Course	458.205	Lecture	001	Title	Basic Computer Methods in Chemical and Biological Engineering	Credit	3
Instructor	J. M. Lee						

	T					
Prerequisite	Principle of Computers, Introduction to Chemical and Biological Engineering					
	Basic unit processes including reactors and separators in chemical plant					
	O Process analysis and synthesis					
* 1. Objective	O Mass and energy balances and their applications for the whole process of a plant.					
* 2. Text	R. M. Murphy, Introduction to Chemical Processes: Principles, Analysis, Synthesis, McGraw Hill, 2007					
	강의내용					
	W1) Ch. 1: The chemical process industry; Raw material choices, reaction path synthesis; Balancing					
	chemical reactions; Generation-consumption analysis; Atom and process economy					
	W2) Ch. 2.1-2.3: Process flowsheeting; Chemical process equipment; Process variables					
	W3) Ch. 2.4-2.5: The material balance equation; Process flow calculations					
	W4) Ch. 2.6: Degree of freedom analysis					
	W5) Ch. 3.1-3.2: Mathematics of material balances					
	W6) Ch. 4.1-4.3: Chemical reactors; Review of material balances with reactors; Conversion and its					
	effect on reactor; Flowsheet synthesis					
* 3, Lectures	W7) Ch. 4.3.5-4.4: Multiple reactions; Selectivity and yield; Chemical reaction equilibrium					
J. Lectures	W8) Ch. 5.1-5.3: Separation technologies; Review of material balances with separators; Separator					
	performance specifications; Midterm Exam					
	W9) Ch. 5.4-5.5: Phase equilibrium					
	W10) Ch. 5.6: Equilibrium-based separations					
	W 11) Ch. 5: Continued					
	W 12) Ch. 6.1-6.3.3.: The energy balance equation					
	W 13) Ch. 6.3-6.4: Working with enthalpy					
	W 14) Ch. 6.5–6.6: Process energy calculations					
	W 15) Ch. 6.7: Safe and efficient energy use, Final exam					