
운영체제의기초:

Introduction to OS

2023년 3월 2, 7, 9일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Why Study OS?

❖ OS is an exciting field of study

▪ Brings together many areas in Computer Science

• Data structures, algorithms

• Programming languages, compilers

• Computer hardware, architecture

❖ Course goals

▪ Learn theory and practice behind major OS features

▪ Understand interworkings of OS internals

▪ Apply your knowledge to develop better software or

design new OS

Introduction to OS

3

Agenda

I. Evolution of OS

II. Functions of OS

Why OS?

I. Evolution of OS – Phase I

Up to Batch Monitor

5

Three Phases of OS History

❖Why study OS evolution?

▪ Defining the term “Operating System” is difficult

• Discipline arose historically from a set of problems

❖ Three Phases of OS History

▪ Phase I: early ’50s – mid ‘60s

▪ Phase II: mid ’60s – mid ‘90s

▪ Phase III: mid ‘90s – present

I. Evolution of OS

6

Phase I (1)

❖ Key observation

▪ Hardware expensive, humans cheap

❖ Goal

▪ Make efficient use of the hardware

❖ Phase 1-1: Operator as OS

▪ OS was a shared subroutine library

• Card decks in cabinet

▪ Single user working at console

▪ Debugging done interactively

▪ Slow job-to-job transition

I. Evolution of OS

Source: http://www.computerhistory.org/

7

Phase I (2)

❖ Phase 1-2: (1) Simple batch monitor

▪ OS loaded and ran a user job and took dump

• Simultaneous Peripheral Operations Online (SPOOL)

– I/O machine (IBM 1401) read in “a batch of jobs” onto tape

– Main machine (IBM 7094) loaded “a job from the batch” on tape, did

computing and took dump back to tape

– I/O machine printed output from tape

I. Evolution of OS

Source: Tanenbaum and Woodhull, Operating Systems Design and Implementation, 2006

8

Phase I (3)

❖ Phase 1-2: (1) Simple batch monitor (cont’d)

▪ Debugging done offline

▪ Resolved limitations

• CPU working with a faster I/O device than a card reader

• Faster job-to-job transition within a batch

▪ Unresolved issue

• No overlap between I/O and computation

I. Evolution of OS

Monitor

Job

1000

9

Phase I (4)

❖ Phase 1-3: (2) Batch monitor

▪ Jobs spooled on “disk” or “drum”

• Read jobs from cards to disk, loaded one into memory, and

queued output to disk for printing

• No need for costly I/O machines (advanced SPOOLing)

▪ “Buffering” and “interrupt handling” added to OS

• Overlap of computation with asynchronous I/O

▪ Still single job, so utilization often bad

I. Evolution of OS

Monitor

Job

1000

10

Phase I (4)

❖ Aside: Two types of I/O methods

▪ Asynchronous I/O

• After I/O starts, control returns to user program without waiting

for I/O completion

▪ Synchronous I/O

• After I/O starts, control returns to user program only upon I/O

completion

– Wait instruction idles the CPU until the next interrupt

– Wait loop

• At most one I/O request is outstanding at a time

I. Evolution of OS

11

Phase I (5)

❖ Aside: Two types of I/O methods (cont’d)

I. Evolution of OS

Asynchronous I/O

Requesting

Process

Device Driver

Interrupt

Handler

Hardware

Data transfer

Time

Synchronous I/O

Requesting

Process

Device Driver

Interrupt

Handler

Hardware

Data transfer

waiting

Time

User

Kernel

12

Evolution of Early-Day OS

I. Evolution of OS

Human
Operator
as an OS

Simple Batch
Monitor

Multiprogrammed
Batch OS

Batch OS
with Advanced

SPOOLing

Slow Job-to-Job Transition
Batch Processing

Slowed-Down CPU due to Slow I/O
SPOOLing via External Machine

No CPU-I/O Overlap
I/O Channel/Interrupt

No CPU-I/O Overlap during Sync I/O
Multiprogramming

Extra Machine for SPOOLing
Integrated SPOOLing

I. Evolution of OS – Phase I

Multiprogrammed Batch Monitor

14

Phase I (6)

❖ Phase 1-4: (3) Multiprogrammed batch monitor

▪ Several users shared the system

• Degree of multiprogramming ≥ 1

▪ OS became a focus of study

• Memory protection and relocation added to OS

• Higher utilization because of multiple jobs

• Concurrent programming became necessary

I. Evolution of OS

Operating

System

0

512K

Job 1

Job 2

Job 3

Job 4

1000

15

Phase I (7)

❖Memory protection

I. Evolution of OS

Operating

System

0

512K

Job 1

Job 2

Job 3

…

1000

Write some

data at 3000

2500

4000

6500

OS prevents a job from accessing

memory regions owned by other jobs

➔ Relocation + base/bound registers

16

Phase I (8)

❖ Relocation

I. Evolution of OS

Operating

System

0

512K

Job 1

Job 2

Job 3

…

1000

2500

4000

6500

Program 1

0

1500

Program 2

1500

0

Program 3

2500

0

When each program is

loaded into memory

When each program is

compiled

17

Phase I (9)

❖ Base/Bound registers

▪ Primitive form of MMU (memory management unit)

I. Evolution of OS

Operating

System

Job 1

Job 2

Job 3

…

2500

1500

0

1000

2500

4000

6500

512K

bound registers

base registers

2500 + 1500 = 4000

18

Phase I (10)

❖ Base/Bound registers (cont’d)

▪ Primitive form of MMU (memory management unit)

I. Evolution of OS

<CPU +

Bound

Memory

Yes

No

Logical

Address

Physical

Address

Trap to operating system

Monitor-address error

Base

MMU

19

Phase I (11)

❖ Concurrency and synchronization

I. Evolution of OS

ATM in Seoul

Bank

ATM in Busan

Withdraw
\100,000 from

client A’s account

Withdraw
\150,000 from
client A’s account

Client A’s initial

balance

\200,000

Without

synchronization,

client A’s balance

may be either

\100,000 or \50,000

Synchronization

I. Evolution of OS – Phase II

21

Phase II (1)

❖ Key observation

▪ Hardware cheap, humans expensive

❖ Goal

▪ Make efficient use of people’s time

❖ Phase 2-1: Interactive time-sharing OS

▪ Terminals were cheap

▪ Users interacted with the system again

▪ Fancy filing systems added to OS

▪ Response time and protection became important

I. Evolution of OS

22

Phase II (2)

❖ Phase 2-2: PC OS

▪ Computers were cheap

• Computer in every terminal

▪ OS becomes a subroutine library again

❖ Phase 2-3: OS with Internet Access

▪ Allowed different machines to share resources easily

• Remote procedure calls (RPC)

• Network file system (NFS)

I. Evolution of OS

I. Evolution of OS – Phase III

24

Phase III (1)

❖ Key observation

▪ Connectivity matters; things get connected

❖ Goal

▪ Provide connected multimedia services for users

❖ Phase 3-1: OS with built-in Internet Access

▪ Internet protocols added to PC OS

▪ Internet programming is important (Web, CGI, Java, ...)

▪ Multitasking became important again

I. Evolution of OS

25

Phase III (2)

❖ Phase 3-2: Sophisticated PC OS

▪ Computers are extremely cheap

• Even PC has sophisticated architecture

▪ OS became complex again

❖ Phase 3-3: OS with Multimedia Support

▪ Demands lots of computer and network resources

▪ Human perception became the center of the universe

• QoS (Quality of Service), RTOS (Real-Time OS)

▪ Home appliances and computers got merged

I. Evolution of OS

26

Phase III (3)

❖ Phase 3-4: OS as Commodity

▪ Common OS used in desktop, mobile, cloud systems

▪ Multicore support added to OS

▪ Virtualization

▪ OS became software platform

• Android, webOS, …

I. Evolution of OS

II. Functions of OS

28

OS Characteristics

❖ Characteristics of current OS

▪ Large

• 10M’s of lines of code, 100-1000 man-years of work

▪ Complex

• Asynchronous behaviors

• Hardware idiosyncrasies

• Conflicting needs of different users and performance goals

▪ Poorly understood

• The system outlives any of its builders

• Too complex to totally debug – often unreliable

• Behavior is hard to predict

• Tuning is done by guessing

II. Functions of OS

29

Functions of OS

II. Functions of OS

Coordinator
▪ Allow things to work together efficiently and fairly

1

Illusion Generator
▪ Exports cleaner, higher level interface to hardware

2

Standard Library
▪ Provide standard facilities that everyone needs

3

30

OS as Coordinator (1)

❖Make many things work well together

II. Functions of OS

I/O Management

Process
Management Memory

Management
Network

Management

File Management

31

OS as Coordinator (2)

❖Make many things work well together (cont’d)

▪ Concurrency: Notion of process

• Several users working at the same time

• One user doing many things at the same time

▪ I/O devices: I/O devices run concurrently with the CPU

• Devices interrupts CPU when done

• Interrupt processing complicates the OS

▪ Memory: Each process needs some memory to execute

• OS must coordinate the memory usage

• Swap information between memory and disk

II. Functions of OS

32

OS as Coordinator (3)

❖Make many things work well together (cont’d)

▪ Files: Each user owns a collection of files

• OS must coordinate how space is allocated

• Control shared accesses to files

▪ Network: Allow groups of computers to work together

II. Functions of OS

33

OS as Illusion Generator (1)

❖ OS presents an illusion: “Cleaner abstraction”

II. Functions of OS

Application Program

Operating System

Hardware

34

OS as Illusion Generator (2)

❖ OS presents an illusion: “Multiple processors”

II. Functions of OS

Operating System

Hardware

Proc 1 Proc 2 Proc 3 Proc n

35

OS as Illusion Generator (3)

❖ Examples that work

▪ Timesharing, virtual memory

❖ Sometimes the illusions fail

▪ You can’t fake what you don’t get

▪ Thrashing

II. Functions of OS

