dp g, &y Ay
D=la;, a;, - a D=|ca; ca,, ca;,
dy a,, - 4y, Ay A, v A,
Expand the determinant by the jth row.
n n
N j+k . j+k
D=>(-1)"ca;M, =c> (-1)"a, M, =cD
k=1 k=1

Engineering Math, 7. Linear Algebra Mo



Further Properties of nth-Order Determinants

Theorem 2. Further Properties of nth-Order Determinants

(d) Transposition leaves the value of a determinant
unaltered.

(e) A zero row or column renders the value of a determinant
Zero.

(f) Proportional rows or columns render the value of a
determinant zero. In particular, a determinant with two
identical rows or columns has the value zero.

Engineering Math, 7. Linear Algebra =i Univ.



Further Properties of nth-Order Determinants

Proof.
(d) Transposition leaves the value of a determinant unaltered.

Transposition is defined as for matrices, that is, the jth row becomes the
jth column of the transpose.

Proof.
(e) A zero row or column renders the value of a determinant zero.

d; dyp v 4y

w,
|
(@)
(@)
(@)
|
/l-\
=
T
‘_SD
=

|
I
H
~
+
+
(-
<
‘—X
||
(-

an1 anz a

nn
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Further Properties of nth-Order Determinants

Proof.
(f) Proportional rows or columns render the value of a determinant zero.
In particular, a determinant with two identical rows or columns has the

value zero.

d; & - G Ay &y Ay, dy &, - &
: ...................... :®X(_1)+®
all ai2 o ain ® E.a.i:l-.OOOa.iOZOOOO...O...OEa.iE].: ail ai2 o ain
D=| - . . | =cx]| - . . =Cc| - . . :C)(O:O
Call Calz Caln @ .all....a..l.z..........a.l;l.. O O O
anl an2 a‘nn anl a‘n2 ann anl an 2 ann
Theorem (1.c) Multiplication of a row by Theorem. (1.b) Addition of a multiple of a
a nonzero constant ¢ multiplies the value row to another row does not alter the
of the determinant by c value of the determinant.

i a )‘f Seoul

National 116
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Determinant of a Triangular Matrix

D=detA=

anl

— allcll + a12C12 Tt alncln

— a11C11
— allM 11

:aﬂxazzx---xa

nn

Mll

= |t is also a determinant
of a triangular matrix.

a,, =0)

Engineering Math, 7. Linear Algebra



Rank in Terms of Determinants

Theorem 3. Rank in Terms of Determinants
Consider an m x n matrix A=[a]

1) A has rank rz1if and only if A has an r x r submatrix with nonzero
determinant.

2) The determinant of any square submatrix with more than r rows,
contained in A (if such a matrix exists!) has a value equal to zero.

3) In particular, if Ais square, n x n, it has rank nif and only if detD =0

1 -1 1 | (3 2 1]
(1) Example 1A (3) Example |2 1 1
0 10 25 6 2 4
20 10 O - -
P ] -
(1 -1 1 ] 3 y) 17
Rank=3
8:10 25 0 -1/3 1/3 get o
—95 0 0 0 ank=
oo o - -

Engineering Math, 7. Linear Algebra E'J\



Solving linear systems of two equations

Solve the linear systems of two equations

A X+ X, = b1 @
anX +a,X,=hb, ..o

1. General Solution

Dxa, -@xay,: ®X(_a21)+@xall:

(a11a22 —dppAy )Xl (aﬂ_lazz —dppdy )Xl
=ba,, —a,;,b, =a,,0, —b,a,,
X, = b1a22 — a12b2 SX, = a11b2 — b1a21
18y, — 8,8, 18y, — 8,y
(a11a22 —dppdy F O) (a11a22 —appdy # O)

Engineering Math, 7. Linear Algebra



Solving linear systems of two equations

Solve the linear systems of two equations X, = b3, —ay,b,
b ® a;,8,, —a;,ay
A X TapX, =0 x, = 2uls ~ B
Ay;8,5; — a8y
Ay X +axnX, =b, .o a a
2. Use Cramer’s rule P> D =detA= a, a,
=818y, — 8,8y
bl a12 all bl
b2 a22 a21 b2
Xl — X2 —

D D
_ b,a,, —a,b, a,,b, —ba,,

7 (D+0) (D = 0)

% (0-0)

Seou
i National = 120
Engineering Math, 7. Linear Algebra =K Univ. i |




Solving linear systems of three equations

A X + A, X, T AKX = b1
Ay X) T Ay X, T 8y3X; = bz

Ay X; T 85X, + Az X3 = bs

Dl D2 . . D3

Xl -_— y X2 _— y X3 _—

D D D
b a, aj d, D a; d, d, b
D1 — bz d,, Ayl Dz =ldy DBy, Ayl D3 =ldy dyp D
b3 dj, dgg djy; 03 Qg dj; dgp D

E"\‘ Seoul
ational
Engineering Math, 7. Linear Algebra



Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A X + A X, H 3Ky = bl

Ay X; T 85X, + A3 X3 = bz
Ay X; T Az X, + 833X = b3

) | Qg
A=|lb, | a,
| 03 a32

Y

Ay

a'23

a33 _

dy g Q3 || X
a21 a'22 a23 X2
_a31 a‘32 a33_ X3
A X

SERCT!

D, =[b, a,

D; Ay

1
o O
w

O

N
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A X + A X, H 3Ky = bl
Ay X; T 85X, + A3 X3 = bz
Ay X; T Az X, + 833X = b3

A, [0 | Qg
A=|a, |(b,| a,/| b=]|b,
_a31 C)3 a33_ i

dy g Q3 || X
a21 a'22 a23 X2
_a31 a‘32 a33 AL X3
A X

d; b

D,=la, Db

d3;  Dj

o O

w

O

N
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A X + A X, H 3Ky = bl

Ay X; T 85X, + A3 X3 = bz
Ay X; T Az X, + 833X = b3

d, dp
A= d,; ay
dg; Ay

Ay A, ag| X
dyy Yy Ay | X
(A3 Ay g || K3 |
A X

a11 a21

D, =lay ay

a31 a'23

o O

N o

wO

O

N

w
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)
(a) If a linear system of n equations in the same number of unknowns xj, ..., X,

A Xp T A X, +o -+ X, = bl
8y X, +8,,X, +-+8,, X =h,

a. X +a. X, +---+a X =b

has a nonzero coefficient determinant D=det(A), the system has precisely one
solution. This solution is given by the formulas

Where D, is the determinant obtained from D by replacing in D the kth column
by the column with the entries by, ..., b,,.
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)

a21 b2 a2n b2
Dk — n . n
anl ‘ bn ann bn
----+----l| 'L----|----l|
replace

Dk — b1C1k T b2C2k Tt annk

(b) Hence if the system is homogeneous and D#0, it has only the trivial solution
X,=0, ... , X,=0. If D=0, the homogeneous system also has nontrivial solutions.
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Example

Q ? | Solve by Cramer’s rule.

3y-4z=16

2X - Jy +1Z
-X - 92

=27
9
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Solving linear systems of two equations

_ Solve the linear systems of two equations a a
5 o when —2p —h, =0 —2ph —b, 20=b
€ 1 2 | & !
CJ%(D:O) D:detA:a :a11a22_a12a21zoi ’ a 2
21 92 : _ % ! a
v i Ay, %) + 85X, a, b, Ll ay X +a,X, =—h
a : 2 : a,,
©) + X, = a, = S8y : . Y i
Ay X +a,X, b1 a, 0-x,+0-x,=0 1 0-%, +0-x, =b’
@ a.21X1 + 8.22 X2 = b2 E Linearly independent \elg::E;)eg ; i False statement
" Ay o 3,3y, i , e s
Bk Bk = B R A a2
< 2 a,, E LA | | 2
= = f i 0 0 b
X, +8,X, =D, ! 0 030 ! '
rank(A)=1=rank(A|B) rank(A)=1#2=rank(A|B)
‘ @ a rank(A)=1<2 unknowns (No solution)
_ Y2 (Many solutions)
Ay, X + 85X, _al_bl Yo
2 —
< a Homogeneous linear systems 2% +8,%, =0
0-%+0-x,=—2b —b, a, X +a,X, =0
\ a12
Ax=0 det A= A % =0 Ax=0
a, a Ay Ay y
|
A= 1 2 A— a;
d 8y 0 0
Trivial Solution X =0 Nontrivial many solutions

e a ),v" Seoul
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Cramer’'s Rule - Proof

Proof
(a) The augmented matrix A is of size nx(n+1). Hence its rank can be at

most n.
If D =det A #0, then rank A = n. Thus rank A = rank A. — The system has

a unique solution.

If kth column is replaced by Ith

(b) column
R T TR T a, [y | - Ay | A,
D=la; ay - ay a; D=la; |a a; |a,
d, d, - a, ajn Ay |8y | o0 | Ay |8,
D =a,Cy +a,Cy +---+a,C, D =2,Cy +2,Cy +--+2,C, =0
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, ap X +apX, +---+a, n:bl
Cramer’s Rule - Proof 8,1, + X, 8 X, =D,

..............................

anlxl + a‘n2X2 et a‘nnxn = bn

We now multiply the first equation in the linear system by C,, on both sides, the
second by C,, ,the last by C_, and add the resulting equations. This gives

Clk(allxl T apX, o0 F alnxn) Tt an(anlxl T apX, +oo F a-nan)
— blclk Tt annk

Collecting terms with the same x;, we can write the left side as

X (@ Cp +8,Co + - +8,Cp ) + - + X (8,,Cyp +@,,Co + -+ 8,,C)

Only one term led by x; remains.

Xk(alkclk + a'2kC2k Tt ankan) — Xk D D = a,Cy +a,Cy +--+a,C = 0

X,(a;,Cy +3,Co +---+a,C.. ) =0 sincel =k % a i ay
x(a,C, +a,C, +---+a,C )=0 sincel =k 8 ib, Iy,

D, = -

Therefore, E
D P

_ _ Ly Pk P

XkD—b1C1k+"'+annk = Dk ..XK—E a, bn eoa

\E.J ona
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7.8 INVERSE OF A MATRIX. GAUSS-JORDAN
ELIMINATION
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Notation of Inverse Matrix

In this inverse section, only square matrices are considered exclusively.

Notation of inverse of an n x n matrix A=[ayl: A1

-1 -1
AA =A A= , where | is the nx n unit matrix.

Nonsingular matrix (& & 3): A matrix that has an inverse.
(If a matrix has an inverse, the inverse is unique)

Singular matrix (50| 3&): A matrix that has no inverse.

Proof of uniqueness of inverse matrix

If Band C are inverses of A (AB=1 & CA=1),

(the uniqueness of inverse)
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Theorem1. Existence of the Inverse

Theorem 1. Existence of the Inverse

The inverse Al of an n x n matrix A exists if and only if
rank A = n, thus if and only if det A # 0.

Hence A is nonsingular if rank A=n,
and is singular if rank A<n.

Seoul
i National =~ 133
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Inverse by the Gauss-Jordan Method

For Practical determination of the inverse Al of a nonsingular n x n matrix A,
Gauss elimination can be used.
: This method is called Gauss-Jordan elimination

Step 1. Make augmented matrix. A =[A 1]

Step 2. Make Multiplication of AX=1 by A1 ~
(by applying Gauss elimination to A =[A 1])

—» This gives a matrix of the form [U H] U : upper triangular
Step 3. Reduce U by further elementary row operations to diagonal form.

(Eliminate the entries of U above the main diagonal and making the
diagonal entries all 1 by multiplication. See the example next page.)
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Inverse of a Matrix. Gauss-Jordan elimination.

Determine the inverse Al of

-1 1 2
A= 3 -1 1
-1 3 4

-1 1 2|10 0
Al]l=| 3 -1 1|0 1 0
-1 3 4|00 1

to

'ona,
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Inverse of a Matrix. Gauss-Jordan elimination

AX=1 o A'AX=A"1l o IX=A"
g g g
[A[lI] ® Bt > [1A™]
Row1l
_ _ +0.4Row3
-1 12100 -1 ~06 -04 04| rowz
[Al1]=] 3 -1 1|0 1 0 002 0)-26 -04 14
0 -5| -4 -1 1
-1 3 4|0 0 1] : |
- ; 2170, 0] 07 -02 03
112 100 Row2 + 3Row1 ‘.O” 9 .“"Q 26 _04 14 —F(QJ(.)E\SNRIOWZ
0O 2 7 3 1 0] rowz-Rowt ’*..’ . ' ' '
0 0“=5]|=-4 -1 1
0 22|/-101 - :
- - diagonal matrix
11 2| 1 0 0] (10 0/-07 02 03]
02 7| 3 10| 0 10[-13 -02 07 Row1
0.5Row?2
| 0 0 -5(-4 -1 1 00 1] 08 02 -02 o orows
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Inverse of a Matrix. Gauss-Jordan elimination

(1 0 0/-07 02 03] ib,=(-1)x(-0.7)+1x(-1.3)+2x0.8=1
0 1 0l-13 —02 07 b, =(-1)x(0.2)+1x(-0.2)+2x0.2=0
=(-1)x(0.3)+1x(0.7)+2x(~0.2)=0
0 0 1| 08 02 -02 By = (1)(03)1x(07)+ 2x(-02)
- AL & i, =(3)x(=0.7)+(-1)x(-1.3)+1x(0.8)=0
check e result ) b, = (3)x(0.2)+(~1)x(-0.2)+1x(0.2)=1
e b, Dby, by, b,, = (3)x(0.3)+ (~1)x(0.7)+1x(~0.2)= 0
=|b,, b,, b, b,, = (~1)x(~0.7)+(3)x(~1.3)+4x(0.8)=0
b, b, by b,, = (—1)x(0.2)+(3)x(~0.2)+4x(0.2)=0
1 1 oT-07 o2 o0alPe=0 })x( 3)+_(3)><(0.7)+4><( 0.2)=1
100
= 3 -1 1|-18 -02 07} .o |4 1 ¢
-1 3 4| 08 02 -02 0 0 1

‘E-_ National
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Useful formulas for Inverses

1] > ) f 2 Matri ,

cofactor:C;, =(-1)""*M

M. :adeterminant of order n—-1

Theorem 2. Inverse of a Matrix by determinant

The inverse of a nonsingular n x n matrix A=[a;] is given by

Where C;, is the cofactor of a, in det A

A" =——I[C,

th

J' =

det A |

Coui v Cy
C, i iC_

LERRRR RN .

(@

CAUTION! Note well that in A, the cofactor C;, occupies the same place
as a,; (not a;,) does in A.)

Proof)

Let B = 1

det A

Cn1

O

n2

nn

and show that BA=I
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Useful formulas for Inverses
Theorem 2. Inverse of a Matrix

Let
BA=G=[gyl...(5)

and then show that G = 1.

By definition of matrix multiplication
and because of the form of B in (4)

n CS
O = Z detkA d

s=1

Sec7.7
(k=1), D=a,Cy +a,Cy +---+a,Cy -+ (9)
(k=1), 8,Cy +a,Cp +---+3,C, =0---(10)

Hence,
1
=—— detA=1
Ju det A
O =0

. are the entries of

main diagonal of matrix G.
and that means

only entries of main diagonal

1 .
= (a,C, +---+a,C, ) (6) Is 1.
det A
In Sec 7.7 (9) and (10), G =1
S.B=A1
If 1=k, a,C, +---+a,C, =detA C.C. o C.Ta a o a
1 C12 sz an Ay Ay Gy,
I =k &Gy +-- 48, Gy =0 BA=GetA| . . .
_Cln CZn Cnn__a‘nl an, : ann_
Engineering Math, 7. Linear Algebra \E;.aj: fl‘j’ f{l':"/”"’ 139



Inverse of 2 x 2 Matrix

Ex 2)

A =

3 1
2 4

detA=3-4-1.2=10

Engineer
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j

Inverse of 3 x 3 Matrix

Q?

-1 1
A=| 3 -1 1|, A'?
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Inverse of Diagonal Matrices

A=[a,], a;=0 when j#k, have an inverse if and only if all a; #0. Then At is
diagonal, too, with entries 1/a,;,*, 1/a,,.

Proof) For a diagonal matrix we have in (4)

Cll _ Ay, -8y, _ 1 etc.
D a1la‘22 o ann all
Ex 4) Inverse of Diagonal Matrix ~ _
i i 1 90
- ’ ~A*=| 0 = 0|=/0 025 0
0 0 1 4 0 0 1
1 _ _
0 0 -
i 1
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Inverse of Products

Products can be inverted by taking the inverse of each factor and multiplying
these inverses in reverse order,

Hence for more than two factors, (AC) ' =C'A™

(AC---PQ)*'=Q'P*...C*'A™

(AC)C*A)=ACCTA =AIAT =AAT =1
(c*A*fAC)=C*'AAC=ClIC =C?C =|
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Cancellation Laws

Theorem 3. Cancellation Laws (2FE2H)

Let A, B, C be n x n matrices. Then

(@)If rank A=nand AB=AC,thenB=C

(b)If rank A =n, then AB =0 implies B = 0. Hence if AB =0, but A # 0 as well
as B #0, then rank A <n and rank B <n.

(c)If Alis singular, so are BA and AB
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Determinants of Matrix Products

Theorem 4. Determinant of a Product of Matrices

For any n x n matrices A and B,

If A or Bis singular, so are AB and BA

det(AB) =det(BA) =det A-detB

Now A and B be nonsingular. Then we can reduce A to a diagonal matrix A =
[ay] by Gauss-Jordan steps.

d; 9,
a21 a22

anl an2

A

o o o &

A and A are row-equivalent

matrices.
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det(AB) =det(BA) =det A-detB
Determinants of Matrix Products

Proof) A and A are row-equivalent matrices.
A, A, v, 4, O 0
A — Ay 8y Ay, A _ 0 é'22 0 0
’ 0 0 . 0
_anl a'n2 ann_ B O O é\-nn
_a11 P ) aln—_Xl_ _bl—
AX = dy Ay Aoy || Xy _ bz b
_anl an2 a'nn _Xn | _bn |
_511 0 0 "Xl" . x=A"'b=A"Db
1
A 0 &4, 0 0 |x _ b, 5
0 O .0
0 0 - a,|x] Bn
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det(AB) =det(BA) =det A-detB
Determinants of Matrix Products

A and A are row-equivalent matrices.

Addition of a multiple of a row to another row does not alter the value of the
determinant.

-, det(AB) = det(AB)

Ay o - 0 b11 b12 o bln allbll allblz o allbln
AB . 0 a'22 O O b21 b22 b2n . a'22b21 a'ZZbZZ a22b2n
0O 0 0 :
B 0 0 A, ] _bnl bn2 Tt bnn | _annbnl 2 bn2 a'nnbnn |
aCI.lbll aCI.1b12 allbln bll b12 bln
A é22 b21 é22 b22 é\‘22 bZn A A A b21 b22 b2n
det(AB) = = Ay Ay, 8y
ann bnl ann bn2 ann bnn bnl bn2 bnn
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det(AB) =det(BA) =det A-detB

Determinants of Matrix Products 5=>"(-1)"ca,M, =cD
d

A and A are row-equivalent matrices.

-, det(AB) = det(AB)

é‘llbll é‘llblz o éilbln b11 b12 o bln
det(AB) _ ézzbzl él22bzz él22b2n _ 311322 "’é-nn b21 b22 b2n
é\‘nnbnl é\‘nnbn2 o é\‘nn bnn bnl bn2 Tt bnn

— éilézz " 'é-nn 'dEt(B)
= det(A) - det(B) = det(A) - det(B)

- det(AB) = det(A) - det(B)
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