Ship Stability

Ch. 1 Introduction to Ship Stability

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University
Naval Acrchiectural Calculation, Sping, 2018, Myno-||l Roh sydlab
sydub

Contents

V Ch. 1 Introduction to Ship Stability
V Ch. 2 Review of Fluid Mechanics
V Ch. 3 Transverse Stability Due to Cargo Movement
Ch. 4 Initial Transverse Stability
\square Ch. 5 Initial Longitudinal Stability

- Ch. 6 Free Surface Effect

Ch. 7 Inclining Test
\square Ch. 8 Curves of Stability and Stability Criteria
\square Ch. 9 Numerical Integration Method in Naval Architecture
Ch. 10 Hydrostatic Values and Curves
Ch. 11 Static Equilibrium State after Flooding Due to Damage
Ch. 12 Deterministic Damage Stability
V Ch. 13 Probabilistic Damage Stability

Ch. 1 Introduction to Ship Stability

1. Generals
2. Static Equilibrium
3. Restoring Moment and Restoring Arm
4. Ship Stability
5. Examples for Ship Stability

1. Generals

How does a ship float? (1/3)

How does a ship float? (2/3)

Archimedes' Principle

- The magnitude of the buoyant force acting on a floating body in the fluid is equal to the weight of the fluid which is displaced by the floating body.
- The direction of the buoyant force is opposite to the gravitational force.
Buoyant force of a floating body
= the weight of the fluid which is displaced by the floating body ("
\Rightarrow Archimedes' Principle
Equilibrium State ("Floating Condition")

How does a ship float? (3/3)
Displacement $(\Delta)=$ Buoyant Force $=$ Weight (W)

$$
\begin{aligned}
\Delta & =L \cdot B \cdot T \cdot C_{B} \cdot \rho \\
& =W=L W T+D W T
\end{aligned}
$$

What is a "Hull form"?

च Hull form
that is streamlined in order to satisfy requirements of a ship owner such as a deadweight, ship speed, and so on

- Like a skin of human
\checkmark Hull form design
■ Design task that designs the hull form
Hull form of the VLCC(Very Large Crude oil Carrier)

What is a "Compartment"?

V Compartment

- It is divided by a bulkhead which is a diaphragm or peritoneum of human.
∇ Compartment design (General arrangement design)
- Compartment modeling + Ship calculation
\square Compartment modeling
- Design task that divides the interior parts of a hull form into a number of compartments
\boxtimes Ship calculation (Naval architecture calculation)
- Design task that evaluates whether the ship satisfies the required cargo capacity by a ship owner and, at the same time, the international regulations related to stability, such as MARPOL and SOLAS, or not

What is a "Hull structure"?

V Hull structure
comprising of a number of hull structural parts such as plates, stiffeners, brackets, and so on
■ Like a skeleton of human
च Hull structural design

- Design task that determines the specifications of the hull structural parts such as the size, material, and so on

sydlab 11

Principal Characteristics (1/2)

V LOA (Length Over All) [m]: Maximum Length of Ship

V LBP (Length Between Perpendiculars (A.P. ~ F.P.)) [m]

- A.P.: After perpendicular (normally, center line of the rudder stock)

■ F.P.: Inter-section line between designed draft and fore side of the stem, which is perpendicular to the baseline

च Lf (Freeboard Length) [m]: Basis of freeboard assignment, damage stability calculation
$■ 96 \%$ of Lwl at 0.85 D or Lbp at 0.85 D , whichever is greater

च Rule Length (Scantling Length) [m]: Basis of structural design and equipment selection $■$ Intermediate one among (0.96 Lwl at Ts, 0.97 Lwl at Ts, Lbp at Ts)

Definitions for the Length of a Ship

Principal Characteristics (2/2)

- B (Breadth) [m]: Maximum breadth of the ship, measured amidships
- $\mathrm{B}_{\text {molded }}$: excluding shell plate thickness
- $\mathrm{B}_{\text {extreme }}$: including shell plate thickness
- D (Depth) [m]: Distance from the baseline to the deck side line
- $\mathrm{D}_{\text {molded }}$: excluding keel plate thickness
- $\mathrm{D}_{\text {extreme }}$: including keel plate thickness
- Td (Designed Draft) [m]: Main operating draft - In general, basis of ship's deadweight and speed/power performance
- Ts (Scantling Draft) [m]: Basis of structural design
- Air Draft [m]: Distance (height above waterline only or including operating draft) restricted by the port facilities, navigating route, etc.
- Air draft from baseline to the top of the mast
- Air draft from waterline to the top of the mast
- Air draft from waterline to the top of hatch cover
- ...

6 DOF Motions of a Ship

Center Plane

Before defining the coordinate system of a ship, we first introduce three planes, which are all standing perpendicular to each other.

[^0]
Base Plane

The second plane is the horizontal plane, containing the bottom of the ship, which is called

The third plane is the vertical transverse plane through the midship, which is called

Centerline in
(a) Elevation view, (b) Plan view, and (c) Section view

System of Coordinates

Center of Buoyancy (B) and Center of Mass (G)

※ In the case that the shape of a ship is asymmetrical
Center of buoyancy (B) with respect to the centerline.

It is the point at which all the vertically upward forces of support (
) can be considered to act.
It is equal to the center of volume of the submerged volume of the ship. Also, It is equal to the first moment of the submerged volume of the ship about particular axis divided by the total buoyant force (displacement). Center of mass or Center of gravity (G)
It is the point at which all the vertically downward forces of weight of the ship (
) can be
considered to act.
It is equal to the first moment of the weight of the ship about particular axis divided by the total weight of the ship.

$+$
$=$

Sydiob ${ }_{27}$

What is "Stability"?

syd్ab 29

Stability of a Ship

- You have a torque on this object elative to any point that you choose. It does not matter where you pick a point.
- The torque will only be zero when the juoyant force and the gravitational
${ }^{n d n o b}$ iorce are on one line. Then the torque
becomes zero.

Interaction of Weight and Buoyancy of a Floating Body (2/2)

(a)

(b)

syd్ab ${ }^{5}$

Equations for Static Equilibrium (1/3)

Suppose there is a floating ship. The
states that the sum of total forces is zero.

$$
\sum F=F_{G, z}+F_{B, z}=0
$$

$\mathrm{F}_{\mathrm{G},}$ and $\mathrm{F}_{\mathrm{B}, \mathrm{z}}$ are the z component of the gravitational force vector and the buoyant force vector, respectively, and all other components of the vectors are zero.

Equations for Static Equilibrium (3/3)

$$
\sum \boldsymbol{\tau}=\mathbf{M}_{G}+\mathbf{M}_{B}=\mathbf{0}
$$

Restoring Moment Acting on an Inclined Ship

syd్ab ${ }^{41}$

\square Metacenter (M) $\quad \tau_{\text {reseroring }}=F_{B} \cdot G Z$

Restoring Moment at Large Angle of Inclination (3/3)

Stability of a Ship According to Relative Position between " G ", " B ", and " M " at Small Angle of Inclination					
- Righting (Restoring) Moment: Moment to return the ship to the upright floating position - Stable / Neutral / Unstable Condition: Relative height of G with respect to M is one measure of stability.					
- Stable Condition (- Neutral Condition (- Unstable Cond tiof (
\| Architectual Calculation, Sping 2018, Myung-	Reh			syd	

4. Ship Stability

Summary of Static Stability of a Ship (2/3)

τ_{e}

- The total moment will only be zero when the buoyant force and the gravitational force are on one line. If the moment becomes zero, the ship is in static equilibrium state.

Evaluation of Stability

: Merchant Ship Stability Criteria - IMO Regulations for Intact Stability

VIMO recommendation on intact stability for passenger and cargo ships.

[Example] Equilibrium Position and Orientation of a Box-shaped Ship Question 1) The center of mass is moved to $0.3[\mathrm{~m}]$ in the direction of the starboard side.

A box-shaped ship of 10 meter length, 5 meter breadth and 3 meter height weighs 205 [kN].
The center of mass is moved 0.3 [m] to the left side of the center of the deck. When the ship is in static equilibrium state, determine the angle of heel (ϕ) of the ship.

Assumption)
(1) Gravitational acceleration $=10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$, Density of sea water $=1.025\left[\mathrm{ton} / \mathrm{m}^{3}\right]$
(2) When the ship will be in the static equilibrium finally, the deck will not be immersed and the bottom will not emerge.

-3
Solution)
(1) Static Equilibrium (2/3)

Solution)
$y_{G}=y_{B}$
(2-1) Changed Center of Buoyancy, \mathbf{B}_{1}, with Respect to the Body Fixed Frame

Solution)

(2-2) Center of Buoyancy and Center of Gravity with Respect to the Body Fixed Frame (2/2)

61
0

Solution)

-3) Center of Buoyancy and Center of Gravity with Respect to the Body Fixed Frame (2/2)
2) Center of gravity, G, with respect to the body fixed frame

The center of gravity, G, with respect to the body fixed frame is given by geometrical relations as shown in the figure, which is

$$
\left(y_{G}^{\prime}, z_{G}^{\prime}\right)=(d, 2 b-t)
$$

Solution)
i) Comparison between the Figure Describing the Ship Inclined
nd the Figure Describing the Water Plane Inclined (2/2)

20
$3 \cos \alpha-3 \sin \alpha=\frac{a}{3} \cos \alpha-\frac{b}{3} \sin \alpha$

Question) Emergency circumstance happens in Ferry with displacement (mass) 102.5 ton. Heeling moment of 8 ton m occurs due to passengers moving to the right of the ship.
What will be an angle of heel?
Assume that wall sided ship with $\mathrm{KB}=0.6 \mathrm{~m}, \mathrm{KG}=2.4 \mathrm{~m}, \mathrm{I}_{\mathrm{T}}=200 \mathrm{~m}^{4}$.

\square

[Example] Change of Center Caused by Movement of Cargo

Question) As below cases partial weight w of the ship is shifted. What is the shift distance of center of mass of the ship?

Question)

A cargo carrier of 18,000 ton displacement is afloat and has $G M=1.5 \mathrm{~m}$. And we want to transfer the cargo of 200 ton weight from bottom of the ship to land.
A lifting height of cargo is 27.0 m from the original position.
After lifting the cargo, turn the cargo to the right through a distance of 16.0 m from the centerline
What will be the angle of heel of the ship?

Hint) Use the Moment to Heel One Degree and the heeling moment caused by the movement of the cargo.

Problem to calculate the equilibrium angle of the ship when external force are applied.

$= \pm= \pm$
fydab 8

L

$G_{l}:$ Centroid of total area, \quad Area $_{A}$: Total area
g : Centroid of the large circle, Area A_{A-a} : Area of the large circle
g_{l} : Centroid of the small circle, Area $_{a}$: Area of the small circle

Determination of Heeling Angle for the Case of Moving a argo Only in Transverse Direction (1/4)

sydtab

Determination of Heeling Angle for the Case of Moving a argo Only in Transverse Direction (3/4)

syd్ab 9

Determination of the Heeling Angle Due to the Movement

F the Center of Gravity (3/4)

nydob

[Appendix] Rotational Transformation of a Position Vector to a Body in Fluid

Representation of a Point " P " on the Object with Respect to the Body Fixed Frame (Decomposed in the Body Fixed Frame)

Rotation of the Object with an Angle of ϕ and then Representation of the Point "P" on the Object with Respect to the Inertial Frame

syduab 9

Coordinate Transformation of a Position Vector

Representation of a Point " P " on the Object with Respect to the Body Fixed Frame (Decomposed in the Body Fixed Frame)

Change of the Total Center of Mass Caused by Moving a Load of Weight " w " with Distance " d " from " g " to " g_{1} "

sydlab ${ }^{103}$

Change of the Center of Buoyancy Caused by Changing the Shape of Immersed Volume

(3) Rotate the new centroid " B_{1} " with an angle of " $-\phi$ "(clockwise direction).
${ }^{(1)}$ Then calculate the position vector of the point " B_{1} " with respect to the inertial frame.

$$
\left[\begin{array}{l}
y_{B_{1}} \\
z_{B_{1}}
\end{array}\right]=\left[\begin{array}{cc}
\cos (-\phi) & -\sin (-\phi) \\
\sin (-\phi) & \cos (-\phi)
\end{array}\right]\left[\begin{array}{l}
y_{B_{1}}^{\prime} \\
z_{B_{1}}^{\prime}
\end{array}\right]
$$

107

Stability of a Ship

- Stable Condition (2/3)

109

$\substack{\text { Sability of ship } \\ \text {-Netran Condition (13) }}$
\qquad

1

Stability of a Ship

\qquad

Stability of a Ship

- Unstable Condition (2/3)

Orientation of a Ship with Respect to the Different Reference Frame

syd్ab

5
$\square \square$

$\square 119$
\square

[Reference]

Orientation of a Shin with Resnect to the Different Reference Frame
Inclination of a ship can be represented either with respect to the water plane fixed frame("inertial reference frame") or the body fixed reference frame.
Are these two phenomena with respect to the different reference frames the same?

[^0]: Generally, a ship is symmetrical about starboard and port.
 The first plane is the vertical longitudinal plane of symmetry, or

