446.612 Robot Mechanics & Control 로봇역학 및 제어 - lecture 1 -

Dongjun Lee (이동준)

Department of Mechanical & Aerospace Engineering Seoul National University

Dongjun Lee

Course Information

• Robot Mechanics & Control

Graduate-level introductory course on robotics, with emphasis on analytical treatments of kinematics, dynamics, and control of robotic manipulators

- Instructor: Dongjun Lee (djlee@snu.ac.kr, 301-1517, 880-1724)
- Teaching Assistants:
 - Sangyul Park (Lead: sangyul@snu.ac.kr, 301-211, 880-1690)
 - Yonghan Lee (Grading: ldragonfly@snu.ac.kr, same as above)
- Prerequisites
 - Undergraduate-leve dynamics, linear algebra, system dynamics or their equivalent; or by the consent of instructor
- Grading
 - 1. HW 20% (score 0/0.5/1: before lecture; 50% same day; 0% if not)
 - 2. Mid-term exam 40% 11/3/2017 F 7-9:30pm (one A4 cheat sheet)
 - 3. Final project 40% 12/15/2017 11:59pm (industrial manipulators: TBA)

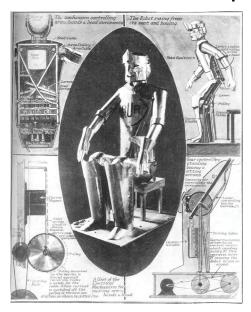
Course Information

- Course Topics
 - 1. Rigid body motion description in SE(3)
 - 2. Forward and inverse kinematics
 - 3. Differential kinematics and Jacobians
 - 4. Kinematic null-space-based control
 - 5. Dynamics: Lagrangian and Newton-Euler approaches
 - 6. Nonlinear motion control
 - 7. Interaction control
 - 8. Dynamics and control of constrained systems

Dongjun Lee

Course Information

- Textbooks
 - Murray, Li, Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994
 - Spong, Hutchinson, Vidyasagar, Robot Modeling & Control, John Wiley & Sons, 2005
- References
 - Lynch, Park, Modern Robotics: Mechanics, Planning, and Control, Cambridge University Press , 2017
 - Choset, Burgart, Kavraki, Kantor, Hutchinson, Lynch, Principles of Robot Motion, MIT Press, 2005
 - Slontne and Li, Applied Nonlinear Control, Prentice-Hall, 1991


Course Information

- The SG (Special Grade) Group
 - Grade guarantteed at least B-, yet, upper-bounded by B+.
 - As long as you submit all the HWs, and sincerely take all the exams.
 - Can lower though if not submit HWs (\geq Co); not do exams (\leq Co)
 - For those who just want to apply robotics, not work on it.
 - To allow "non-robotics" students to take course w/o worrying grade.
 - Yet, need to establish fairness with other "robotics" students.
 - Grade first all students, then, saturate SG-group students grade.
 - You should elect this SG-group option before the midterm exam.
 - UG students not need to elect: will receive whichever better.
- No lectures on 9/25, 9/27 (IROS)
- ullet Other important information o Course Syllabus

Donaiun Lee

Karel Capek 1921

• R.U.R (Rossum's Universal Robot)

Teleoperators: 1940-50

• Mechanical Teleoperator (1952, ANL)

• Yes-Man Hydraulic Teleoperator w/ Force Feedback (1956, GE)

Dongjun Le

First Industrial Robot "Unimate" 1961

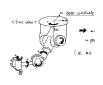
Unimations Unimate #001 in GM (1961, Joel Engelberger & George Devol, Euwing, NJ)

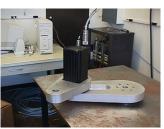
• Unimate at Johnny Carson Tonight Show (1966)

Johnny Carson marvels that this robot can "replace someone's job."

<u> 1970</u>

• Stanford arm (first computer-controlled w/ closed-form IK 1969: V. Scheinman)

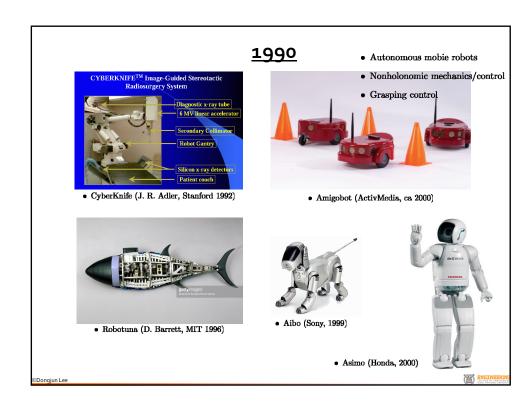

• PUMA (Programmable Universal Machine for Assembly: Unimation 1977)

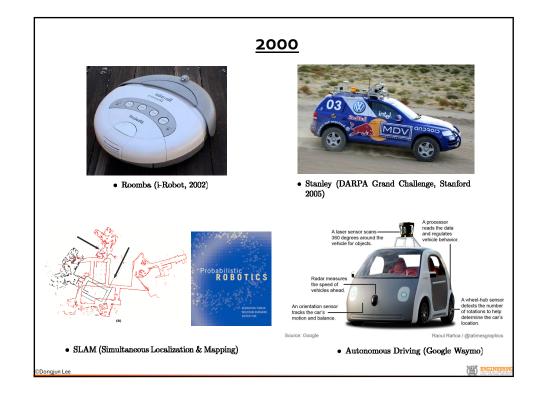

SCARA (Selective Compliant Articulated Robot for Assembly: Sankyo Seiki, Pentel & NEC 1981)

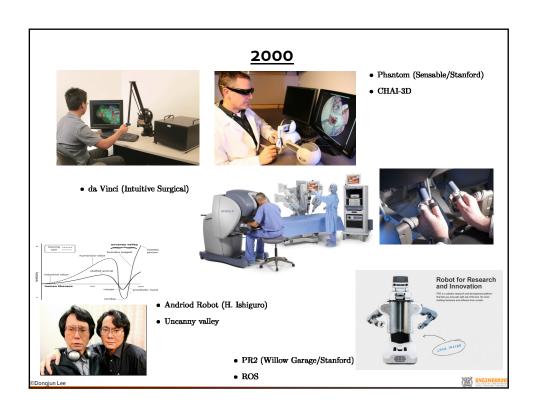
• Lunokhod1 (Soviet Union, first remote-controlled lunar rover 1970)

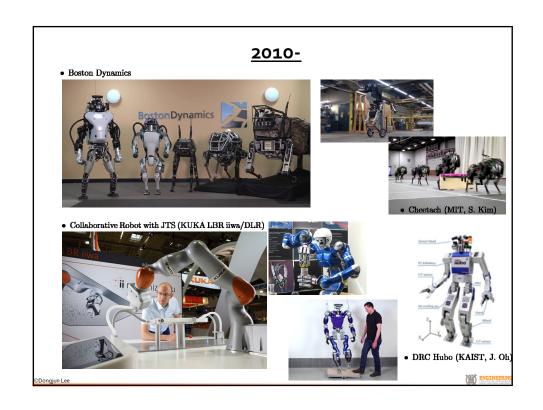
<u> 1980</u>

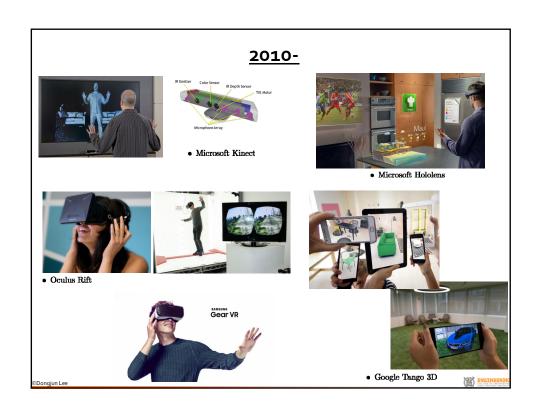
• Direct-driven arm with no gear (H. Asada & T. Kanade, CMU 1981)


Genghis (Rodney Brooks, MIT, 1989: A Robot That Walks; Emergent Behaviors from a Carefully Evolved Network)


Dynamics-Based Robot Control:


- Impedance control
- Dynamics computation
- Computed torque control
- Feedback linearization
- Passivity-based control
- Adaptive/robust control




Passive walking (Tad McGeer, MIT 1990)

