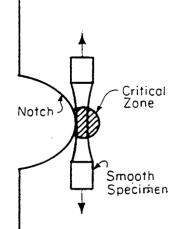
Topics in Ship Structures

02 Low Cycle Fatigue for Base Material

Reference : Fundamentals of Metal Fatigue Analysis Ch. 2 Strain – Life

> 2017. 9 by Jang, Beom Seon



OPen INteractive Structural Lab

2.1 INTRODUCTION

High Cycle Fatigue vs Low Cycle Fatigue

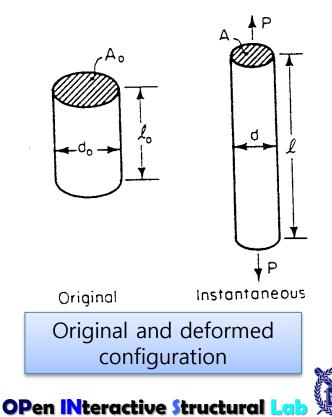
- Each failure occurs by apparently different physical mechanisms
- High cycle fatigue
- Low cycle fatigue
 - Significant plastic strain occurs during at least some of the loading cycles.
 - ✓ Relatively short fatigue lives between 10~100,000 cycles
 - \checkmark Ductility and resistance to plastic flow are important
 - Post welding treatment and high tensile material are not effective.
 - Engineering Structures are designed such that the nominal loads remain elastic.
 - ✓ However, stress concentrations often cause plastic strains to develop in the vicinity of notches.
 - ✓ Crack initiation life is estimated.

Basic Definitions

- Engineering Stress and Strain
 S = engineering stress = \frac{P}{A_0}
 e = engineering strain = \frac{l-l_0}{l_0} = \frac{\Delta l}{l_0}
 The true stress is defined as the ratio of the
- applied load to the instantaneous cross sectional area

$$\sigma = true \, stress = \frac{P}{A}$$

• The true strain is defined as the sum of all the instantaneous engineering strains.

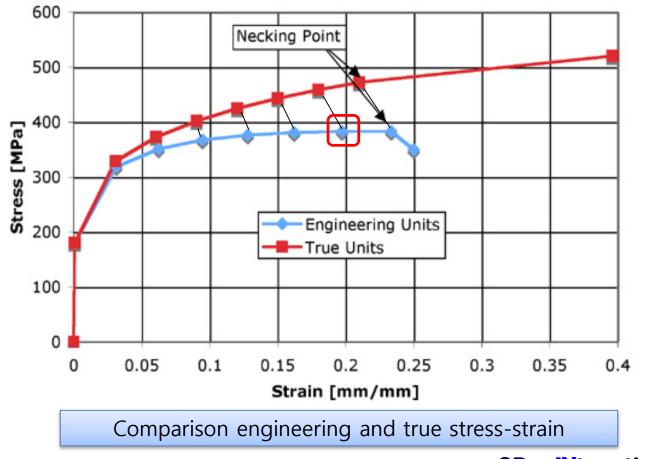

$$\varepsilon = true \ strain = \int_{l_0}^{l} \frac{dl}{l} = \ln \frac{l}{l_0}$$

Incase of engineering strain.

$$e = \text{engineering strain} = \int_{l_0}^{l} \frac{dl}{l_0} = \frac{l - l_0}{l_0}$$

P = applied load $l_0 = original length$ $d_0 = original diameter$ $A_0 = original area$ l = instantaneous length

d =instantaneous diameter


True and engineering stress-strain

True and Engineering Stress-Strain Relationship (valid up to necking)

The instantaneous length :
$$l = l_0 + \Delta l$$

The true strain : $\varepsilon = \ln \frac{l_0 + \Delta l}{l_0} = \ln \left(1 + \frac{\Delta l}{l_0}\right) = \ln(1 + e)$
The volume remains constant up to necking
 $A_0 l_0 = Al \Rightarrow \frac{A_0}{A} = \frac{l}{l_0}$
 $\varepsilon = \ln \frac{l}{l_0} = \ln \frac{A_0}{A}$
 $P = SA_0 \quad \sigma = \frac{P}{A} \Rightarrow \sigma = S \frac{A_0}{A}$
 $\varepsilon = \ln(1 + e) = \ln \frac{A_0}{A} \Rightarrow \frac{A_0}{A} = 1 + e$
 $\sigma = S(1 + e) \quad \varepsilon = \ln(1 + e)$

True and engineering stress-strain

$$(e,S) = (0.2,380)$$
 $\xrightarrow{\varepsilon = \ln(1+e)}$ $(\varepsilon, \sigma) = (0.182,456)$
 $\sigma = S(1+e)$

OPen INteractive Structural Lab

Stress-Strain relationship

- Total true strain (ε_t) = Linear elastic strain (ε_e)+ plastic strain (ε_p) $\varepsilon_t = \varepsilon_e + \varepsilon_p$
- For most metals a log-log plot of true stress versus true plastic strain is modeled as a straight line. $\sigma^{-1/2}$

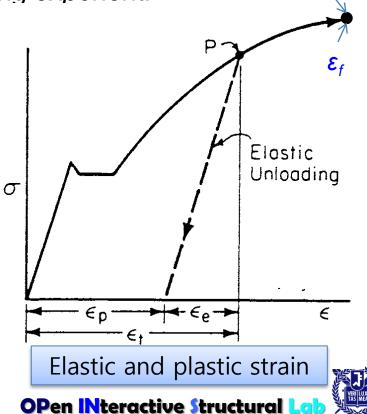
$$\sigma = K(\varepsilon_p)^n \qquad \varepsilon_p = (\frac{\sigma}{K})^{\frac{1}{n}}$$

K : strength coefficient, n : strain hardening exponent.

• True fracture strength σ

 $\sigma_f = \frac{P_f}{A_f}$

 A_f : area at fracture, P_f : load at fracture.


True fracture ductility, true strain at final fracture.

$$\varepsilon_{f} = \ln \frac{A_{0}}{A_{f}} = \ln \frac{1}{1 - RA}, RA = \frac{A_{0} - A_{f}}{A_{0}}$$

RA : Reduction in area

• K can be defined in terms of σ_f and ε_f .

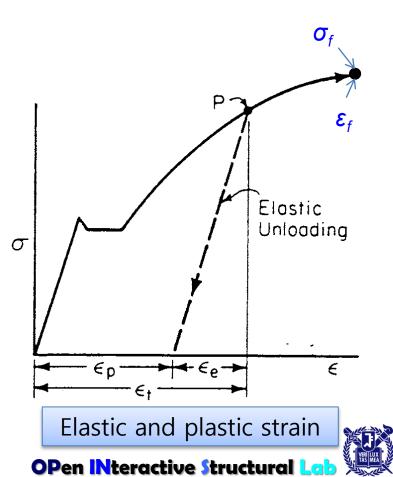
$$\sigma_f = K(\varepsilon_f)^n \quad K = \frac{\sigma_f}{\varepsilon_f^n}$$

2.2 MATERIAL BEHAVIOR - 2.2.1 Monotonic Stress-Strain Behavior Stress-Strain relationship

Plastic strain can be defined in terms of these quantities.

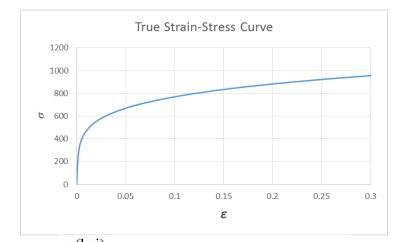
$$\mathcal{E}_{p} = \left(\frac{\sigma}{K}\right)^{1/n} \quad K = \frac{\sigma_{f}}{\varepsilon_{f}^{n}} \quad \Longrightarrow \quad \varepsilon_{p} = \left(\frac{\sigma}{\sigma_{f}/\varepsilon_{f}^{n}}\right)^{1/n} = \left(\frac{\sigma\varepsilon_{f}^{n}}{\sigma_{f}}\right)^{1/n} = \varepsilon_{f}\left(\frac{\sigma}{\sigma_{f}}\right)^{1/n}$$

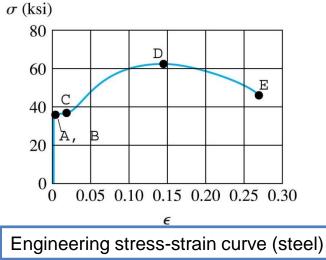
Total strain can be expresses as

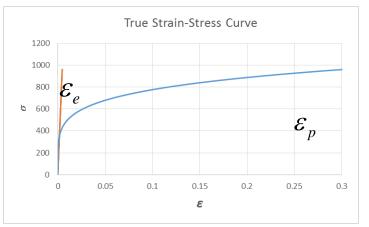

 $\mathcal{E}_t = \mathcal{E}_e + \mathcal{E}_p$

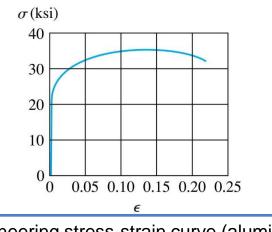
Elastic strain

$$\varepsilon_e = \frac{\sigma}{E}$$

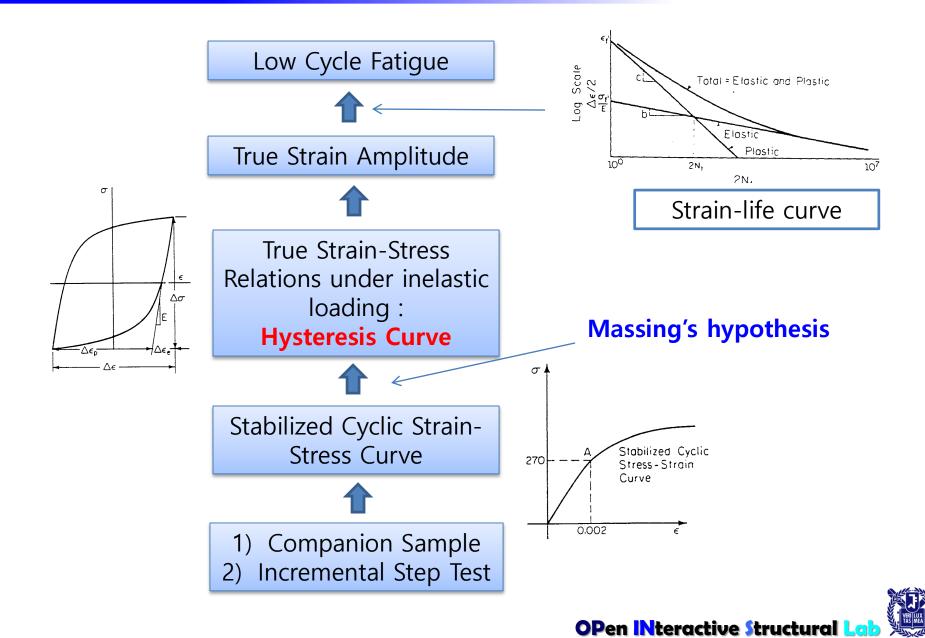

Total strain can be rewritten as


$$\varepsilon_t = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{\frac{1}{n}}$$

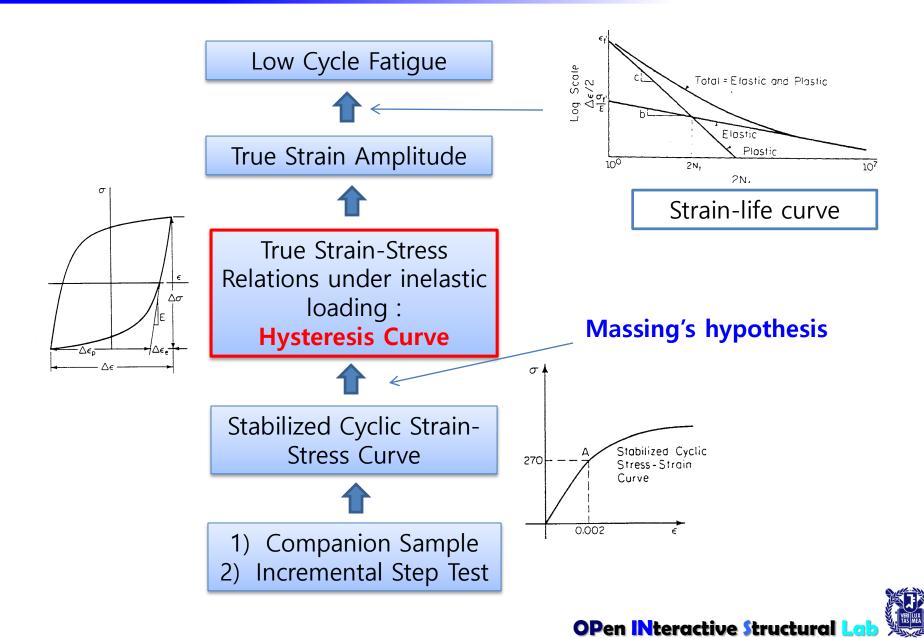



True and engineering stress-strain

- Example of True Stress-Strain Curve
- E = modulus of elasticity = 20600 MPa
- n = cyclic strain hardening exponent = 0.193
- $K = cyclic \ strength \ coefficient = 1210 \ MPa$



Engineering stress-strain curve (aluminum)

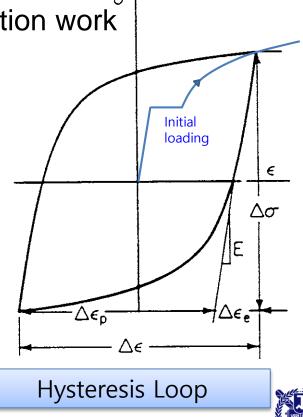

2.1 INTRODUCTION

Low Cycle Fatigue Calculation Procedure

2.1 INTRODUCTION

Low Cycle Fatigue Calculation Procedure

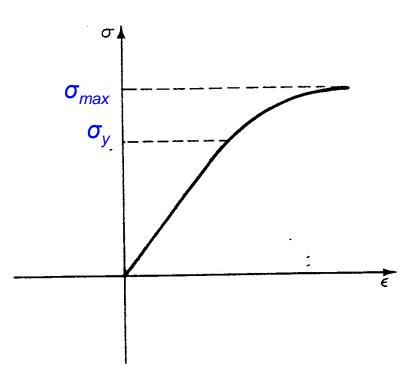
2.2.2 Cyclic Stress-Strain Behavior – Hysteresis loop

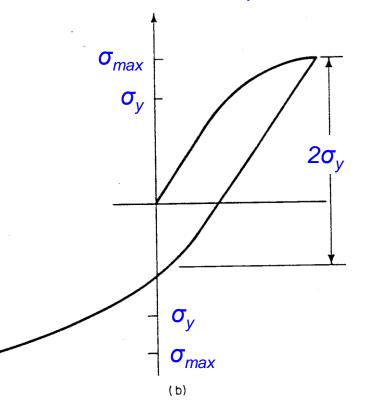

- Cyclic stress-strain curves are useful for assessing the durability of structures and components subjected to repeated loading.
- Hysteresis loop : the response of a material subjected to inelastic loading.
- The area within the loop : plastic deformation work done on the material
- Total strain range.

$$\Delta \varepsilon = \Delta \varepsilon_e + \Delta \varepsilon_p$$

• Total strain amplitude $\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon_e}{2} + \frac{\Delta \varepsilon_p}{2}$

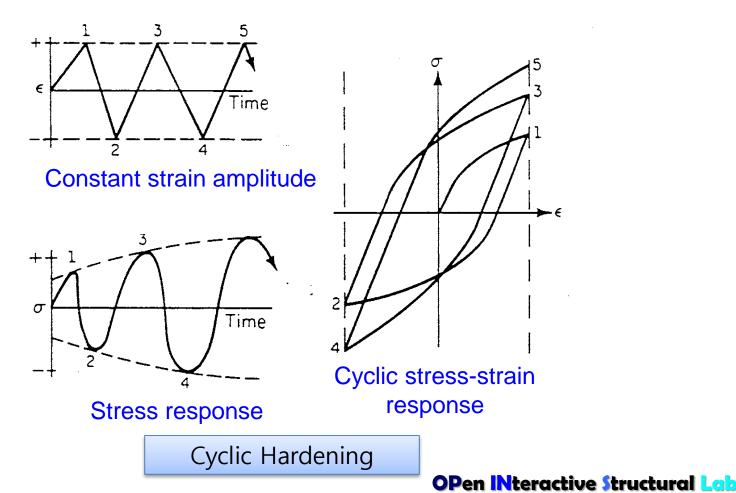
the elastic term may be replaced


$$\frac{\Delta\varepsilon}{2} = \frac{\Delta\sigma}{2E} + \frac{\Delta\varepsilon_p}{2}$$


OPen INteractive Structural Lab

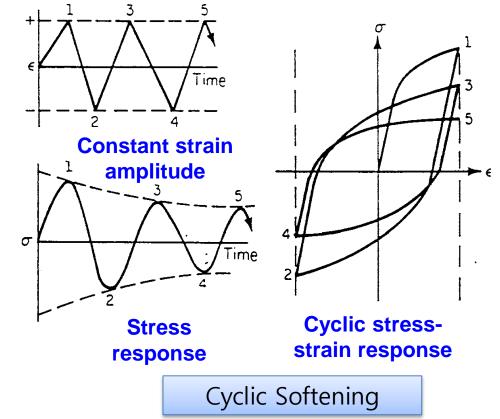
2.2.2 Cyclic Stress-Strain Behavior – Baushinger effect

1. Tensional loading : past the yield strength, $\sigma_{\rm y}$, to some value $\sigma_{\rm max}$


2. Compressive loading : inelastic (plastic) strains develop before $-\sigma_y$ is reached. 12

2.2.3 Transient Behavior : Cyclic Strain Hardening

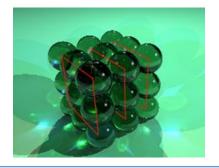
- The stress-strain response of metals is often drastically altered due to repeated loading.
 - 1. Cyclically harden : maximum stress increases with each cycle of strain.
 - \rightarrow requires more load to keep imposing the constant strain.

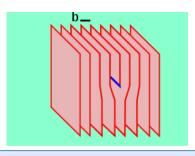


2.2.3 Transient Behavior : Cyclic Softening

2. Cyclically soften : maximum stress increases with each cycle of strain

 \rightarrow requires less load to keep imposing the constant strain.


- 3. Be cyclically stable : requires the same load
- 4. Have mixed behavior(soften or harden depending on strain range)


OPen INteractive Structural Lab

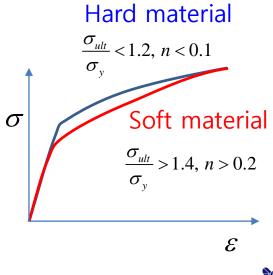
What is dislocation?

- Dislocation : a crystallographic(결정학상의) defect, or irregularity, within a crystal structure.
- A crystalline material : consists of a regular array of atoms, arranged into lattice planes.
- An edge dislocation : a defect where an extra half-plane of atoms is introduced mid way through the crystal, distorting nearby planes of atoms.
- A screw dislocation : Imagine cutting a crystal along a plane and slipping one half across the other.

Crystal lattice showing atoms and lattice planes

Screw dislocation

OPen INteractive Structural Lat



2.2.3 Transient Behavior : Cyclic Hardening and Softening

- The reason of materials soften or harden
- For soft material : initially the dislocation density is low. The density rapidly increases due to cyclic plastic straining contributing to significant cyclic strain hardening
- For hard material : subsequent strain cycling causes a rearrangement of dislocations which offers less resistance to deformation and the material cyclically softens.

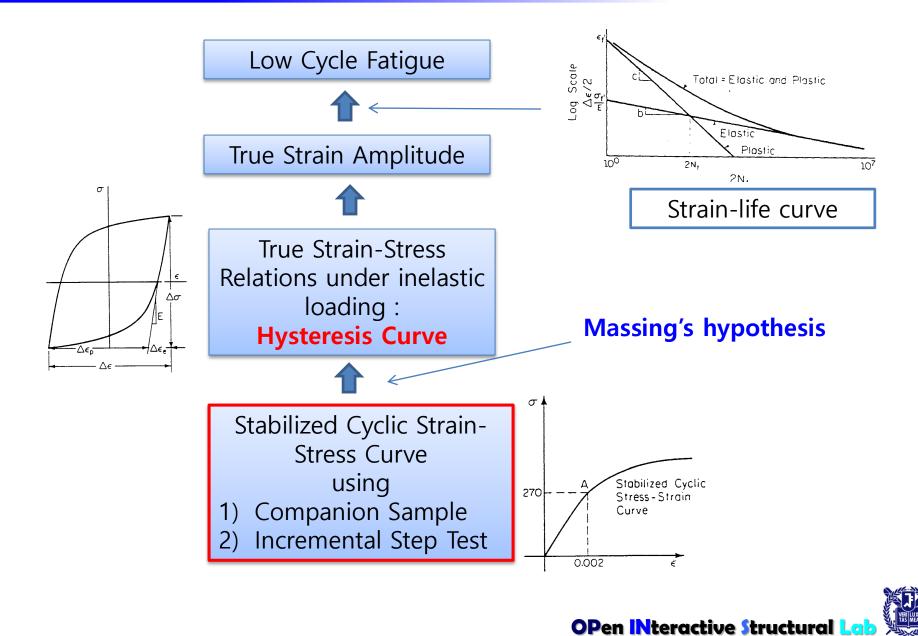
$\frac{\sigma_{\scriptscriptstyle ult}}{\sigma_{\scriptscriptstyle y}}\!>\!1.4\,$: the material will cyclically harden

 $\frac{\sigma_{\scriptscriptstyle ult}}{\sigma_{\scriptscriptstyle y}}$ < 1.2 : the material will cyclically soften

OPen INteractive Structural

2.2.3 Transient Behavior : Cyclic Hardening and Softening⁷

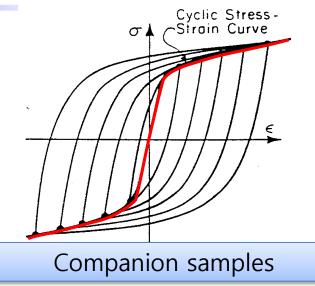
- Between 1.2 and 1.4, small change in cyclic response.
- Monotonic strain hardening exponent, n, can be used to predict the material's cyclic behavior.
 - \checkmark n> 0.20 the material will cyclically harden
 - \checkmark n< 0.10 the material will cyclically soften

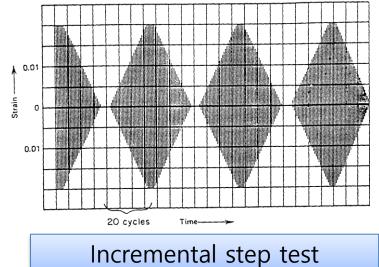

$$\sigma = K(\varepsilon_p)^n$$

- Cyclically stable condition reaches after 20~40% of the fatigue life.
- Fatigue properties are usually specified at 50% of fatigue life when the material response is stabilized.

2.1 INTRODUCTION

Low Cycle Fatigue Calculation Procedure

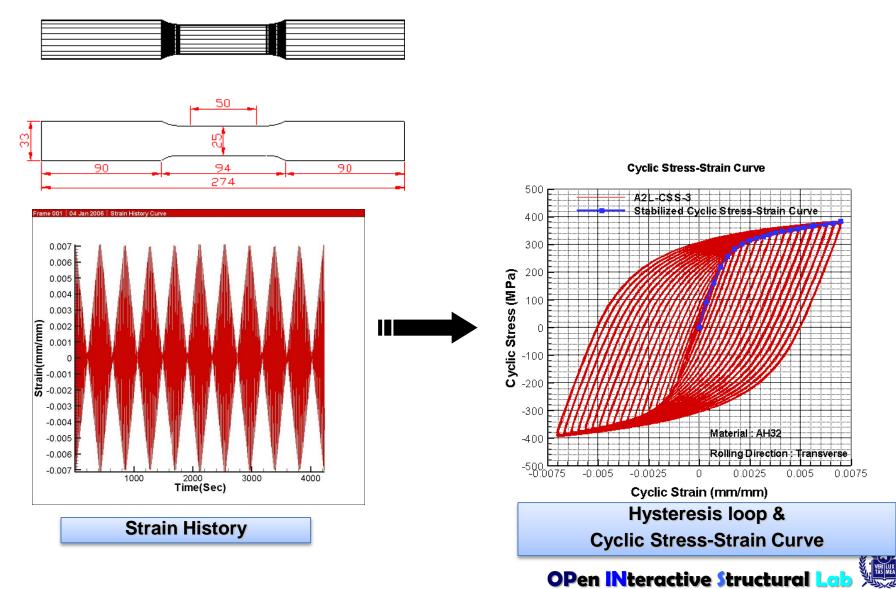


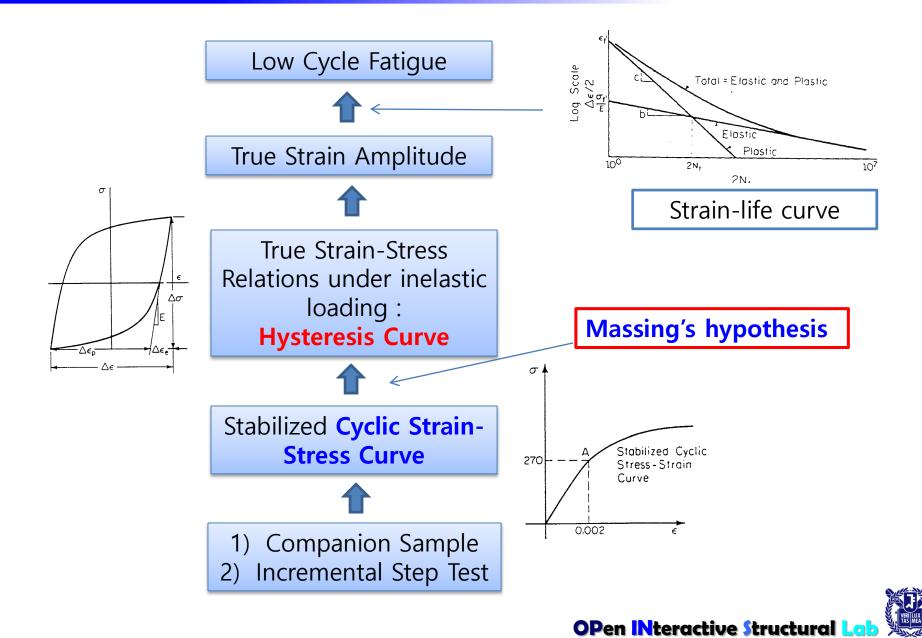

18

2.2.4 Cyclic Stress-Strain Curve Determination

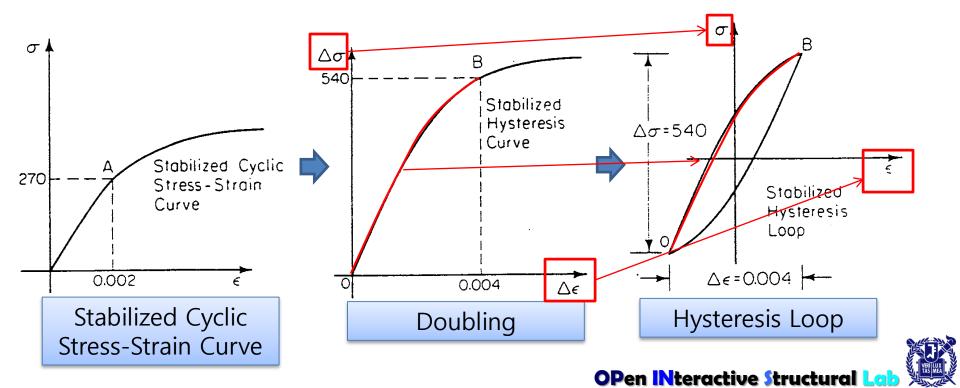
1. Companion samples : A series of samples are tested at various strain levels and the stabilized hysteresis loops are superimposed and the tips of the loops are connected. Time consuming.

2. Incremental step test : widely accepted since quick and good results. The response stabilizes after 3-4 blocks and fails after about 20 blocks. The tips of the stabilized hysteresis loops are connected → Cyclic Stress-Strain Curve




2.2.4 Cyclic Stress-Strain Curve Determination

An example of Incremental step test


2.1 INTRODUCTION

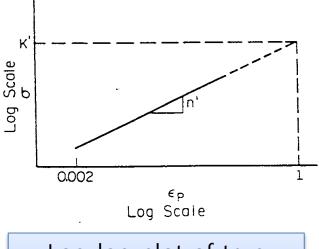
Low Cycle Fatigue Calculation Procedure

2.2.4 Cyclic Stress-Strain Curve Determination

- After the incremental step test, if the specimen is pulled to failure, the stress-strain curve will be nearly identical to the one obtained by connecting the loop.
- Massing's hypothesis : the stabilized hysteresis loop may be obtained by doubling the cyclic stress-strain curve.

2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

Cyclic true stress versus plastic strain


 Log-log plot of the completely reversed stabilized cyclic true stress versus true plastic strain

$$\sigma = K'(\varepsilon_p)^{n'} \implies \varepsilon_p = (\frac{\sigma}{K'})^{1/n}$$

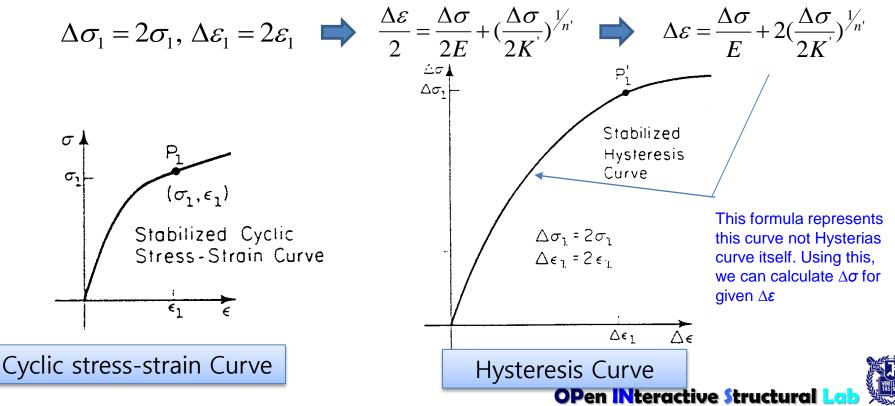
Where, $\sigma = cyclically$ stable stress amplitude $\varepsilon = cyclically$ stable plastic strain amplitude K' = cyclic strength coefficient n' = cyclic strain hardening exponent (0.10 ~0.25, average 0.15)

Total strain is

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K'}\right)^{1/n'}$$

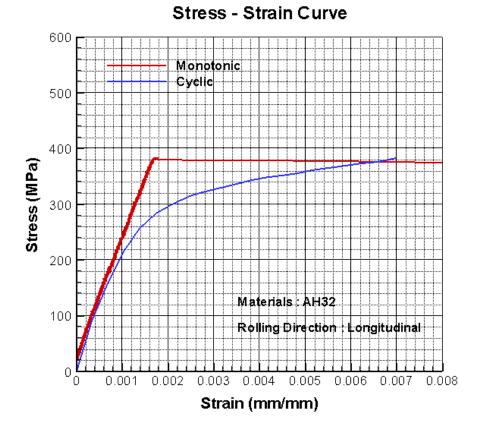
Log-log plot of true cyclic stress versus true cyclic plastic strain

OPen INteractive Structural Lab


2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

Hysteresis loop by Massing's hypothesis

- Total strain is $\varepsilon = \frac{\sigma}{E} + (\frac{\sigma}{K'})^{1/n'}$
- An arbitrary point P₁(σ₁,ε₁) on Cyclic Stress-Strain Curve,


$$\varepsilon_1 = \frac{\sigma_1}{E} + \left(\frac{\sigma_1}{K'}\right)^{\frac{1}{n'}}$$

• From Massing's hypothesis, P_1 can be located on hysteresis curve, $P'_1(\Delta \sigma_1, \Delta \varepsilon_1)$.

Example of Experiment data

 Example of actual Monotonic and Cyclic Stress Strain Curve.

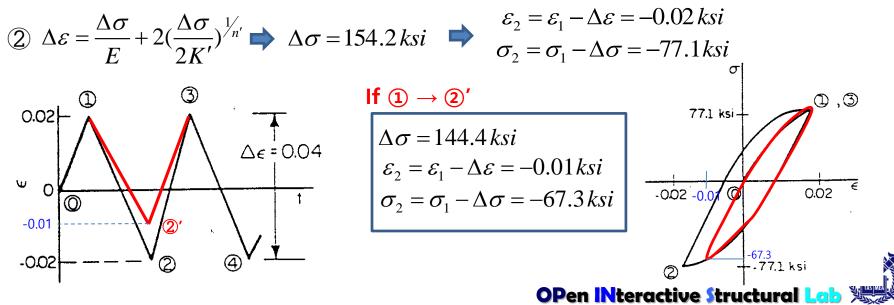
2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

Example 2.1

Q : Consider a test specimen with the following material properties :

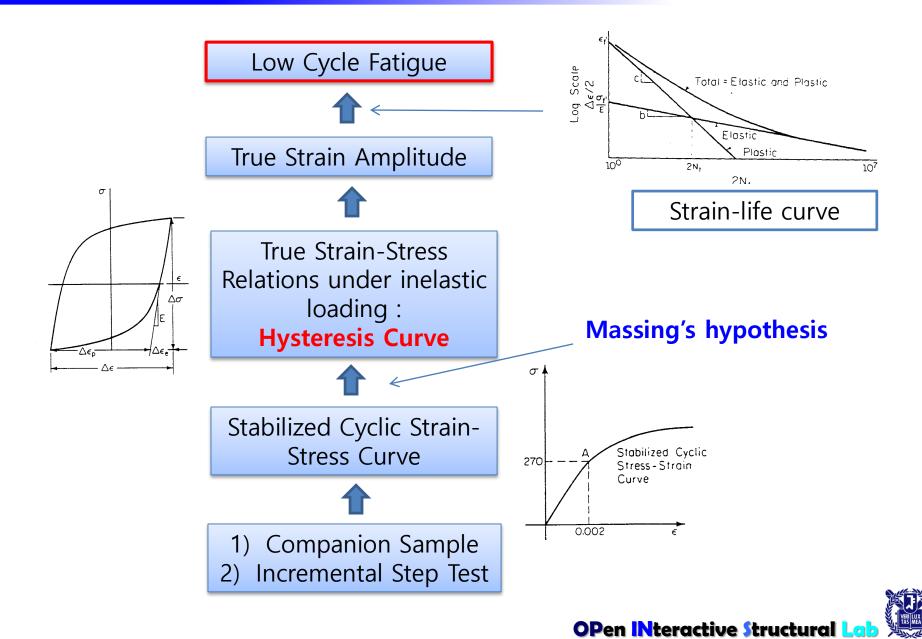
 $E = modulus of elasticity = 30 \times 10^3 ksi$

n' = cyclic strain hardening exponent = 0.202

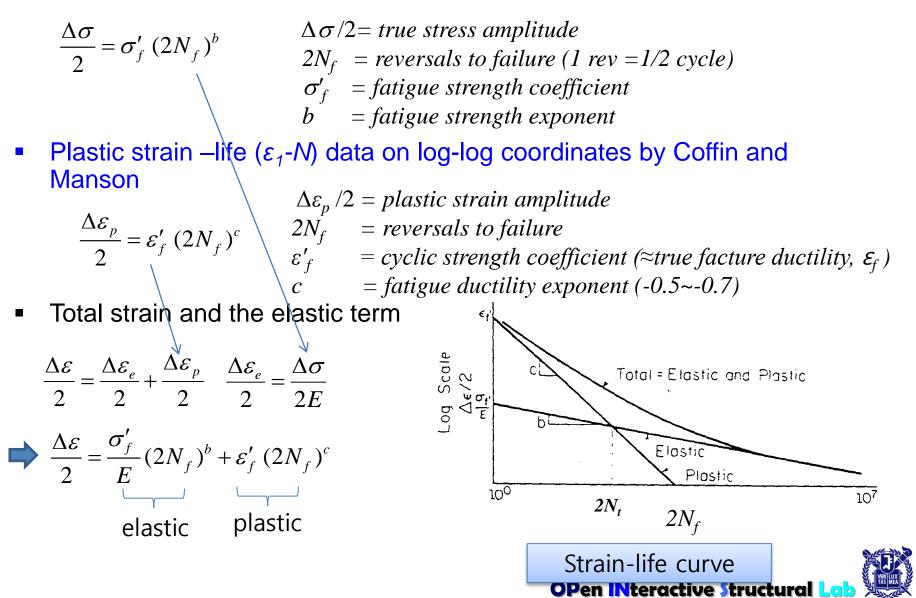

K' = cyclic strength coefficient = 174.6 ksi

Fully reversed cyclic strain with a strain range, $\Delta \epsilon$, of 0.04. Determine the stress-strain response of the material.

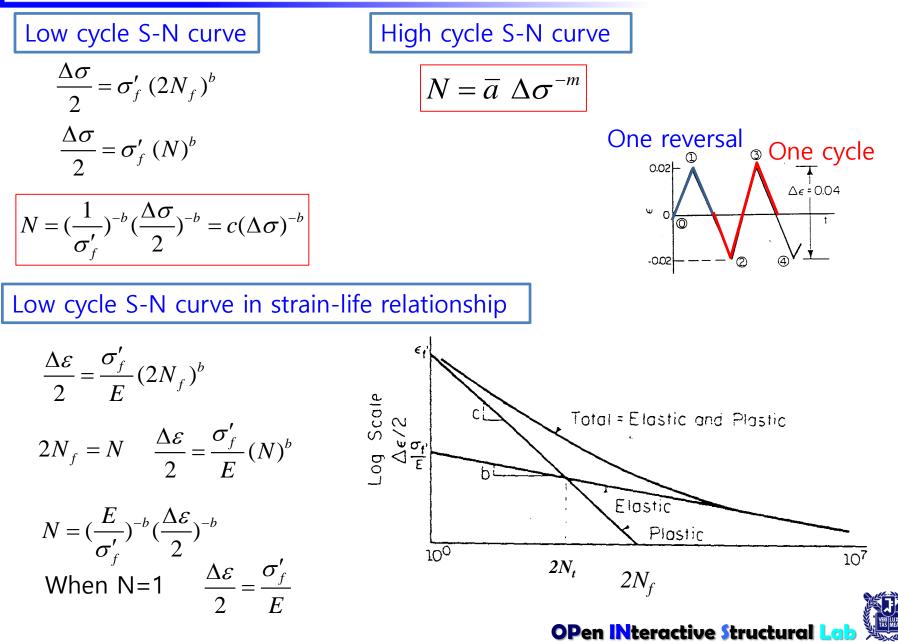
Initial application of strain follows stress- strain curve


(1)
$$\varepsilon_1 = \frac{\sigma_1}{E} + (\frac{\sigma_1}{K'})^{1/n'}$$
 $0.02 = \frac{\sigma_1}{30 \times 10^3 \, ksi} + (\frac{\sigma_1}{176.4 \, ksi})^{1/0.202}$ $\sigma_1 = 77.1 \, ks$

All successive strains follows hysteresiss curve.


2.1 INTRODUCTION

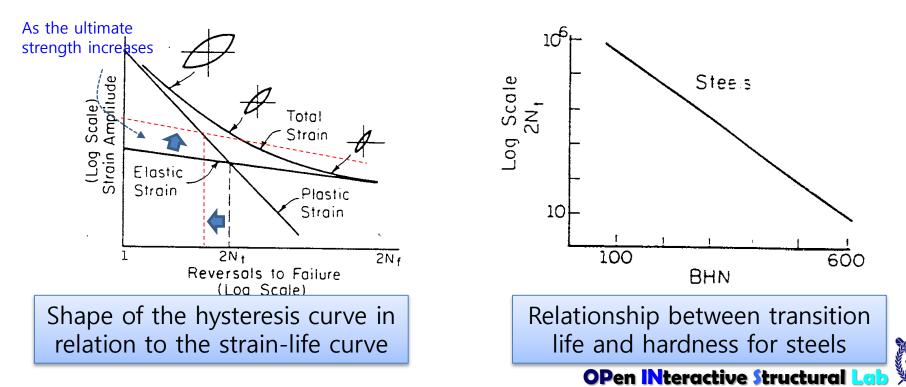
Low Cycle Fatigue Calculation Procedure



Strain Life Curve

Stress life (S-N) data on a log-log scale.

Strain Life Curve

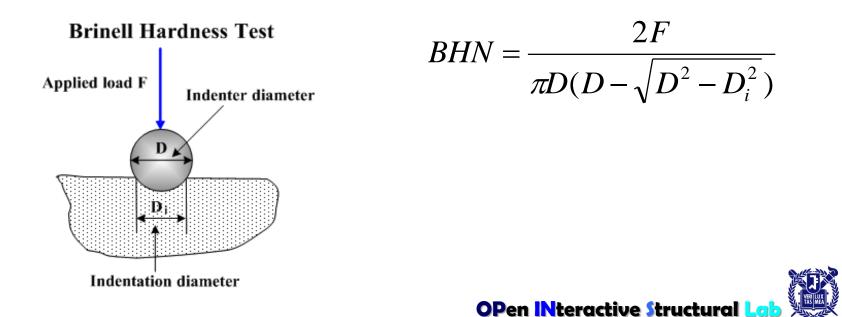

Strain Life Curve

• Transition fatigue life, $2N_t$

$$\frac{\Delta \varepsilon_e}{2} = \frac{\Delta \varepsilon_p}{2} \implies \frac{\sigma'_f}{E} (2N_f)^b = \varepsilon'_f (2N_f)^c \quad at \quad N_f = N_t \implies 2N_t = (\frac{\varepsilon'_f E}{\sigma'_f})^{1/(b-c)}$$

Short lives : more plastic strain, wider loop.
 Long lives : less plastic loop, narrower loop.

• As the ultimate strength increases, the transition life decreases and elastic strains dominate for a greater portion of the life range.


Reference

Brinell Hardness number

- A measure of the hardness of a material obtained by pressing a hard steel ball into its surface.
- the ratio of the load on the ball in kilograms to the area of the depression made by the ball in square millimeters
- Endurance limit (Fatigue Limit) of S-N Curve of base material is related to hardness

 $S_e(ksi) \approx 0.25 \text{ x BHN for BHN <400}$

100 ksi (=689MPa) for BHN > 400

Strain-Life Curve

- Definition of failure
 - ✓ Separation of specimen : common for uniaxial loading
 - ✓ Development of given crack length (often 1.0mm)
 - ✓ Loss of specified load carrying capability (often 10 or 50% load drop)
 - \rightarrow Not a large difference in life between these criteria
- Factor of 2
 - ✓ Strain-life approach measure life in terms of reversals (2N), the stress-life method Cycles (N)
 - ✓ Strain-life approach uses both strain range ($\Delta \varepsilon$) and amplitude (ε_a).
 - ✓ hysteresis curve can be modeled as twice the Cyclic σ - ε curve versus

Methods to determine Properties

• The strain-life equation requires four empirical constants ($b, c, \varepsilon'_f, \sigma'_f$). These can be obtained from fatigue data.

$$\frac{\Delta \varepsilon_{p}}{2} = \varepsilon'_{f} (2N_{f})^{c} \implies 2N_{f} = \left(\frac{\Delta \varepsilon_{p}}{2\varepsilon'_{f}}\right)^{b/c}$$

$$\frac{\Delta \sigma}{2} = \sigma'_{f} (2N_{f})^{b} \implies \frac{\Delta \sigma}{2} = \sigma'_{f} \left(\frac{\Delta \varepsilon_{p}}{2\varepsilon'_{f}}\right)^{b/c} \frac{\Delta \sigma}{2} = \sigma \qquad \frac{\Delta \varepsilon}{2} = \varepsilon$$

$$\sigma = K'(\varepsilon_{p})^{n'} \implies \sigma'_{f} \left(\frac{\varepsilon_{p}}{\varepsilon'_{f}}\right)^{b/c} = K'(\varepsilon_{p})^{n'} \implies \sigma'_{f} \left(\frac{1}{\varepsilon'_{f}}\right)^{b/c} (\varepsilon_{p})^{b/c} = K'(\varepsilon_{p})^{n'}$$

$$n' = \frac{b}{c} \qquad K' = \frac{\sigma'_{f}}{(\varepsilon'_{f})^{n'}}$$

• Although these, relationships may be useful, *K'* and *n'* are usually obtained from a curve fit of the cyclic stress –strain data using $\sigma = K(\varepsilon_n)^n$

OPen INteractive Structural Lab

Methods to determine Properties

- Approximate methods
 - ✓ Fatigue strength coefficient σ'_{f}

 $\sigma'_{f} \approx \sigma_{f}$ (corrected for necking)

 $\sigma_f \approx S_u + 50$ ksi (steels with hardness below 500BHN)

✓ Fatigue strength exponent, b : -0.05~-0.12 for most metals, average of -0.085

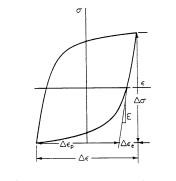
✓ Fatigue ductility coefficient,
$$\varepsilon'_f$$
 : $\varepsilon'_f \approx \varepsilon_f$ where $\varepsilon_f = \ln \frac{1}{1 - RA}$

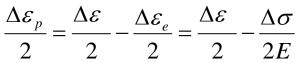
RA: the reduction in area

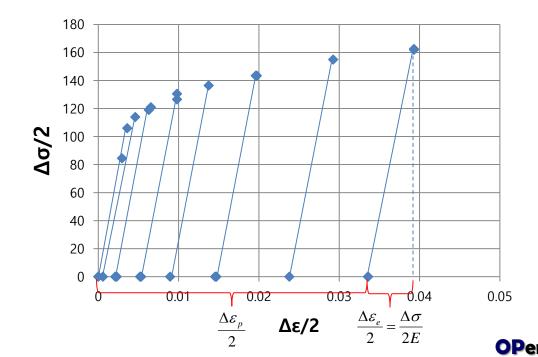
✓ Fatigue ductility exponent c : not well defined, -0.5~-0.7

Example 2.2

Q : From the monotonic and cyclic strain-life data for smooth steel specimens. Determine the cyclic stress-strain and strain-life constants Monotonic data $S_y = 158$ ksi, E=2.84 X103 ksi $S_u = 168$ ksi, $\sigma_f = 228$ ksi %RA = 52 $\varepsilon_f = 0.734$

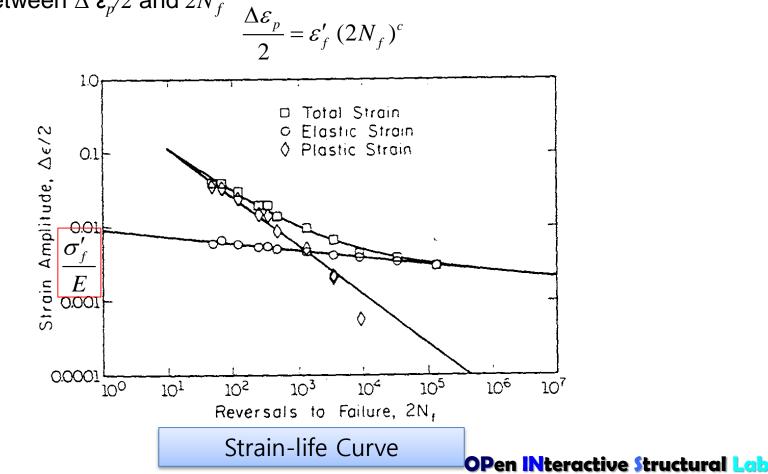

Total Strain Amplitude, $\Delta \epsilon/2$	Stress Amplitude. $\Delta\sigma/2$ (ksi)	Plastic Strain Amplitude, $\Delta \epsilon_p/2^a$	Reversals to Failure, 2N _f		(
0.0393	162.5	0.0336	50				$ \epsilon $	
0.0393	162	0.0336	68	-			 +	
0.02925	155	0.0238	122		/		Δσ	
0.01975	143.5	0.0147	256				/Ε	
0.0196	143.5	0.0145	350				\int	
0.01375	136.5	0.00894	488		$\Delta \epsilon_{c}$			
0.00980	130.5	0.00521	1,364		4	- \(\Left\) - \(\L		
0.00980	126.5	0.00534	1,386				1	
0.00655	121	0.00229	3,540					
0.00630	119	0.00211	3,590	$\Delta \mathcal{E}_{p}$	$\Delta \mathcal{E}$	$\Delta \mathcal{E}_{e}$	$\Delta \mathcal{E}$	Δc
0.00460	114	0.00059	9,100		=	$-\frac{e}{e}$	=	
0.00360	106	0.00000	35,200	2	2	2	2	2E
0.00295	84.5	0.00000	140,000					


OPen INteractive Structural Lab 🎙


Example 2.2

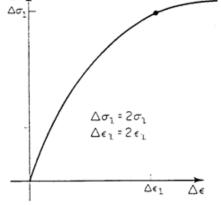
Smooth	Specimen-Cyclic	Data

Total Strain Amplitude, $\Delta \epsilon/2$	Stress Amplitude. $\Delta \sigma/2$ (ksi)	Plastic Strain Amplitude, $\Delta \epsilon_p/2^a$	Reversals to Failure, $2N_f$
0.0393	162.5	0.0336	50
0.0393	162	0.0336	68
0.02925	155	0.0238	122
0.01975	143.5	0.0147	256
0.0196	143.5	0.0145	350
0.01375	136.5	0.00894	488
0.00980	130.5	0.00521	1,364
0.00980	126.5	0.00534	1,386
0.00655	121	0.00229	3,540
0.00630	119	0.00211	3,590
0.00460	114	0.00059	9,100
0.00360	106	0.00000	35,200
0.00295	84.5	0.00000	140,000
the second se			



Example 2.2

- Fatigue strength coefficients σ'_f and b by fitting a power law relationship between $\Delta \sigma/2$ and $2N_f$ $\frac{\Delta \sigma}{2} = \sigma'_f (2N_f)^b \Rightarrow \frac{\Delta \sigma}{2E} = \frac{\sigma'_f}{E} (2N_f)^b$
- Fatigue ductility coefficients ε'_f and c by fitting a power law relationship between $\Delta \varepsilon_p/2$ and $2N_f$


Example 2.2

- The cyclic strength coefficient, K' and the cyclic strain hardening exponent, n'.
- 1) by fitting a power law relationship to stress amplitude $\Delta \sigma/2$ versus plastic strain amplitude $\Delta \varepsilon_p/2$. \rightarrow Preferred

$$\sigma = K'(\varepsilon_p)^{n'} \qquad K' = 216 \, ksi, \ n' = 0.094$$

2) From the relationship

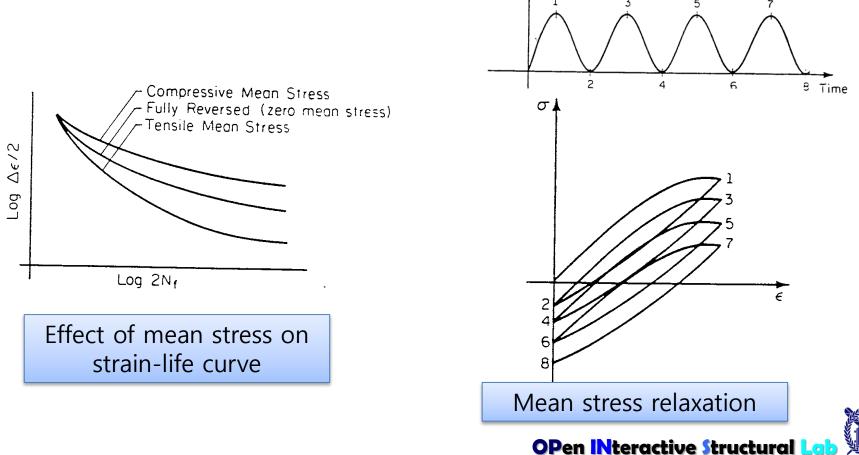
$$K' = \frac{\sigma'_f}{\left(\varepsilon'_f\right)^{n'}} \qquad n' = \frac{b}{c} \quad \Longrightarrow \quad K' = 227 \, ksi, \quad n' = 0.104$$

From strain-life data v.s. from approximations

Value	Determined from Strain-Life Data	Determined Using Approximations
σ'_{f}	222	228
Ь́	-0.076	-0.085
ϵ'_f	0.811	0.734
c	-0.732	-0.6

$$\sigma'_f \approx \sigma_f$$

b : average of -0.085
 $\varepsilon'_f \approx \varepsilon_f$
c : -0.5~-0.7



OPen INteractive Structural

2.6 MEAN STRESS EFFECTS

Mean stress effect

- Mean strain is negligible but mean stress has a significant effect on the fatigue life.
- At longer lives, mean compressive stress effect is valid.
- At high strain amplitudes (0.5% to 1% or above), mean stress tends toward zero.

2.6 MEAN STRESS EFFECTS

Modification to strain-life equation I

• Morrow suggested.
$$\frac{\Delta \varepsilon_{e}}{2} = \frac{\Delta \sigma}{2E} = \frac{\sigma'_{f} - \sigma_{0}}{E} (2N_{f})^{b} \implies 2N_{f} = \left(\frac{2(\sigma'_{f} - \sigma_{0})}{\Delta \varepsilon_{e}E}\right)^{-b}, here \ b < 0$$
"Fatigue life decreases as mean tensile
stress σ_{0} increase."
• The strain-life equation,

$$\frac{\Delta \varepsilon}{2} = \frac{\sigma'_{f} - \sigma_{0}}{E} (2N_{f})^{b} + \varepsilon'_{f} (2N_{f})^{c}$$
Ratio of elastic to plastic
strain is dependent on mean
stress?

$$\frac{\Delta \varepsilon}{\Delta \varepsilon_{e}} = \frac{\sigma'_{f} - \sigma_{0}}{E} (2N_{f})^{b} + \varepsilon'_{f} (2N_{f})^{c}$$
Same ratio of elastic
to plastic strain, but,
vastly different mean
stress
Correction
Norrow's mean stress
correction

40

Eeraceiv

2.6 MEAN STRESS EFFECTS

Modification to strain-life equation I

• Smith, Watson, and Topper (SWT)'s modification. For completely reversed loading $\Delta \sigma$

$$\sigma_{\max} = \frac{\Delta \sigma}{2} = \sigma'_f (2N_f)^b$$

Multiplying the strain-life equation by this term, results in

$$\sigma_{\max} \frac{\Delta \varepsilon}{2} = \frac{(\sigma'_f)^2}{E} (2N_f)^{2b} + \sigma'_f \varepsilon'_f (2N_f)^{b-c}$$

The term σ_{max}

$$\sigma_{\max} = \frac{\Delta \sigma}{2} + \sigma_0 \qquad \qquad \sqrt{\sigma_{\max} \Delta \varepsilon} \propto N_f$$

It becomes undefined when σ_{max} is negative. No fatigue damage occurs when $\sigma_{max} < 0$?

OPen INteractive Structural La